74AHC1G66-Q100; 74AHCT1G66-Q100

1. General description

74AHC1G66-Q100 and 74AHCT1G66-Q100 are high-speed Si-gate CMOS devices. They are single-pole single-throw analog switches. The switch has two input/output pins (Y and Z) and an active HIGH enable input pin (E). When pin E is LOW, the analog switch is turned off.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

2. Features and benefits

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)

Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

- Very low ON resistance:
- 26Ω (typ.) at $\mathrm{V}_{\mathrm{Cc}}=3.0 \mathrm{~V}$
- 16Ω (typ.) at $\mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}$
- 14Ω (typ.) at $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
- High noise immunity
- Low power dissipation
- Balanced propagation delays
- Multiple package options
- ESD protection:
- MIL-STD-883, method 3015 exceeds 2000 V
- HBM JESD22-A114F exceeds 2000 V
- MM JESD22-A115-A exceeds $200 \mathrm{~V}(\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0 \Omega)$

3. Ordering information

Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74AHC1G66GW-Q100	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSSOP5	plastic thin shrink small outline package; 5	SOT353-1
74AHCT1G66GW-Q100		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SC-74A	plastic surface-mounted package; 5 leads
74AHC1G66GV-Q100			SOT753	
74AHCT1G66GV-Q100				

4. Marking

Table 2. Marking codes

Type number	Marking
74AHC1G66GW-Q100	AL
74AHCT1G66GW-Q100	CL
74AHC1G66GV-Q100	A66
74AHCT1G66GV-Q100	C66

5. Functional diagram

Fig 1. Logic symbol

Fig 2. Logic diagram

6. Pinning information

6.1 Pinning

74AHC1G66-Q100
74AHCT1G66-Q100

Fig 3. Pin configuration SOT353-1 and SOT753

6.2 Pin description

Table 3. Pin description

Symbol	Pin	Description
Y	1	independent input or output
Z	2	independent input or output
GND	3	ground (0 V)
E	4	enable input (active HIGH)
V $_{\text {CC }}$	5	supply voltage

7. Functional description

Table 4. Function table[1]

Input E	Switch
L	OFF
H	ON

[1] $\mathrm{H}=\mathrm{HIGH}$ voltage level; $\mathrm{L}=$ LOW voltage level.

8. Limiting values

Table 5. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
$V_{\text {cc }}$	supply voltage			-0.5	+7.0	\checkmark
I_{IK}	input clamping current	$\mathrm{V}_{1}<-0.5 \mathrm{~V}$	[1]	-20	-	mA
$\mathrm{ISK}^{\text {K }}$	switch clamping current	$\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	[1]	-	± 20	mA
ISW	switch current	$-0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$		-	± 25	mA
I_{Cc}	supply current			-	75	mA
$\mathrm{I}_{\text {GND }}$	ground current			-75	-	mA
$\mathrm{T}_{\text {stg }}$	storage temperature			-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	[2]	-	250	mW

[1] The input and output voltage ratings may be exceeded if the input and output voltage ratings are observed.
[2] For TSSOP5 and SC-74A packages: above $87.5^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $4.0 \mathrm{~mW} / \mathrm{K}$.

9. Recommended operating conditions

Table 6. Recommended operating conditions
Voltages are referenced to GND (ground = 0 V).[]

Symbol	Parameter	Conditions	74AHC1G66-Q100			74AHCT1G66-Q100			Unit
			Min	Typ	Max	Min	Typ	Max	
V_{Cc}	supply voltage		2.0	5.0	5.5	4.5	5.0	5.5	V
V_{1}	input voltage		0	-	5.5	0	-	5.5	V
$\mathrm{V}_{\text {SW }}$	switch voltage		0	-	V_{Cc}	0	-	V_{Cc}	V

74AHC1G66-Q100; 74AHCT1G66-Q100

Single-pole single-throw analog switch

Table 6. Recommended operating conditions ...continued
Voltages are referenced to GND (ground $=0 \mathrm{~V}$). [1]

Symbol	Parameter	Conditions		74AHC1G66-Q100			74AHCT1G66-Q100			Unit
				Min	Typ	Max	Min	Typ	Max	
Tamb	ambient temperature			-40	+25	+125	-40	+25	+125	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	input transition rise and fall rate	$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$	[2]	-	-	100	-	-	-	ns/V
		$\mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V}$	[2]	-	-	20	-	-	20	ns/V

[1] To avoid drawing V_{CC} current from pin Z , when switch-current flows in pin Y , the voltage drop across the bidirectional switch must not exceed 0.4 V . If switch-current flows into pin Z , no V_{cc} current flows out of terminal Y . In this case, there is no limit for the voltage drop across the switch. However, the voltage at pins Y and Z may not exceed $V_{c c}$ or GND.
[2] Applies to control signal levels.

