NHD-C160100CZ-RN-FBW

COG (Chip-On-Glass) Liquid Crystal Display Module

NHD-	Newhaven Display
C160100-	160×100 Pixels
CZ-	Model
R-	Reflective
N-	No Backlight
F-	FSTN Positive
B-	6:00 Optimal View
W-	Wide Temperature
	RoHS Compliant

Newhaven Display International, Inc.
2661 Galvin Ct.
Elgin IL, 60124
Ph: 847-844-8795 Fax: 847-844-8796

Document Revision History

Revision	Date	Description	Changed by
0	$6 / 17 / 2007$	Initial Release	-
1	$9 / 11 / 2009$	User guide reformat	BE
2	$10 / 14 / 2009$	Updated Electrical Characteristic	MC
3	$12 / 08 / 2009$	Updated Block Diagram, Pins 4 and 5, and Timing Characteristics	MC
4	$9 / 2 / 15$	Mechanical drawing updated	AK
5	$9 / 18 / 2015$	Mechanical drawing updated	SB
6	$8 / 9 / 16$	LCD Glass supplier changed	AK
7	$6 / 11 / 19$	Pull Tab added to Drawing \& Supply Current Updated	SB

Functions and Features

- 160×100 pixels
- Built-in ST7528 controller
- Parallel 8080 interface
- +3.0V power supply
- 1/100 duty cycle; $1 / 11$ bias
- RoHS Compliant

E
Notes:

1. Display Type:
2. VLCD:
3. Driver IC:
4. Operating Temp: $\quad-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

F 5. Storage Temp: $\quad-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
6. Optimal View:

FSTN / Positive / Reflective
$11.5 \mathrm{~V} \pm 0.3 \mathrm{~V}$
ST7528

6:00

Pin Description and Wiring Diagram

Pin No.	Symbol	External Connection	Function Description
1	CSB	MPU	Active LOW Chip Select signal
2	RST	MPU	Active LOW Reset signal
3	A0	MPU	Register Select signal. A0=1: Data, $\mathrm{A} 0=0$: Command
4	/WR	MPU	Active LOW Write signal
5	/RD	MPU	Active LOW Read signal
6-13	DB0-DB7	MPU	Bi-directional 8-bit data bus.
14	$V_{\text {DD }}$	Power Supply	Supply voltage for LCD and logic (+3.0V)
15	$\mathrm{V}_{\text {SS }}$	Power Supply	Ground
16	Vout	Power Supply	Connect to 1uF cap to V ${ }_{\text {Ss }}$ or V ${ }_{\text {DD }}$
17	V_{4}	Power Supply	1.0uF-2.2uF cap to Vss
18	V_{3}	Power Supply	1.0uF-2.2uF cap to $\mathrm{V}_{\text {ss }}$
19	V_{2}	Power Supply	1.0uF-2.2uF cap to $\mathrm{V}_{\text {ss }}$
20	V_{1}	Power Supply	1.0uF-2.2uF cap to V $\mathrm{V}_{\text {s }}$

Recommended LCD connector: 0.5 mm pitch pins. Molex p/n: 52746-2070

Electrical Characteristics

Item	Symbol	Condition	Min.	Typ.	Max.	Unit
Operating Temperature Range	Top	Absolute Max	-20	-	+70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Tst	Absolute Max	-30	-	+80	${ }^{\circ} \mathrm{C}$
Supply Voltage	VDD	-	2.7	3.0	3.3	V
Supply Current	IDD	Top $=25^{\circ} \mathrm{C}$,	0.38	0.75	1.13	mA
Supply for LCD (contrast)	VLCD	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	11.2	11.5	11.8	V
"H" Level input	V_{IH}	-	$0.7{ }^{*} V_{\text {D }}$	-	$V_{\text {DD }}$	V
"L" Level input	$\mathrm{V}_{\text {IL }}$	-	$\mathrm{V}_{\text {SS }}$	-	$0.3 * V_{\text {DD }}$	V
"H" Level output	Vor	-	$0.7{ }^{*} V_{\text {D }}$	-	$V_{D D}$	V
"L" Level output	Vol	-	Vss	-	0.3* $\mathrm{V}_{\text {DD }}$	V

