NHD-C128128BZ-FSW-GBW

COG (Chip-On-Glass) Liquid Crystal Display Module

NHD-	Newhaven Display
C128128-	128×128 Pixels
BZ-	Model
F-	Transflective
SW-	Side White LED Backlight
G-	STN-Gray
B-	6:00 Optimal View
W-	Wide Temp
	RoHS Compliant

Newhaven Display International, Inc.
2661 Galvin Ct.
Elgin IL, 60124
Ph: 847-844-8795 Fax: 847-844-8796

Document Revision History

Revision	Date	Description	Changed by
0	$6 / 17 / 2007$	Initial Release	-
1	$9 / 23 / 2009$	User guide reformat	BE
2	$10 / 14 / 2009$	Updated Electrical Characteristic	MC
3	$11 / 20 / 2009$	Updated backlight supply current	MC
4	$3 / 4 / 2011$	Updated table of commands	AK
5	$8 / 25 / 16$	Mechanical Drawing, Electrical \& Optical Char. Updated	SB
6	$4 / 27 / 18$	Mechanical Drawing \& Electrical Characteristics Updated	SB
7	$1 / 16 / 20$	Updated LCD Panel	SB

Functions and Features

- 128×128 pixels
- Built-in ST7528 controller
- +3.0V power supply
- 1/128 duty cycle; $\mathbf{1 / 1 2}$ bias
- RoHS Compliant

Notes:

1. Driver:
2. Display Mode:
3. Optimal View:
4. Voltage:

F 5. Backlight:
6. Driver IC:

1/128 Duty, 1/12 Bias
STN Positive / Gray / Transflective
6:00
3.0V VDD, 13.6V VLCD

White LED
ST7528

Pin Description and Wiring Diagram

Pin No.	Symbol	External Connection	Function Description
1	PSO	Input	Parallel/serial data input select input (see Parallel/Serial Select table)
2	PS1	Input	
3	PS2	Input	IIC not available (tie low)
4	CSB	MPU	Active LOW Chip select
5	RST	MPU	Active LOW Reset signal
6	A0	MPU	Register select signal. A0=1: Data, $\mathrm{A} 0=0$: Command
7	$\begin{aligned} & \text { R/W } \\ & \text { /WR } \end{aligned}$	MPU	6800 Mode: Read/Write select signal. R/W=1: Read R/W: $=0$: Write 8080 Mode: Active LOW Write Signal
8	$\begin{gathered} \hline E \\ / R D \end{gathered}$	MPU	6800 Mode: Active HIGH Enable Signal 8080 Mode: Active LOW Read Signal
9-16	DB0-DB7	MPU	Bi-directional, three-state data bus lines
17,18	VDD	Power Supply	Supply Voltage for logic (3.0V)
19,20	Vss	Power Supply	Ground
21	Vout	Power Supply	Voltage booster circuit - connect to 1 uF cap to $\mathrm{V}_{\text {SS }}$ or $\mathrm{V}_{\text {DD }}$
22	VIN	Power Supply	Tie to Vout
23	V_{4}	Power Supply	1.0uF-2.2uF cap to VSS
24	V_{3}	Power Supply	1.0uF-2.2uF cap to VSS
25	V_{2}	Power Supply	1.0uF-2.2uF cap to VSS
26	V_{1}	Power Supply	1.0uF-2.2uF cap to VSS
27	V_{0}	Power Supply	1.0uF-2.2uF cap to VSS
28	$V_{\text {R }}$	-	No Connect
29	INTRS	Input	Internal resistor select pin: $\mathrm{V}_{\mathrm{DD}}=$ Enabled
30	NC	-	No Connect

Recommended LCD connector: 0.5 mm pitch, 30 pin FFC. Molex p/n: 52892-3095
Backlight connector: GHR-02V-S Mates with: BMO2B-GHS-T

Parallel/Serial Select Table

PS2	PS1	PS0	Interface mode	Data/ Command	Data	Read/ Write	Serial clock
L	L	H	Parallel 80	A0	DB0 to DB7	RD/WR	-
L	H	H	Parallel 68	A0	DB0 to DB7	E/RW	-
L	L	L	3Line Serial	-	SID (DB7)	Write only	SCLK (DB6)
L	H	L	4Line Serial	A0	SID (DB7)	Write only	SCLK (DB6)