10. Static characteristics

Table 7. Static characteristics
Voltages are referenced to GND (ground $=0 \mathrm{~V}$).

Symbol	Parameter	Conditions	$25^{\circ} \mathrm{C}$			$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$-40{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
			Min	Typ	Max	Min	Max	Min	Max	
74AHC1G66-Q100										
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	1.5	-	-	1.5	-	1.5	-	V
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	2.1	-	-	2.1	-	2.1	-	V
		$\mathrm{V}_{C C}=5.5 \mathrm{~V}$	3.85	-	-	3.85	-	3.85	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	-	0.5	-	0.5	-	0.5	V
		$\mathrm{V}_{C C}=3.0 \mathrm{~V}$	-	-	0.9	-	0.9	-	0.9	V
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-	-	1.65	-	1.65	-	1.65	V
I_{1}	input leakage current	$\begin{aligned} & \mathrm{V}_{1}=5.5 \mathrm{~V} \text { or GND; } \\ & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V} \end{aligned}$	-	-	0.1	-	1.0	-	2.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \text { Y or } \mathrm{Z} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {; } \\ & \text { see Figure } 4 \end{aligned}$	-	-	0.1	-	1.0	-	4.0	$\mu \mathrm{A}$
$\mathrm{IS}_{\text {(ON })}$	ON-state leakage current	$\begin{aligned} & \text { Y or } \mathrm{Z} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {; } \\ & \text { see Figure } 5 \end{aligned}$	-	-	0.1	-	1.0	-	4.0	$\mu \mathrm{A}$
Icc	supply current	$\begin{aligned} & \mathrm{E}, \mathrm{Y} \text { or } \mathrm{Z}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	-	-	1.0	-	10	-	40	$\mu \mathrm{A}$
C_{1}	input capacitance	E input	-	2.0	10	-	10	-	10	pF
$\mathrm{C}_{\text {S(ON) }}$	ON-state capacitance	Y or Z input or output	-	4.0	10	-	10	-	10	pF
74AHCT1G66-Q100										
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	2.0	-	-	2.0	-	2.0	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	-	0.8	-	0.8	-	0.8	V
I	input leakage current	$\begin{aligned} & \mathrm{V}_{1}=5.5 \mathrm{~V} \text { or GND; } \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	-	-	0.1	-	1.0	-	2.0	$\mu \mathrm{A}$

Table 7. Static characteristics ...continued
Voltages are referenced to GND (ground $=0 \mathrm{~V}$).

Symbol	Parameter	Conditions	$25^{\circ} \mathrm{C}$			$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$-40{ }^{\circ} \mathrm{C}$ to +125 ${ }^{\circ} \mathrm{C}$		Unit
			Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{I}_{\text {(OFF) }}$	OFF-state leakage current	$\text { Y or } Z ; V_{C C}=5.5 \mathrm{~V} \text {; }$ see Figure 4	-	-	0.1	-	1.0	-	4.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(ON })}$	ON-state leakage current	$\text { Y or } Z ; V_{C C}=5.5 \mathrm{~V} \text {; }$ see Figure 5	-	-	0.1	-	1.0	-	4.0	$\mu \mathrm{A}$
Icc	supply current	$\begin{aligned} & \mathrm{E}, \mathrm{Y} \text { or } \mathrm{Z}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \text {; } \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	-	-	1.0	-	10	-	40	$\mu \mathrm{A}$
$\Delta \mathrm{l}$ CC	additional supply current	per input pin; $\mathrm{V}_{\mathrm{I}}=3.4 \mathrm{~V}$; other inputs at V_{CC} or GND; $\mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-	-	1.35	-	1.5	-	1.5	mA
C_{1}	input capacitance	E input	-	2.0	10	-	10	-	10	pF
$\mathrm{C}_{\mathrm{S}(\mathrm{ON})}$	ON-state capacitance	Y or Z input or output	-	4.0	10	-	10	-	10	pF

10.1 Test circuits

$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{Cc}}$ or GND and $\mathrm{V}_{\mathrm{O}}=\mathrm{GND}$ or V_{Cc}.
Fig 4. Test circuit for measuring OFF-state leakage current

$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{Cc}}$ or GND and $\mathrm{V}_{\mathrm{O}}=$ open circuit.
Fig 5. Test circuit for measuring ON-state leakage current

10.2 ON resistance

Table 8. ON resistance
At recommended operating conditions; voltages are referenced to GND (ground 0 V); for graph see Figure $7 \underline{\text { [1] }}$.