Optical Characteristics

Item		Symbol	Condition	Min.	Typ.	Max.	Unit
Optimal Viewing Angles	Top	$\varphi \mathrm{Y}+$	$C R \geq 2$	-	20	-	0
	Bottom	$\varphi \mathrm{Y}-$		-	40	-	${ }^{\circ}$
	Left	өX-		-	45	-	0
	Right	日X+		-	45	-	0
Contrast Ratio		CR	-	2	4	-	-
Response Time	Rise	TR	Top $=25^{\circ} \mathrm{C}$	-	70	104	ms
	Fall	T_{F}		-	140	215	ms

Controller Information

Built-in ST7528 controller.
Please download specification at http://www.newhavendisplay.com/app notes/ST7528.pdf

Table of Commands

Instruction	A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
EXT $=0$ or 1											
Mode Set	0	0	0	0	1	1	1	0	0	0	2-byte instruction to set Mode and FR(Frame frequency control) BE(Booster efficiency control)
	0	0	FR3	FR2	FR1	FRO	0	BE	x^{\prime}	EXT	

EXT $=0$

Read display data	1	1	Read data								Read data into DDRAM
Write display data	1	0	Write data								Write data into DDRAM
Read status	0	1	BUSY	ON	RES	MF2	MF1	MF0	DS1	DS0	Read the internal status
ICON control register ON/OFF	0	0	1	0	1	0	0	0	1	ICON	ICON=0: ICON disable(default) ICON=1: ICON enable \& set the page address to 16
Set page address	0	0	1	0	1	1	P3	P2	P1	P0	Set page address
Set column address MSB	0	0	0	0	0	1	Y9	Y8	Y7	Y6	Set column address MSB
Set column address LSB	0	0	0	0	0	0	Y5	Y4	Y3	Y2	Set column address LSB
Set modify-read	0	0	1	1	1	0	0	0	0	0	Set modify-read mode
Reset modify-read	0	0	1	1	1	0	1	1	1	0	release modify-read mode
Display ON/OFF	0	0	1	0	1	0	1	1	1	D	$D=0$: Display OFF $D=1$: Display ON
Set initial display line register	0	0	0	1	0	0	0	0	${ }^{\prime}$	x^{\prime}	2-byte instruction to specify the initial display line to realize vertical scrolling
	0	0	x^{\prime}	S6	S5	S4	S3	S2	S1	S0	
Set initial COM0 register	0	0	0	1	0	0	0	1	${ }^{\prime}$	x^{\prime}	2-byte instruction to specify the initial COMO to realize window scrolling
	0	0	x^{\prime}	C6	C5	C4	C3	C2	C1	C0	
Set partial display duty ration	0	0	0	1	0	0	1	0	${ }^{\prime}$	x^{\prime}	2-byte instruction to set partial display duty ratio
	0	0	D7	D6	D5	D4	D3	D2	D1	D0	
Set N -line inversion	0	0	0	1	0	0	1	1	x^{\prime}	${ }^{\prime}$	2-byte instruction to set N -line inversion register
	0	0	x^{\prime}	x^{\prime}	x'	N4	N3	N2	N1	N0	
Release N -line inversion	0	0	1	1	1	0	0	1	0	0	Release N -line inversion mode
Reverse display ON/OFF	0	0	1	0	1	0	0	1	1	REV	$R E V=0$: normal display $R E V=1$: reverse display
Entire display ON/OFF	0	0	1	0	1	0	0	1	0	EON	EON $=0$: normal display EON=1: entire display ON