*Cannot read data from RAM in 4-line, 3-line, or IIC interface.
*In 4-line or 3-line interface, DB0-DB5, E, and RW must be tied High or Low
*In IIC or 3-line interface, A0 must be tied High or Low

Electrical Characteristics

Optical Characteristics

Item			Symbol	Condition	Min.	Typ.	Max.	Unit
Optimal Viewing Angles	Top		$\varphi Y+$	$C R \geq 2$	-	35	-	0
	Bottom		$\varphi \mathrm{Y}$ -		-	60	-	0
	Left		日X-		-	60	-	0
	Right		日X+		-	60	-	0
Contrast Ratio			CR	-	2	6	-	-
Response Time		Rise	T_{R}	Top $=25^{\circ} \mathrm{C}$	-	150	250	ms
		Fall	TF		-	200	300	ms

Controller Information

Built-in ST7528 controller.
Please download specification at http://www.newhavendisplay.com/app notes/ST7528.pdf

Table of Commands

Instruction	A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
EXT $=0$ or 1											
Mode Set	0	0	0	0	1	1	1	0	0	0	2-byte instruction to set Mode and FR(Frame frequency control) BE (Booster efficiency control)
	0	0	FR3	FR2	FR1	FR0	0	BE	x^{\prime}	EXT	
EXT $=0$											
Read display data	1	1	Read data								Read data into DDRAM
Write display data	1	0	Write data								Write data into DDRAM
Read status	0	1	BUSY	ON	RES	MF2	MF1	MFO	DS1	DSO	Read the internal status
ICON control register ON/OFF	0	0	1	0	1	0	0	0	1	ICON	$\operatorname{ICON}=0:$ ICON disable(default) ICON=1: ICON enable \& set the page address to 16
Set page address	0	0	1	0	1	1	P3	P2	P1	PO	Set page address
Set column address MSB	0	0	0	0	0	1	Y9	Y8	Y7	Y6	Set column address MSB
Set column address LSB	0	0	0	0	0	0	Y5	Y4	Y3	Y2	Set column address LSB
Set modify-read	0	0	1	1	1	0	0	0	0	0	Set modify-read mode
Reset modify-read	0	0	1	1	1	0	1	1	1	0	release modify-read mode
Display ON/OFF	0	0	1	0	1	0	1	1	1	D	$\begin{aligned} & D=0 \text { : Display OFF } \\ & D=1 \text { : Display ON } \end{aligned}$
Set initial display line register	0	0	0	1	0	0	0	0	${ }^{\prime}$	${ }^{\prime}$	2-byte instruction to specify the initial display line to realize vertical scrolling
	0	0	x^{\prime}	S6	S5	S4	S3	S2	S1	SO	
Set initial COMO register	0	0	0	1	0	0	0	1	${ }^{\prime}$	${ }^{\prime}$	2-byte instruction to specify the initial COMO to realize window scrolling
	0	0	χ^{\prime}	C6	C5	C4	C3	C2	C1	CO	
Set partial display duty ration	0	0	0	1	0	0	1	0	${ }^{\prime}$	${ }^{\prime}$	2-byte instruction to set partia display duty ratio
	0	0	D7	D6	D5	D4	D3	D2	D1	DO	
Set N -line inversion	0	0	0	1	0	0	1	1	${ }^{\prime}$	${ }^{\prime}$	2-byte instruction to set N -line inversion register
	0	0	${ }^{\prime}$	${ }^{\prime}$	${ }^{\prime}$	N4	N3	N2	N1	NO	
Release N -line inversion	0	0	1	1	1	0	0	1	0	0	Release N -line inversion mode
Reverse display ON/OFF	0	0	1	0	1	0	0	1	1	REV	$\begin{aligned} & R E V=0 \text { : normal display } \\ & R E V=1 \text { : revers e display } \end{aligned}$
Entire display ON/OFF	0	0	1	0	1	0	0	1	0	EON	$\begin{aligned} & \mathrm{EON}=0 \text { : normal display } \\ & \mathrm{EON}=1 \text { : entire display ON } \end{aligned}$

