Octal buffer/line driver; 3-state Rev. 6 — 15 December 2016

Product data sheet

1. General description

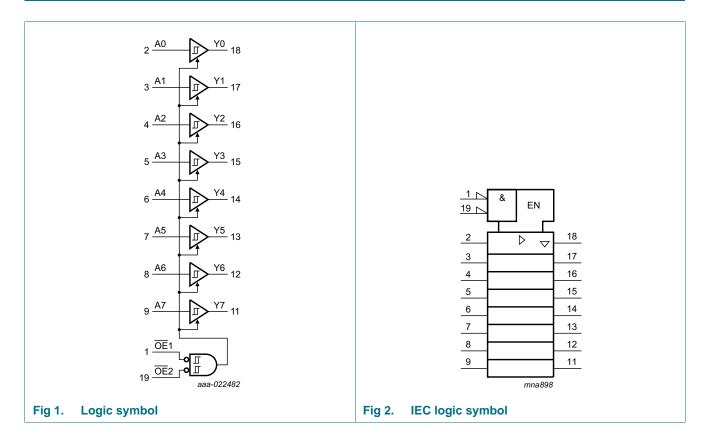
The 74AHCV541A is an 8-bit buffer/line driver with 3-state outputs and Schmitt trigger inputs. The device features two output enables ($\overline{OE1}$ and $\overline{OE2}$). A HIGH on \overline{OEn} causes the associated outputs to assume a high-impedance OFF-state.

Inputs are overvoltage tolerant. This feature allows the use of these devices as translators in mixed voltage environments.

The data (An) and control (\overline{OEn}) inputs include Schmitt trigger inputs, capable of transforming slowly changing input signals into sharply defined, jitter-free output signals.

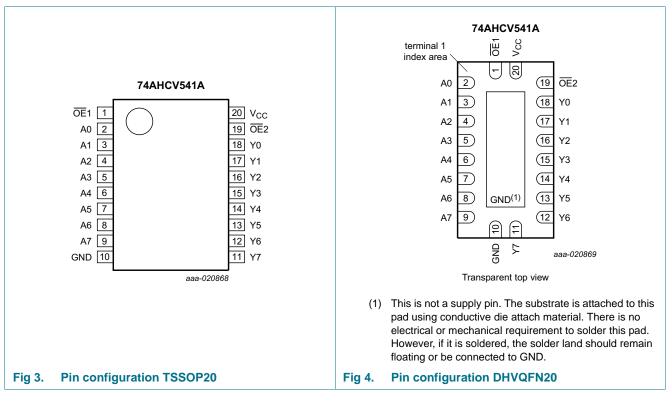
This device is fully specified for partial Power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

2. Features and benefits


- Wide supply voltage range from 1.8 V to 5.5 V
- Typical t_{pd} of 3.0 ns at 5 V
- Typical V_{OL(p)} < 0.8 V at V_{CC} = 3.3 V, T_{amb} = 25 °C
- Typical V_{OH(v)} > 2.3 V at V_{CC} = 3.3 V, T_{amb} = 25 °C
- Supports mixed-mode voltage operation on all ports
- I_{OFF} circuitry provides partial Power-down mode operation
- Latch-up performance exceeds 250 mA per JESD 78 Class II
- ESD protection:
 - HBM ANSI/ESDA/JEDEC JS-001 Class 2 exceeds 3 kV
 - MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101E exceeds 2 kV
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C

3. Ordering information

Table 1. Ordering information						
Type number Package						
	Temperature range	Name	Description	Version		
74AHCV541APW	–40 °C to +125 °C	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	SOT360-1		
74AHCV541ABQ	–40 °C to +125 °C	DHVQFN20	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 20 terminals; body $2.5 \times 4.5 \times 0.85$ mm	SOT764-1		


4. Functional diagram

Octal buffer/line driver; 3-state

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description		
Symbol	Pin	Description
OE1	1	output enable input (active LOW)
A0 to A7	2, 3, 4, 5, 6, 7, 8, 9	data input
GND	10	ground (0 V)
Y0 to Y7	18, 17, 16, 15, 14, 13, 12, 11	data output
OE2	19	output enable input (active LOW)
V _{cc}	20	supply voltage

6. Functional description

Table 3. Functional table ^[1]							
Control		Input	Output				
OE1	OE2	An	Yn				
L	L	L	L				
L	L	Н	Н				
Х	Н	Х	Z				
Н	Х	Х	Z				

