Octal buffer/line driver; inverting; 3-state

Rev. 2 — 1 March 2016

Product data sheet

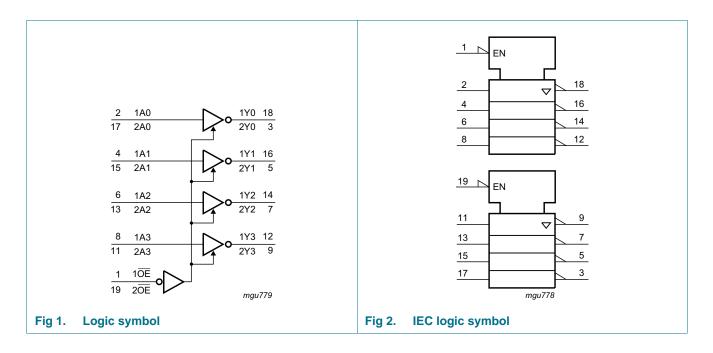
1. General description

The 74AHCT240-Q100 is an 8-bit inverting buffer/line drivers with 3-state outputs. This device can be used as two 4-bit buffers or one 8-bit buffer. It features two output enables $(1\overline{OE} \text{ and } 2\overline{OE})$, each controlling four of the 3-state outputs. A HIGH on $n\overline{OE}$ causes the outputs to assume a high-impedance OFF-state. Inputs are over voltage tolerant. This feature allows the use of these devices as translators in mixed voltage environments.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

2. Features and benefits

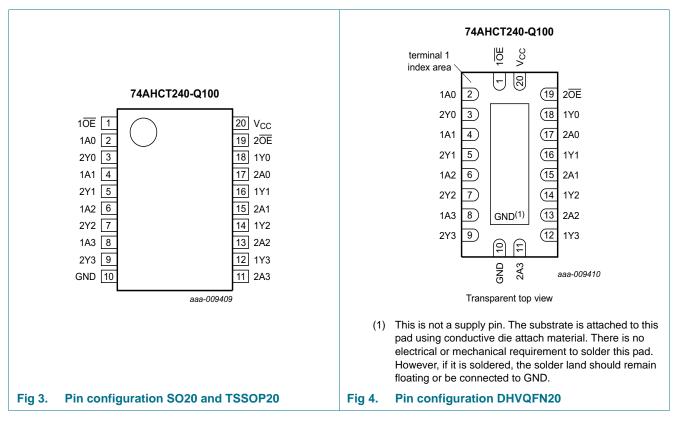
- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Balanced propagation delays
- All inputs have a Schmitt-trigger action
- Inputs accept voltages higher than V_{CC}
- 74AHCT240-Q100 operates with TTL input levels
- ESD protection:
 - MIL-STD-883, method 3015 exceeds 2000 V
 - ◆ HBM JESD22-A114F exceeds 2000 V
- Multiple package options



Octal buffer/line driver; inverting; 3-state

3. Ordering information

Table 1. Ordering information									
Type number	Package								
	Temperature range	Name	Description	Version					
74AHCT240D-Q100	–40 °C to +125 °C	SO20	plastic small outline package; 20 leads; body width 7.5 mm	SOT163-1					
74AHCT240PW-Q100	–40 °C to +125 °C	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	SOT360-1					
74AHCT240BQ-Q100	–40 °C to +125 °C	DHVQFN20	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 20 terminals; body $2.5 \times 4.5 \times 0.85$ mm	SOT764-1					


4. Functional diagram

Octal buffer/line driver; inverting; 3-state

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description							
Symbol	Pin	Description					
1 0E	1	output enable input (active LOW)					
2 0E	19	output enable input (active LOW)					
1A0, 1A1, 1A2, 1A3	2, 4, 6, 8	data input					
2A0, 2A1, 2A2, 2A3	17, 15, 13, 11	data input					
1Y0, 1Y1, 1Y2, 1Y3	18, 16, 14, 12	data output					
2Y0, 2Y1, 2Y2, 2Y3	3, 5, 7, 9	data output					
GND	10	ground (0 V)					
V _{cc}	20	power supply					

Octal buffer/line driver; inverting; 3-state

6. Functional description

Table 3. Function table ^[1]							
	Input	Output					
nOE	nAn	nYn					
L	L	Н					
L	Н	L					
Н	Х	Z					