Symbol	Parameter	Conditions	$25^{\circ} \mathrm{C}$		$-40{ }^{\circ} \mathrm{C}$ to +85 ${ }^{\circ} \mathrm{C}$	$-40{ }^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$	Unit
			Typ	max	Max	Max	
74AHC1G66-Q100 and 74AHCT1G66-Q100							
Ron(peak)	ON resistance (peak)	$\mathrm{V}_{1}=\mathrm{V}_{\text {cc }}$ to GND; see $\underline{\text { Figure } 6}$					
		$\mathrm{I}_{\mathrm{SW}}=1.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	148 [1]	-	-	-	Ω
		$\mathrm{I}_{\mathrm{sW}}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	28	50	70	110	Ω
		$\mathrm{I}_{\mathrm{sW}}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	15	30	40	60	Ω
$\mathrm{R}_{\text {ON(rail) }}$	ON resistance (rail)	$V_{1}=$ GND; see Figure 6					
		$\mathrm{I}_{\mathrm{SW}}=1.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	30	-	-	-	Ω
		$\mathrm{I}_{\mathrm{SW}}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	20	50	65	90	Ω
		$\mathrm{I}_{\mathrm{SW}}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	15	22	26	40	Ω
		$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{Cc}}$; see Figure 6					
		$\mathrm{I}_{\mathrm{SW}}=1.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	28	-	-	-	Ω
		$\mathrm{I}_{\mathrm{sw}}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	18	50	65	90	Ω
		$\mathrm{I}_{\mathrm{sW}}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	13	22	26	40	Ω

[1] At supply voltages approaching 2 V , the analog switch ON resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital signals only, when using this supply voltage.

10.3 ON resistance test circuit and graphs

$\mathrm{R}_{\mathrm{ON}}=\mathrm{V}_{\mathrm{SW}} / \mathrm{I}_{\mathrm{SW}}$.
Fig 6. Test circuit for measuring ON resistance

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
Fig 7. Typical ON resistance as a function of input voltage

74AHC1G66-Q100; 74AHCT1G66-Q100

Single-pole single-throw analog switch

11. Dynamic characteristics

Table 9. Dynamic characteristics
Voltages are referenced to GND (ground $=0 \mathrm{~V}$); $C_{L}=50 \mathrm{pF}$; unless otherwise specified; For test circuit, see Figure 10.

Symbol	Parameter	Conditions	$25^{\circ} \mathrm{C}$		$-40{ }^{\circ} \mathrm{C}$ to +85 ${ }^{\circ} \mathrm{C}$	$-40{ }^{\circ} \mathrm{C}$ to +125 ${ }^{\circ} \mathrm{C}$	Unit
			Typ [1]	max	Max	Max	
74AHC1G66-Q100							
$\mathrm{t}_{\text {pd }}$	propagation delay	Y to Z or Z to Y ; see Figure 8 (2]					
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	2.2	5.0	6.0	7.0	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	1.0	2.0	3.0	4.0	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	0.6	1.0	2.0	3.0	ns
$\mathrm{t}_{\text {en }}$	enable time	E to Y or Z ; see $\underline{\text { Figure 9 } 9 \text { [2] }}$					
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	7.0	25.0	33.0	40.0	ns
		$\mathrm{V}_{C C}=2.0 \mathrm{~V}$	11.0	35.0	46.0	57.0	ns
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} ; \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	4.0	11.0	14.0	18.0	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	5.8	15.0	20.0	25.0	ns
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} ; \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	3.0	8.0	10.0	13.0	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	4.0	11.0	13.0	17.0	ns
$\mathrm{t}_{\text {dis }}$	disable time	E to Y or Z ; see Figure 9 [2]					
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	9.0	25.0	33.0	40.0	ns
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	13.0	35.0	46.0	57.0	ns
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} ; \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	6.0	11.0	14.0	18.0	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	8.4	15.0	20.0	25.0	ns
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} ; \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	5.0	8.0	10.0	13.0	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	6.1	11.0	13.0	17.0	ns
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC} [[3]	13	-	-	-	pF
74AHCT1G66-Q100							
t_{pd}	propagation delay	Y to Z or Z to Y ; see Figure 8 [2]					
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	0.7	1.0	2.0	3.0	ns
ten	enable time	E to Y or Z; see Figure 9 [2]					
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \text {; } \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	3.0	7.0	10.0	13.0	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	4.7	10.0	13.0	17.0	ns
$\mathrm{t}_{\text {dis }}$	disable time	E to Y or Z ; see Figure 9 [2]					
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} ; \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	5.0	8.0	10.0	13.0	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	6.5	11.0	13.0	17.0	ns

Table 9. Dynamic characteristics ...continued
Voltages are referenced to GND (ground $=0 \mathrm{~V}$); $C_{L}=50 \mathrm{pF}$; unless otherwise specified; For test circuit, see Figure 10.