[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

7. Limiting values

Table 4.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+7.0	V
VI	input voltage		<u>[1]</u>	-0.5	+7.0	V
Vo	output voltage	active mode	<u>[2][3]</u>	-0.5	V _{CC} + 0.5	V
		power-down or 3-state mode	[2]	-0.5	+7.0	V
I _{IK}	input clamping current	V ₁ < 0 V		-50	-	mA
I _{ОК}	output clamping current	V _O < 0 V		-50	-	mA
I _O	output current	$V_{O} = 0 V$ to V_{CC}		-	±50	mA
I _{CC}	supply current			-	100	mA
I _{GND}	ground current			-100	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \text{ °C to } +125 \text{ °C}$	<u>[4]</u>	-	500	mW

[1] The minimum input voltage ratings may be exceeded if the input current ratings are observed.

- [2] The output voltage ratings may be exceeded if the output current ratings are observed.
- [3] This value is limited to 7.0 V maximum.
- [4] For TSSOP20 package: above 100 °C the value of P_{tot} derates linearly with 10 mW/K. For DHVQFN20 package: above 110 °C the value of P_{tot} derates linearly with 12.5 mW/K.

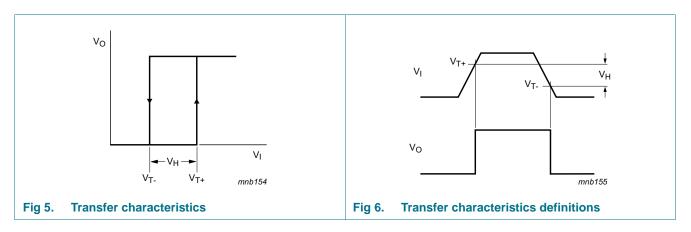
8. Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V).

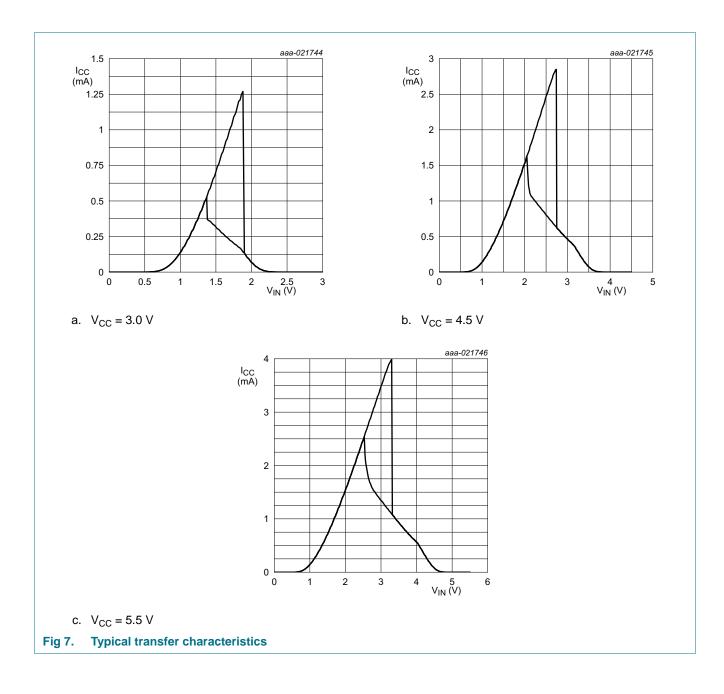
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		1.8	5.5	V
VI	input voltage		0	5.5	V
Vo	output voltage	active mode	0	V _{CC}	V
		power-down or 3-state mode	0	5.5	V V V °C ms/V
T _{amb}	ambient temperature		-40	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	50	ms/V
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	-	20	ms/V
		$V_{CC} = 4.5 V \text{ to } 5.5 V$	-	1	ms/V