[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

7. Limiting values

Table 4.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+7.0	V
VI	input voltage			-0.5	+7.0	V
I _{IK}	input clamping current	V _I < -0.5 V	<u>[1]</u>	-20	-	mA
I _{ОК}	output clamping current	V_{O} < -0.5 V or V_{O} > V_{CC} + 0.5 V	<u>[1]</u>	-	±20	mA
I _O	output current	$V_{O} = -0.5 \text{ V} \text{ to } (V_{CC} + 0.5 \text{ V})$		-	±25	mA
I _{CC}	supply current			-	75	mA
I _{GND}	ground current			-75	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \text{ °C to } +125 \text{ °C}$	[2]	-	500	mW

[1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] For SO20 package: above 70 °C the value of P_{tot} derates linearly with 8.0 mW/K. For TSSOP20 package: above 60 °C the value of P_{tot} derates linearly with 5.5 mW/K. For DHVQFN20 package: above 60 °C the value of P_{tot} derates linearly with 4.5 mW/K.

8. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage		4.5	5.0	5.5	V
VI	input voltage		0	-	5.5	V
Vo	output voltage		0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	°C
Δt/ΔV	input transition rise and fall rate	V_{CC} = 5 V ± 0.5 V	-	-	20	ns/V

Table 5. Recommended	operating conditions
----------------------	----------------------

Octal buffer/line driver; inverting; 3-state

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	25 °C			–40 °C	to +85 °C	–40 °C t	o +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
V _{IH}	HIGH-level input voltage	V_{CC} = 4.5 V to 5.5 V	2.0	-	-	2.0	-	2.0	-	V
V _{IL}	LOW-level input voltage	V_{CC} = 4.5 V to 5.5 V	-	-	0.8	-	0.8	-	0.8	V
V _{OH}	HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$								
	output voltage	I _O = -50 μA	4.4	4.5	-	4.4	-	4.4	-	V
		I _O = -8.0 mA	3.94	-	-	3.80	-	3.70	-	V
V _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$								
	output voltage	I _O = 50 μA	-	0	0.1	-	0.1	-	0.1	V
	l _O = 8.0 mA	-	-	0.36	-	0.44	-	0.55	V	
I _I	input leakage current	V _I = 5.5 V or GND; V _{CC} = 0 V to 5.5 V	-	-	0.1	-	1.0	-	2.0	μA
I _{OZ}	OFF-state output current		-	-	±0.25	-	±2.5	-	±10.0	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5$ V	-	-	4.0	-	40	-	80	μA
ΔI _{CC}	additional supply current	per input pin; $V_I = V_{CC} - 2.1 V$; other pins at V_{CC} or GND; $I_O = 0 A$; $V_{CC} = 4.5 V$ to 5.5 V	-	-	1.35	-	1.5	-	1.5	mA
CI	input capacitance	$V_{I} = V_{CC}$ or GND	-	3	10	-	10	-	10	pF
Co	output capacitance		-	4	-	-	-	-	-	pF

Octal buffer/line driver; inverting; 3-state

10. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit, see Figure 7.

Symbol	Parameter	Conditions		25 °C			–40 °C to +125 °C			Unit
				Min	Typ <mark>[1]</mark>	Мах	Min	Max (85 °C)	Max (125 °C)	
t _{pd}	propagation delay	nAn to nYn; see Figure 5	[2]							
		V_{CC} = 4.5 V to 5.5 V; C_L = 15 pF		-	3.0	5.8	1.0	6.8	8.5	ns
		V_{CC} = 4.5 V to 5.5 V; C_L = 50 pF		-	4.4	8.4	1.0	9.5	11.9	ns
t _{en}	enable time	nOE to nYn; see Figure 6	[2]							
		V_{CC} = 4.5 V to 5.5 V; C_L = 15 pF		-	3.4	7.5	1.0	9.0	14.4	ns
		V_{CC} = 4.5 V to 5.5 V; C_L = 50 pF		-	4.5	9.5	1.0	11.5	14.4	ns
t _{dis}	disable time	nOE to nYn; see Figure 6	[2]							
		V_{CC} = 4.5 V to 5.5 V; C_L = 15 pF		-	3.9	6.1	1.0	6.7	8.3	ns
		V_{CC} = 4.5 V to 5.5 V; C_L = 50 pF		-	6.2	8.7	1.0	9.2	11.5	ns
C _{PD}	power dissipation capacitance	$V_I = GND$ to V_{CC} ; $C_L = 50$ pF; $f_i = 1$ MHz	[3]	-	9	-	-	-	-	pF

[1] Typical values are measured at nominal supply voltage ($V_{CC} = 5.0 \text{ V}$).