Instruction	A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
Ext=0											
Power control	0	0	0	0	1	0	1	VC	VR	VF	Control power circuit operation
Select DC-DC step-up	0	0	0	1	1	0	0	1	DC1	DC0	Select the step-up of internal voltage converter
Select regulator register	0	0	0	0	1	0	0	R2	R1	R0	Select the internal resistance ratio of the regulator resistor
Select electronic volumn register	0	0	1	0	0	0	0	0	0	1	2-byte instruction to specify the reference voltage
	0	0	x^{\prime}	${ }^{\prime}$	EV5	EV4	EV3	EV2	EV1	Evo	
Select LCD bias	0	0	0	1	0	1	0	B2	B1	B0	Select LCD bias
Bias Power Save	0	0	1	1	1	1	0	0	1	1	Bias Power save Save the Bias current consumption
	0	0	0	0	0	0	0	0	0	0	
SHL select	0	0	1	1	0	0	SHL	x^{\prime}	x	x^{\prime}	COM bi-directional selection $\mathrm{SHL}=0$: normal direction SHL=1: reverse direction
ADC select	0	0	1	0	1	0	0	0	0	ADC	SEG bi-direction selection ADC=0: normal direction ADC=1: reverse direction
Oscillator on start	0	0	1	0	1	0	1	0	1	1	Start the built-in oscillator
Set power save mode	0	0	1	0	1	0	1	0	0	P	$P=0$: normal mode $P=1$: sleep mode
Release power save mode	0	0	1	1	1	0	0	0	0	1	release power save mode
Reset	0	0	1	1	1	0	0	0	1	0	initial the internal function
Set data direction \&	${ }^{\prime}$	x^{\prime}	1	1	1	0	1	0	0	0	2-byte instruction to specify the number of data bytes. (SPI mode)
display data length(DDL)	\times	x^{\prime}	D7	D6	D5	D4	D3	D2	D1	D0	
Select FRC and PWM mode	0	0	1	0	0	1	0	FRC	PWM1	PWMO	FRC(1:3FRC, 0:4FRC) PWM1 0
NOP	0	0	1	1	1	0	0	0	1	1	No operation
Test Instruction	0	0	1	1	1	1	${ }^{\prime}$	x^{\prime}	${ }^{\prime}$	x^{\prime}	Don't use this instruction

Timing Characteristics

Item	Signal	Symbol	Condition	Rating		Units
				Min.	Max.	
Address hold time	A0	tAH6		0	-	ns
Address setup time		tAW6		0	-	
System cycle time		tCYC6		240	-	
Enable L pulse width (WRITE)	WR	tEWLW		80	-	
Enable H pulse width (WRITE)		tEWHW		80	-	
Enable L pulse width (READ)	RD	tEWLR		80	-	
Enable H pulse width (READ)		tEWHR		140		
WRITE Data setup time	D0 to D7	tDS6		40	-	
WRITE Data hold time		tDH6		10	-	
READ access time		tACC6	$C L=100 \mathrm{pF}$	-	70	
READ Output disable time		tOH6	$C L=100 \mathrm{pF}$	5	50	

Example Initialization Program

```
/*************************************************************/
/******************************************************************/
void write_command(unsigned char datum)
{
A0=0; /*Instruction register*/
E=1; /*Read inactive*/
bus=datum; /*put data on port 1*/
CSB=0; /*Chip select active*/
RW=0; /*Write active*/
RW=1; /*Write inactive; latch in data*/
CSB=1; /*Chip select inactive*/
}
/******************************************************************/
void write_data(unsigned char datum)
{
AO=1; /*DDRAM data register*/
E=1;
bus=datum;
CSB=0;
RW=0;
RW=1;
CSB=1;
}
/*****************************************************************/
void Icd_init(void){
    write_command(0xA2); //ICON OFF;
    write_command(0xAE); //Display OFF
    write_command(0x48); //Set Duty ratio
    write_command(0x80); //No operation
    write_command(0xa0); //Set scan direction
    write_command(0xc8); //SHL select
    write_command(0\times40); //Set START LINE
    write_command(0\times00);
    write_command(0xab); //OSC on
    write_command(0x64); //3x
    delay(2000);
    write_command(0x65); //4x
    delay(2000);
    write_command(0x66); //5x
    delay(2000);
    write_command(0x67); //6x
    delay(2000);
    write_command(Ra_Rb); //RESISTER SET
    write_command(0x81); //Set electronic volume register
    write_command(vopcode); //n=0~3f
    write_command(0x57); //1/12bias
    write_command(0x92); //FRC and pwm
    write_command(0x2C);
    delay(20000);//200ms
    write_command(0\times2E);
    delay(20000);//200ms
    write_command(0\times2F);
    delay(20000);//200ms
```

```
write_command(0x92);
//frc and pwm
write_command(0x38);
//external mode
write_command(0\times75);
    /*** start settings for 16-level grayscale ***/
```