Symbol	Parameter	Conditions		$25^{\circ} \mathrm{C}$		$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \text { Max } \end{gathered}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$Max	Unit
				Typ ${ }^{\text {[1] }}$	max			
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}	[3]	15	-	-	-	pF

[1] All typical values are measured at $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
[2] $t_{p d}$ is the same as $t_{\text {PLH }}$ and $t_{\text {PHL }}$. $t_{\text {en }}$ is the same as $t_{P Z L}$ and $t_{P Z H}$. $t_{\text {dis }}$ is the same as $t_{P L Z}$ and $t_{P H Z}$.
[3] $C_{P D}$ is used to determine the dynamic power dissipation $P_{D}(\mu W)$.
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\Sigma\left(\left(C_{L} \times C_{S W}\right) \times V_{C C}{ }^{2} \times f_{0}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{C}_{\mathrm{SW}}=$ maximum switch capacitance in pF (see Table 7);
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in Volt;
$\Sigma\left(\left(C_{L} \times C_{S W}\right) \times V_{C C}{ }^{2} \times f_{o}\right)=$ sum of outputs.

11.1 Waveforms and test circuit

Measurement points are given in Table 10.
Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.
Fig 8. Input (Y or Z) to output (Z or Y) propagation delays

Measurement points are given in Table 10
Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.
Fig 9. Enable and disable times

Table 10. Measurement points

Type	Input	Output		
	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{X}}$	$\mathbf{V}_{\mathbf{Y}}$
74AHC1G66-Q100	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$
74AHCT1G66-Q100	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$

Test data is given in Table 11.
Definitions for test circuit:
$R_{T}=$ Termination resistance should be equal to output impedance Z_{o} of the pulse generator.
$C_{L}=$ Load capacitance including jig and probe capacitance.
$\mathrm{R}_{\mathrm{L}}=$ Load resistance.
S1 = Test selection switch.
Fig 10. Test circuit for measuring switching times

Table 11. Test data

Type	Input		Load		S1 position		
	V_{1}	t_{r}, t_{f}	C_{L}	\mathbf{R}_{L}	$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	$\mathrm{t}_{\text {PzH }}, \mathrm{t}_{\text {PHZ }}$	$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PLZ }}$
74AHC1G66-Q100	GND to V_{Cc}	3 ns	$15 \mathrm{pF}, 50 \mathrm{pF}$	$1 \mathrm{k} \Omega$	open	GND	V_{CC}
74AHCT1G66-Q100	GND to 3 V	3 ns	$15 \mathrm{pF}, 50 \mathrm{pF}$	$1 \mathrm{k} \Omega$	open	GND	V_{Cc}

11.2 Additional dynamic characteristics

Table 12. Additional dynamic characteristics for 74AHC1G66-Q100 and 74AHCT1G66-Q100
GND $=0 \mathrm{~V} ; t_{r}=t_{f}=3.0 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$; unless otherwise specified. All typical values are measured at $T_{\text {amb }}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
THD	total harmonic distortion	$\mathrm{f}_{\mathrm{i}}=1 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$; see Figure 11				
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	0.025	-	\%
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	0.015	-	\%
		$\mathrm{f}_{\mathrm{i}}=10 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$; see Figure 11				
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=2.5 \mathrm{~V}$	-	0.025	-	\%
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{V}_{1}=4.0 \mathrm{~V}$	-	0.015	-	\%

Table 12. Additional dynamic characteristics for 74AHC1G66-Q100 and 74AHCT1G66-Q100 ...continued $G N D=0 \mathrm{~V} ; t_{r}=t_{f}=3.0 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$; unless otherwise specified. All typical values are measured at $T_{\text {amb }}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{f}_{(-3 \mathrm{~dB})}$	-3 dB frequency response	$\mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} ;$ $\text { see Figure } 12 \text { and } 13$				
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	230	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	280	-	MHz
$\alpha_{\text {iso }}$	isolation (OFF-state)	$\mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz}$; see Figure 14 [1]				
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=2.5 \mathrm{~V}$	-	-50	-	dB
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=4.0 \mathrm{~V}$	-	-50	-	dB

[1] Adjust input voltage V_{1} to 0 dBm level $(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $50 \Omega)$.