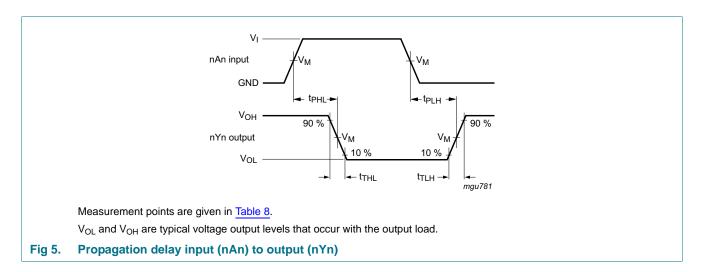
 $\label{eq:pd} [2] \quad t_{pd} \text{ is the same as } t_{PLH} \text{ and } t_{PHL}; \, t_{en} \text{ is the same as } t_{PZH} \text{ and } t_{PZL}; \, t_{dis} \text{ is the same as } t_{PLZ} \text{ and } t_{PHZ}.$

[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \sum (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 $f_i = input frequency in MHz;$

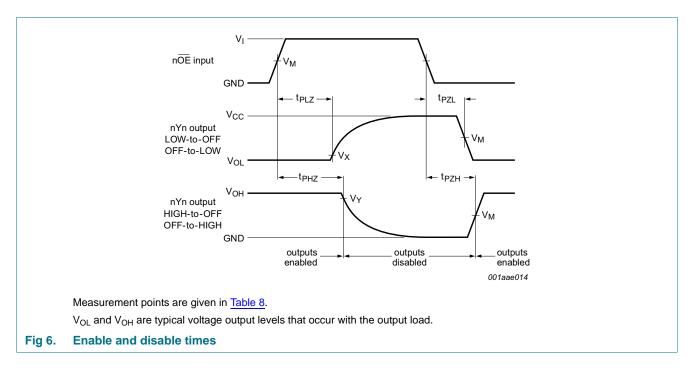
 $f_o = output frequency in MHz;$


 C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

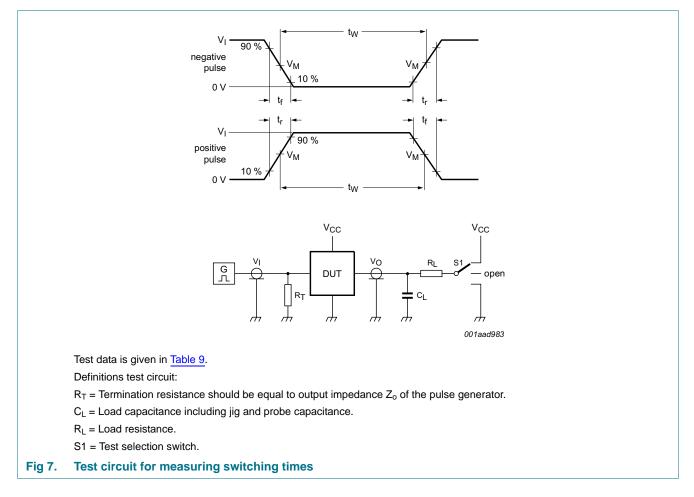
 $\Sigma(C_L \times V_{CC}{}^2 \times f_o)$ = sum of outputs.