Instruction	A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
Ext=0											
Power control	0	0	0	0	1	0	1	VC	VR	VF	Control power circuit operation
Select DC-DC step-up	0	0	0	1	1	0	0	1	DC1	DC0	Select the step-up of internal voltage converter
Select regulator register	0	0	0	0	1	0	0	R2	R1	R0	Select the internal resistance ratio of the regulator resistor
Select electronic volumn	0	0	1	0	0	0	0	0	0	1	2-byte instruction to specify the reference voltage
register	0	0	x^{\prime}	x^{\prime}	EV5	EV4	EV3	EV2	EV1	EVO	
Select LCD bias	0	0	0	1	0	1	0	B2	B1	B0	Select LCD bias
	0	0	1	1	1	1	0	0	1	1	Bias Power save Save the Bias current consumption
	0	0	0	0	0	0	0	0	0	0	
Release Bias Power Save	0	0	1	1	1	1	0	0	1	1	Bias Power save release set the Bias power to normal
Mode	0	0	0	0	0	0	0	1	0	0	
SHL select	0	0	1	1	0	0	SHL	x^{\prime}	x^{\prime}	x^{\prime}	COM bi-directional selection SHL=0: normal direction SHL=1: reverse direction
ADC select	0	0	1	0	1	0	0	0	0	ADC	SEG bi-direction selection $A D C=0$: normal direction $A D C=1$: reverse direction
Oscillator on start	0	0	1	0	1	0	1	0	1	1	Start the built-in oscillator
Set power save mode	0	0	1	0	1	0	1	0	0	P	$\begin{aligned} & P=0 \text { : normal mode } \\ & P=1 \text { : sleep mode } \end{aligned}$
Release power save mode	0	0	1	1	1	0	0	0	0	1	release power save mode
Reset	0	0	1	1	1	0	0	0	1	0	initial the internal function
Set data direction \&	x^{\prime}	x^{\prime}	1	1	1	0	1	0	0	0	2-byte instruction to specify the number of data bytes. (SPI mode)
	x^{\prime}	${ }^{\prime}$	D7	D6	D5	D4	D3	D2	D1	D0	
Select FRC and PWM mode	0	0	1	0	0	1	0	FRC	PWM1	PWMO	$\begin{array}{\|ccc} \hline \text { FRC(1:3FRC, } 0: 4 \mathrm{FRC}) \\ \text { PWM1 } \\ \begin{array}{ccc} \text { PWM0 } \\ 0 & 0 & 45 \mathrm{PWM} \\ 0 & 1 & 45 \mathrm{PWM} \\ 1 & 0 & 60 \mathrm{PWM} \\ 1 & 1 & -- \end{array} \end{array}$
NOP	0	0	1	1	1	0	0	0	1	1	No operation
Test Instruction	0	0	1	1	1	1	x^{\prime}	x^{\prime}	x^{\prime}	x^{\prime}	Don't use this instruction

Timing Characteristics

$\left(\mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$						
Item	Signal	Symbol	Condition	Rating		Units
				Min.	Max.	
Address hold time	A0	tAH8		0	-	ns
Address setup time		tAW8		0	-	
System cycle time		tCYC8		240	-	
Enable L pulse width (WRITE)	WR	tCCLW		80	-	
Enable H pulse width (WRITE)		tCCHW		80	-	
Enable L pulse width (READ)	RD	tCCLR		140	-	
Enable H pulse width (READ)		tCCHR		80		
WRITE Data setup time	D0 to D7	tDS8		40	-	
WRITE Data hold time		tDH8		10	-	
READ access time		tACC8	$C L=100 \mathrm{pF}$	-	70	
READ Output disable time		tOH8	$C L=100 \mathrm{pF}$	5	50	

Example Initialization Program

```
//-----------------------------------------------------------------
void write_command(unsigned char datum)
{
AO=0; /*Instruction register*/
E=1;
P1 = datum;
CS1=0;
RW=0;
RW=1;
CS1=1;
}
//------------------------------------------------------------------
void write_data(unsigned char datum)
{
A0=1; /*DDRAM data register*/
E=1;
P1=datum;
CS1=0;
RW=0;
RW=1;
CS1=1;
}
|/-----------------------------------------------------------------------------
void Icd_init(void){
    write_command(0xA2); //ICON OFF;
    write_command(0xAE); //Display OFF
    write_command(0x48); //Set Duty ratio
    write_command(0\times80); //No operation
    write_command(0xa1); //Set scan direction //changed from 0 to 1
    write_command(0xc8); //SHL select
    write_command(0\times40); //Set START LINE
    write_command(0x00);
    write_command(0xab); //OSC on
    write_command(0x64); //3x
    delay(2000);
    write_command(0x65); //4x
    delay(2000);
    write_command(0x66); //5x
    delay(2000);
    write_command(0x67); //6x
    delay(2000);
    write_command(Ra_Rb); //RESISTER SET
    write_command(0x81); //Set electronic volume register
    write_command(vopcode); //n=0~3f
    write_command(0x57); //1/12bias
    write_command(0x92); //FRC and pwm
    write_command(0\times2C);
    delay(20000);//200ms
```