11.3 Test circuits and graphs

Test conditions:

$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=2.5 \mathrm{~V}$ (p-p).
$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V ; $\mathrm{V}_{1}=4.0 \mathrm{~V}$ (p-p).
Fig 11. Test circuit for measuring total harmonic distortion

With $f_{i}=1 \mathrm{MHz}$, adjust the switch input voltage for a 0 dBm level at the switch output ($0 \mathrm{dBm}=1 \mathrm{~mW}$ into 50Ω). Then increase the input f_{i} frequency until the $d B$ meter reads -3 dB .

Fig 12. Test circuit for measuring the -3 dB frequency response

Test conditions: $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$; GND $=0 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{R}_{\text {SOURCE }}=1 \mathrm{k} \Omega$.
Fig 13. Typical -3 dB frequency response

Adjust the switch input voltage for a 0 dBm level ($0 \mathrm{dBm}=1 \mathrm{~mW}$ into 600Ω).
Fig 14. Test circuit for measuring isolation (OFF-state)

12. Package outline

detail X

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} $\boldsymbol{m a x}$.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(\mathbf{1})}$	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(\mathbf{1})}$	$\boldsymbol{\theta}$
mm	1.1	0.1	1.0	0.15	0.30	0.25	2.25	1.35	0.65	1.3	2.25	0.425	0.46	0.3	0.1	0.1	0.60	7°
	0	0.8		0.15	0.08	1.85	1.15	0.21	0.0	0.1	0.15	0°						

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT353-1		MO-203	SC-88A	$\square \oplus$	$\begin{aligned} & \text { 00-09-01 } \\ & \text { 03-02-19 } \end{aligned}$

Fig 15. Package outline SOT353-1 (TSSOP5)

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A}	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	\mathbf{D}	\mathbf{E}	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}
mm	1.1	0.100	0.40	0.26	3.1	1.7	0.95	3.0	0.6	0.33	0.2	0.2	0.1
	0.9	0.013	0.25	0.10	2.7	1.3		2.5	0.2	0.23			

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			$-02-04-16$
SOT753			SC-74A		$06-03-16$	

Fig 16. Package outline SOT753 (SC-74A)

13. Abbreviations

Table 13. Abbreviations

Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MIL	Military
MM	Machine Model

14. Revision history

Table 14. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74AHC_AHCT1G66_Q100 v.1	20150127	Product data sheet	-	-

15. Legal information

15.1 Data sheet status

Document status $\underline{[1][2]}$	Product status $[3]$	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term 'short data sheet' is explained in section "Definitions",
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com

15.2 Definitions

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet - A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.
Product specification - The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia
Right to make changes - Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications - This Nexperia product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia
accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.
Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.
Terms and conditions of commercial sale - Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individua agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control - This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations - A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nexperia.com
For sales office addresses, please send an email to: salesaddresses@nexperia.com

17. Contents

1 General description 1
2 Features and benefits 1
3 Ordering information. 1
4 Marking. 2
5 Functional diagram 2
6 Pinning information 2
6.1 Pinning 2
6.2 Pin description 3
7 Functional description 3
8 Limiting values 3
9 Recommended operating conditions. 3
10 Static characteristics 4
10.1 Test circuits 5
10.2 ON resistance 6
10.3 ON resistance test circuit and graphs. 6
11 Dynamic characteristics 7
11.1 Waveforms and test circuit 8
11.2 Additional dynamic characteristics 10
11.3 Test circuits and graphs 11
12 Package outline 13
13 Abbreviations 15
14 Revision history. 15
15 Legal information 16
15.1 Data sheet status 16
15.2 Definitions. 16
15.3 Disclaimers 16
15.4 Trademarks. 17
16 Contact information 17
17 Contents 18

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Nexperia manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB DG403DY 099044FB MAX4762ETB+ NLAS3799BMNR2G NLAS5123MNR2G ISL84684IR PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE NX3L1T5157GMZ ADG714BCPZ-REEL7 DG333ALDW-T1-E3 ISL43113IB ISL43140IB ISL43140IBZ-T ISL43143IR ISL43L120IR ISL43L121IR ISL43L122IR ISL43L220IR ISL43L410IR ISL43L420IR ISL43L710IR ISL43L711IR ISL43L712IR ISL84053IA ISL84514IB ISL84516IB ISL84684IUZ-T LNLASB3157DFT2G NLAS324US TPW4053-SR HT4069ARZ CD4052BM RS2252XTQC16 RS2166XC5 4066G-S14-R WAS4642Q-24/TR WS4612EAA-5/TR TS5A3157DBVR(UMW) SN74LVC1G66DBVR SN74LVC1G66DCKR(UMW)