11. Waveforms

Nexperia

74AHCT240-Q100

Octal buffer/line driver; inverting; 3-state


Table 8.Measurement points

Input	Output					
V _M	V _M	V _X	V _Y			
1.5 V	0.5V _{CC}	V _{OL} + 0.3 V	V _{OH} – 0.3 V			

Nexperia

74AHCT240-Q100

Octal buffer/line driver; inverting; 3-state

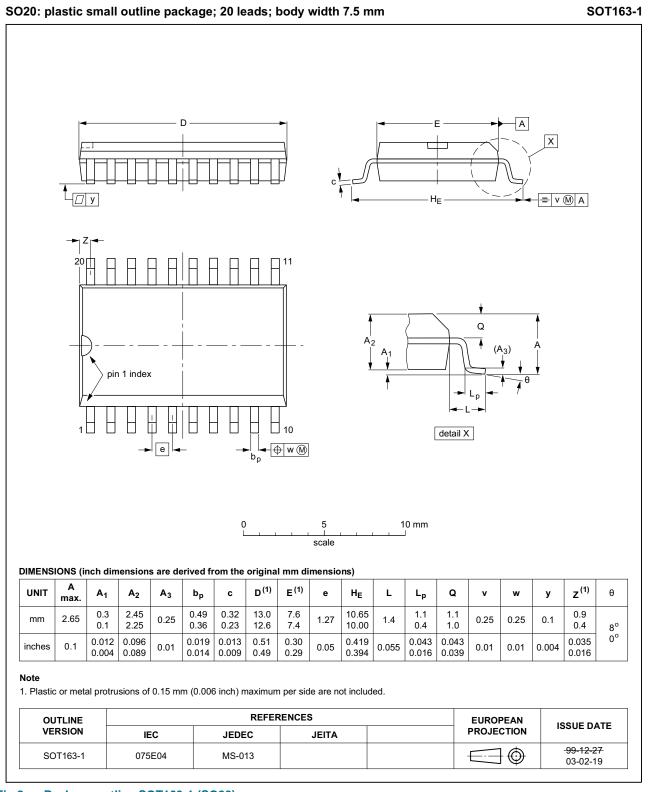


Table 9. Test data

Input Load		S1 position				
VI	t _r , t _f	CL	R _L	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
3.0 V	3.0 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}

Octal buffer/line driver; inverting; 3-state

12. Package outline

Fig 8. Package outline SOT163-1 (SO20)

74AHCT240_Q100

Octal buffer/line driver; inverting; 3-state

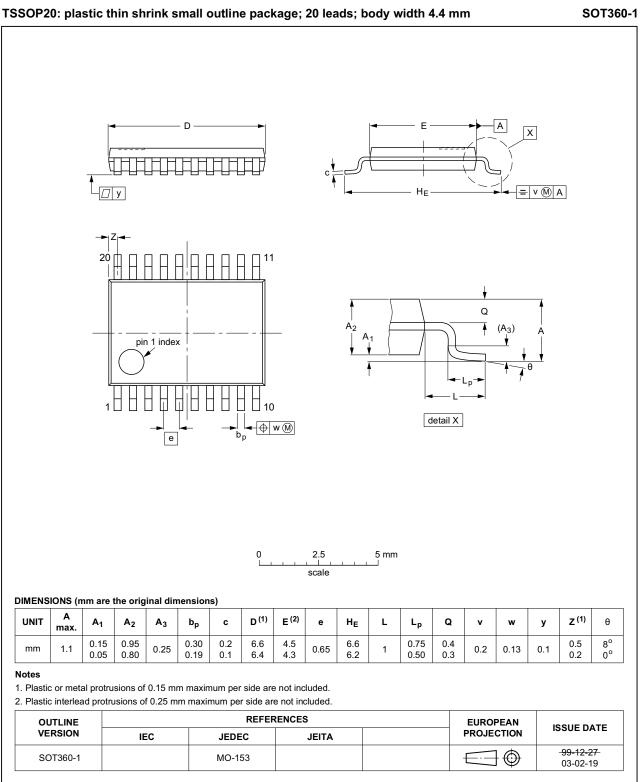
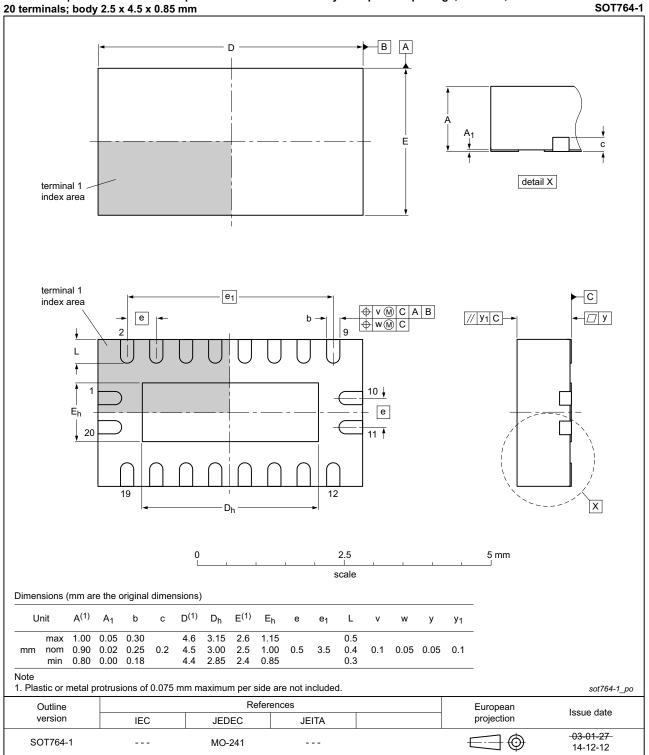