write_command ($0 \times 2 \mathrm{E}$);
delay(20000);//200ms
write_command $(0 \times 2 \mathrm{~F})$;
delay(20000);//200ms
write_command(0x92);
write_command(0x38);
//frc and pwm
//external mode
write_command(0x75);
//start settings for 16 -level grayscale write_command(0x97); //3frc,45pwm
write_command(0x80); write_command(0x00); write_command(0×81); write_command (0×00); write_command(0x82); write_command (0x00); write_command(0×83); write_command (0×00);
write_command(0x84); write_command(0x06); write_command (0×85); write_command(0x06); write_command(0x86); write_command(0x06); write_command (0×87); write_command(0x06);
write_command(0x88); write_command(0x0b); write_command(0x89); write_command(0x0b); write_command(0x8a); write_command(0x0b); write_command(0x8b); write_command(0x0b);
write_command $(0 \times 8 \mathrm{c})$; write_command (0×10); write_command(0x8d); write_command(0×10); write_command $(0 \times 8 e)$; write_command (0×10); write_command(0x8f); write_command(0×10);
write_command (0×90); write_command(0x15); write_command(0x91); write_command(0x15); write_command (0×92); write_command(0x15); write_command(0x93); write_command(0x15);
write_command(0x94); write_command(0x1a); write_command(0x95); write_command(0x1a); write_command(0x96); write_command(0x1a);
write_command(0x97); write_command(0x1a);
write_command(0×98); write_command(0x1e); write_command(0x99); write_command(0x1e); write_command(0×9a); write_command(0x1e); write_command(0x9b); write_command(0x1e);
write_command(0x9c); write_command(0x23); write_command(0x9d); write_command(0×23); write_command(0x9e); write_command(0x23); write_command(0x9f); write_command(0x23);
write_command(0xa0); write_command(0x27); write_command(0xa1); write_command(0×27); write_command(0xa2); write_command(0x27); write_command(0xa3); write_command(0x27);
write_command(0xa4); write_command(0x2b); write_command(0xa5); write_command(0x2b); write_command(0xa6); write_command(0x2b); write_command(0xa7); write_command(0x2b);
write_command(0xa8); write_command(0x2f); write_command(0xa9); write_command(0x2f); write_command(0xaa); write_command($0 \times 2 \mathrm{f}$); write_command(0xab); write_command(0x2f);
write_command(0xac); write_command(0×32); write_command(0xad); write_command(0x32); write_command(0xae); write_command(0×32); write_command(0xaf); write_command(0x32);
write_command(0xb0); write_command(0x35); write_command(0xb1); write_command(0x35); write_command(0xb2); write_command(0x35);

```
    write_command(0xb3);
    write_command(0x35);
    write_command(0xb4);
    write_command(0x38);
    write_command(0xb5);
    write_command(0\times38);
    write_command(0xb6);
    write_command(0\times38);
    write_command(0xb7);
    write_command(0\times38);
    write_command(0xb8);
    write_command(0x3a);
    write_command(0xb9);
    write_command(0x3a);
    write_command(0xba);
    write_command(0x3a);
    write_command(0xbb);
    write_command(0x3a);
    write_command(0xbc);
    write_command(0x3c);
    write_command(0xbd);
    write_command(0\times3c);
    write_command(0xbe);
    write_command(0x3c);
    write_command(0xbf);
    write_command(0\times3c);
        //end settings for 16-level grayscale
    write_command(0x38);
    write_command(0\times74);
    write_command(0xaf); //Display ON
}
```