write_command(0x97);
//3frc,45pwm
write_command(0x80);
write_command(0x00);
write_command (0×81);
write_command (0×00);
write_command(0x82);
write_command(0x00);
write_command(0×83);
write_command (0×00);
write_command(0x84);
write_command(0x06);
write_command(0×85);
write_command(0x06);
write_command(0x86);
write_command(0x06);
write_command (0×87);
write_command(0x06);
write_command(0x88);
write_command ($0 \times 0 \mathrm{bb}$);
write_command(0x89);
write_command(0x0b);
write_command(0x8a);
write_command (0x0b);
write_command(0x8b);
write_command(0x0b);
write_command ($0 \times 8 \mathrm{c}$);
write_command (0×10);
write_command(0x8d);
write_command (0×10);
write_command($0 \times 8 \mathrm{e}$);
write_command (0×10);
write_command(0x8f);
write_command(0×10);
write_command (0×90);
write_command(0x15);
write_command(0x91);
write_command(0x15);
write_command (0×92);
write_command(0x15);
write_command(0x93);
write_command(0x15);
write_command(0x94);
write_command(0x1a);
write_command(0x95);
write_command($0 \times 1 \mathrm{a}$);
write_command(0×96);
write_command(0x1a);
write_command(0x97);
write_command(0x1a);
write_command(0x98);
write_command(0x1e); write_command(0x99); write_command ($0 \times 1 \mathrm{e}$); write_command(0×9a); write_command(0x1e); write_command(0x9b); write_command(0x1e);
write_command(0x9c); write_command(0x23); write_command(0x9d); write_command(0×23); write_command(0x9e); write_command(0x23); write_command($0 \times 9 \mathrm{f}$); write_command(0×23);
write_command(0xa0); write_command(0x27); write_command(0xa1); write_command(0x27); write_command(0xa2); write_command(0x27); write_command(0xa3); write_command(0x27);
write_command(0xa4); write_command($0 \times 2 \mathrm{~b}$); write_command(0xa5); write_command(0x2b); write_command(0xa6); write_command(0x2b); write_command(0xa7); write_command(0x2b);
write_command(0xa8); write_command(0x2f); write_command(0xa9); write_command(0x2f); write_command(0xaa); write_command($0 \times 2 \mathrm{f}$); write_command(0xab); write_command(0x2f);
write_command(0xac); write_command(0×32); write_command(0xad); write_command(0×32); write_command(0xae); write_command(0×32); write_command(0xaf); write_command(0x32);
write_command(0xb0); write_command(0x35); write_command(0xb1); write_command(0×35); write_command(0xb2); write_command(0x35); write_command(0xb3); write_command(0×35);

```
    write_command(0xb4);
    write_command(0x38);
    write_command(0xb5);
    write_command(0\times38);
    write_command(0xb6);
    write_command(0\times38);
    write_command(0xb7);
    write_command(0\times38);
    write_command(0xb8);
    write_command(0x3a);
    write_command(0xb9);
    write_command(0x3a);
    write_command(0xba);
    write_command(0x3a);
    write_command(0xbb);
    write_command(0x3a);
    write_command(0xbc);
    write_command(0\times3c);
    write_command(0xbd);
    write_command(0x3c);
    write_command(0xbe);
    write_command(0\times3c);
    write_command(0xbf);
    write_command(0x3c);
    //end settings for 16-level grayscale
    write_command(0\times38);
    write_command(0\times74);
    write_command(0xaf); //Display ON
}
/****************************************************************************
/*************************************************************/
```