Fig 9. Package outline SOT360-1 (TSSOP20)

All information provided in this document is subject to legal disclaimers.

74AHCT240_Q100

Octal buffer/line driver; inverting; 3-state

DHVQFN20: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 20 terminals; body 2.5 x 4.5 x 0.85 mm

Fig 10. Package outline SOT764-1 (DHVQFN20)

All information provided in this document is subject to legal disclaimers.

74AHCT240_Q100

Octal buffer/line driver; inverting; 3-state

13. Abbreviations

Table 10. Abbreviations						
Acronym	Description					
CDM	Charge Device Model					
DUT	Device Under Test					
ESD	ElectroStatic Discharge					
MIL	Military					
HBM	Human Body Model					
TTL	Transistor-Transistor Logic					

14. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes			
74AHCT240_Q100 v.2	20160301	Product data sheet	-	74AHC_AHCT240_Q100 v.1			
Modifications:	• Type numbers 74AHC240D-Q100, 74AHC240PW-Q100 and 74AHC240BQ-Q100 removed.						
74AHC_AHCT240_Q100 v.1	20131106	Product data sheet	-	-			

Octal buffer/line driver; inverting; 3-state

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any

representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive

applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

Octal buffer/line driver; inverting; 3-state

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

Octal buffer/line driver; inverting; 3-state

17. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 2
4	Functional diagram 2
5	Pinning information 3
5.1	Pinning
5.2	Pin description 3
6	Functional description 4
7	Limiting values 4
8	Recommended operating conditions 4
9	Static characteristics 5
10	Dynamic characteristics 6
11	Waveforms 6
12	Package outline 9
13	Abbreviations 12
14	Revision history 12
15	Legal information 13
15.1	Data sheet status 13
15.2	Definitions 13
15.3	Disclaimers
15.4	Trademarks 14
16	Contact information 14
17	Contents 15

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by Nexperia manufacturer:

Other Similar products are found below :

LXV200-024SW 74AUP2G34FW3-7 HEF4043BP NL17SG125DFT2G NLU1GT126CMUTCG CD4041UBE 54FCT240CTDB 74HCT540N DS14C88N 070519XB NL17SZ07P5T5G 74LVC2G17FW4-7 CD4502BE 5962-8982101PA 61446R00 74LVCE1G126FZ4-7 NL17SH17P5T5G NLV37WZ17USG 74HCT126T14-13 74VHC9126FT(BJ) RHRXH162244K1 74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC1G126FW4-7 74LVC2G126RA3-7 74LVCE1G125FZ4-7 54FCT240TLB NLX3G16DMUTCG NLX2G06AMUTCG LE87100NQCT LE87285NQC LE87290YQC LE87290YQCT 74AUP1G125FW5-7 NLU2G16CMUTCG MC74LCX244MN2TWG NL17SG17P5T5G NLV74HC125ADR2G NLVHCT245ADTR2G NLVVHC1G126DFT2G EL5623IRZ ISL15102AIRZ-T13 ISL1539IRZ-T13 MC100EP17MNG MC74HCT365ADR2G MC74LCX244ADTR2G NL27WZ126US NL37WZ16US NLU1G07MUTCG NLU2G07MUTCG