//--

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage temperature for a long time.	$+80^{\circ} \mathrm{C}, 48 \mathrm{hrs}$	2
Low Temperature storage	Endurance test applying the low storage temperature for a long time.	$-30^{\circ} \mathrm{C}, 48 \mathrm{hrs}$	1,2
High Temperature Operation	Endurance test applying the electric stress (voltage \& current) and the high thermal stress for a long time.	$+70^{\circ} \mathrm{C} 48 \mathrm{hrs}$	2
Low Temperature Operation	Endurance test applying the electric stress (voltage \& current) and the low thermal stress for a long time.	$-20^{\circ} \mathrm{C}, 48 \mathrm{hrs}$	1,2
High Temperature / Humidity Operation	Endurance test applying the electric stress (voltage \& current) and the high thermal with high humidity stress for a long time.	$+40^{\circ} \mathrm{C}, 90 \% \mathrm{RH}, 48 \mathrm{hrs}$	1,2
Thermal Shock resistance	Endurance test applying the electric stress (voltage \& current) during a cycle of low and high thermal stress.	$-0^{\circ} \mathrm{C}, 30 \mathrm{~min}->25^{\circ} \mathrm{C}, 5 \mathrm{~min}->$ $50^{\circ} \mathrm{C}, 30 \mathrm{~min}=1 \mathrm{cycle}$ 10 cycles	
Vibration test	Endurance test applying vibration to simulate transportation and use.	$10-55 \mathrm{~Hz}, 15 \mathrm{~mm}$ amplitude. 60 sec in each of 3 directions $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ For 15 minutes	3
Static electricity test	Endurance test applying electric static discharge.	$\mathrm{VS}=800 \mathrm{~V}, \mathrm{RS}=1.5 \mathrm{k} \Omega, \mathrm{CS}=100 \mathrm{pF}$ One time	

Note 1: No condensation to be observed.
Note 2: Conducted after 4 hours of storage at $25^{\circ} \mathrm{C}, 0 \% \mathrm{RH}$.
Note 3: Test performed on product itself, not inside a container.

Precautions for using LCDs/LCMs

See Precautions at www.newhavendisplay.com/specs/precautions.pdf

Warranty Information and Terms \& Conditions

http://www.newhavendisplay.com/index.php?main page=terms

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LCD Graphic Display Modules \& Accessories category:
Click to view products by Newhaven Display manufacturer:

Other Similar products are found below :
HDM64GS12L-Y11S MGLS-240128-Z05 DEM 128064U FGH DEM 240064E FGH-PW 115571839615932 HDM64GS24L-2-Y14S RG12864C-YHW-V RG12864K-BIW-VBG DEM 128064A SBH-PW-N DEM 128064B SBH-PW-N DEM 128064G FGH-PW DEM 128064O FGH-PW DEM 1280640 SBH-PW-N DEM 128064Q SBH-PW-N DEM 128128D FGH-PW DEM 240064B FGH-PW DEM 240064B SBH-PW-N DEM 320240B FGH-PW-N EA W240-7KHLW 16239 RX12864A1-BIW RX240128A-FHW RX240160A-FHW $18370 \underline{19340}$ RG24064A-TIW-V EA FL-14P GLK19264A-7T-1U-TCI GLK19264A-7T-1U-USB-FGW GLK19264A-7T-1U-USB-WB DEM 320240I SBH-PW-N GLK24064R-25-1U-WB DEM 240160A FGH-PW RG12864B1-BIW-V RG240128B-BIW-V RG24064A-FHWV DEM 122032B SYH-LY DEM 128064A FGH-PW (A-TOUCH) DEM 128064A SBH-PW-N (A-TOUCH) DEM 128064B FGH-PW DEM 128064H SBH-PW-N DEM 128064J FGH-PW DEM 128064P FGH-PW DEM 320240C SBH-PW-N DEM 320240I FGH-PW DEM 128064F SBH-PW-N DEM 128128B1 FGH-PW DEM 240064C1 FGH-PW