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage temperature for a long time.	$+80^{\circ} \mathrm{C}, 48 \mathrm{hrs}$	2
Low Temperature storage	Endurance test applying the low storage temperature for a long time.	$-30^{\circ} \mathrm{C}, 48 \mathrm{hrs}$	1,2
High Temperature Operation	Endurance test applying the electric stress (voltage \& current) and the high thermal stress for a long time.	$+70^{\circ} \mathrm{C}, 48 \mathrm{hrs}$	2
Low Temperature Operation	Endurance test applying the electric stress (voltage \& current) and the low thermal stress for a long time.	$-20^{\circ} \mathrm{C}, 48 \mathrm{hrs}$	1,2
High Temperature / Humidity Operation	Endurance test applying the electric stress (voltage \& current) and the high thermal with high humidity stress for a long time.	$+40^{\circ} \mathrm{C}, 90 \% \mathrm{RH}, 48 \mathrm{hrs}$	1,2
Thermal Shock resistance	Endurance test applying the electric stress (voltage \& current) during a cycle of low and high thermal stress.	$-0^{\circ} \mathrm{C}, 30 \mathrm{~min}->25^{\circ} \mathrm{C}, 5 \mathrm{~min}->$ $50^{\circ} \mathrm{C}, 30 \mathrm{~min}=1 \mathrm{cycle}$ 10 cycles	
Vibration test	Endurance test applying vibration to simulate transportation and use.	$10-55 \mathrm{~Hz}, 15 \mathrm{~mm}$ amplitude. 60 sec in each of 3 directions $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ For 15 minutes	3
Static electricity test	Endurance test applying electric static discharge.	$\mathrm{VS}=800 \mathrm{~V}, \mathrm{RS}=1.5 \mathrm{k} \Omega, \mathrm{CS}=100 \mathrm{pF}$ One time	

Note 1: No condensation to be observed.
Note 2: Conducted after 4 hours of storage at $25^{\circ} \mathrm{C}, 0 \% \mathrm{RH}$.
Note 3: Test performed on product itself, not inside a container.

Precautions for using LCDs/LCMs
See Precautions at www.newhavendisplay.com/specs/precautions.pdf

Warranty Information and Terms \& Conditions

http://www.newhavendisplay.com/index.php?main page=terms

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LCD Graphic Display Modules \& Accessories category:
Click to view products by Newhaven Display manufacturer:

Other Similar products are found below :
HDM64GS12L-Y11S MGLS-240128-Z05 DEM 128064U FGH DEM 240064E FGH-PW 115571839615932 HDM64GS24L-2-Y14S RG12864B-FHW-V RG12864B-GHW-V RG12864C-YHW-V DEM 128064A SBH-PW-N DEM 128064B SBH-PW-N DEM 128064G FGHPW DEM 1280640 FGH-PW DEM 1280640 SBH-PW-N DEM 128064P SBH-PW-N DEM 128064Q SBH-PW-N DEM 128128D FGH-PW DEM 240064B FGH-PW DEM 240064B SBH-PW-N DEM 320240B FGH-PW-N EA W240-7KHLW 16239 RX12864A1-BIW RX240128A-TIW RX240160A-FHW 1837019340 RG24064A-TIW-V EA FL-14P GLK19264A-7T-1U-TCI GLK19264A-7T-1U-USBFGW GLK19264A-7T-1U-USB-WB DEM 320240I SBH-PW-N GLK24064R-25-1U-WB DEM 240160A FGH-PW RG12864B1-BIW-V RG240128B-BIW-V RG24064A-FHW-V DEM 122032B SYH-LY DEM 128064A FGH-PW (A-TOUCH) DEM 128064A SBH-PW-N (ATOUCH) DEM 128064B FGH-PW DEM 128064H SBH-PW-N DEM 128064J FGH-PW DEM 128064P FGH-PW DEM 320240C SBH-PWN DEM 320240I FGH-PW DEM 128064F SBH-PW-N