9. Static characteristics


Table 6. Static characteristics

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		–40 °C to	o +85 °C	–40 °C to	+125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
V _{T+}	positive-going	V _{CC} = 1.8 V	-	-	1.65	-	1.65	-	1.65	V
	threshold voltage	V _{CC} = 2.3 V	-	-	1.85	-	1.85	-	1.85	V
	vollage	V _{CC} = 3.0 V	-	-	2.2	-	2.2	-	2.2	V
		V _{CC} = 4.5 V	-	-	3.15	-	3.15	-	3.15	V
		V _{CC} = 5.5 V	-	-	3.85	-	3.85	-	3.85	V
V _{T-} negative-going	V _{CC} = 1.8 V	0.15	-	-	0.15	-	0.15	-	V	
	threshold voltage	V _{CC} = 2.3 V	0.45	-	-	0.45	-	0.45	-	V
vollage	voltage	V _{CC} = 3.0 V	0.9	-	-	0.9	-	0.9	-	V
		V _{CC} = 4.5 V	1.35	-	-	1.35	-	1.35	-	V
		V _{CC} = 5.5 V	1.65	-	-	1.65	-	1.65	-	V
V _H	hysteresis	V _{CC} = 1.8 V	0.15	-	1.05	0.15	1.05	0.15	1.05	V
	voltage	V _{CC} = 2.3 V	0.2	-	1.1	0.2	1.1	0.2	1.1	V
		V _{CC} = 3.0 V	0.3	-	1.2	0.3	1.2	0.3	1.2	V
		V _{CC} = 4.5 V	0.4	-	1.4	0.4	1.4	0.4	1.4	V
		V _{CC} = 5.5 V	0.5	-	1.6	0.5	1.6	0.5	1.6	V
V _{OH}	HIGH-level	$V_{I} = V_{T+}$ or V_{T-}								V
	output voltage	$I_0 = -50 \ \mu A; V_{CC} = 1.8 \ V$	1.7	1.8	-	1.7	-	1.7	-	V
		$I_0 = -50 \ \mu A; \ V_{CC} = 3.0 \ V$	2.9	3.0	-	2.9	-	2.9	-	V
		$I_0 = -50 \ \mu A; \ V_{CC} = 4.5 \ V$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_{O} = -8 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.58	-	-	2.48	-	2.48	-	V
		$I_{O} = -16 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.94	-	-	3.80	-	3.80	-	


Static characteristics ... continued Table 6. Voltages are referenced to GND (ground = 0 V). Conditions 25 °C -40 °C to +85 °C -40 °C to +125 °C Unit Symbol Parameter Min Тур Max Min Max Min Max VOL LOW-level $V_I = V_{T+} \text{ or } V_{T-}$ output voltage $I_0 = 50 \ \mu A; V_{CC} = 1.8 \ V$ V 0.1 0.1 -0 -_ 0.1 $I_0 = 50 \ \mu A; V_{CC} = 3.0 \ V$ 0 0.1 0.1 0.1 V --- $I_0 = 50 \ \mu A; V_{CC} = 4.5 \ V$ -0 0.1 _ 0.1 _ 0.1 V $I_0 = 8 \text{ mA}; V_{CC} = 3.0 \text{ V}$ 0.36 V 0.44 0.44 ---_ $I_0 = 16 \text{ mA}; V_{CC} = 4.5 \text{ V}$ 0.44 0.55 0.55 V ---- $V_{CC} = 1.8 \text{ V to 5.5 V;}$ OFF-state ±0.25 ±2.5 ±2.5 μΑ _ _ -_ loz $V_{I} = V_{IH}$ or V_{IL} ; output current $V_0 = GND$ to 5.5 V V_{I} or V_{O} = GND to 5.5 V; power-off 0.5 5 5 IOFF μΑ --_ leakage $V_{CC} = 0 V$ current $V_{I} = V_{CC} \text{ or } GND;$ input leakage I_I ±0.1 ±1 ±1 μA ---- $V_{CC} = 0 V \text{ to } 5.5 V$ current $V_I = V_{CC}$ or GND; $I_O = 0$ A; 2 20 20 Icc supply current -_ μA -- $V_{CC} = 5.5 V$

9.1 Transfer characteristics waveforms

74AHCV541A

Octal buffer/line driver; 3-state

10. Dynamic characteristics

Table 7.Dynamic characteristics

GND = 0 V. For test circuit see <u>Figure 10</u>.

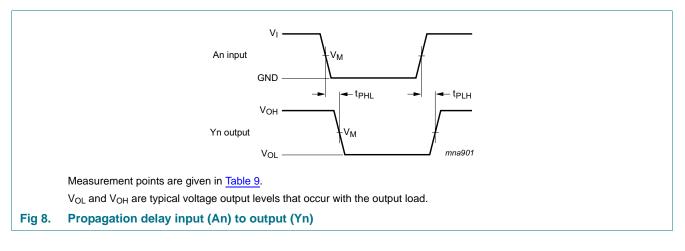
Symbol	Parameter	Conditions			25 °C		–40 °C	to +85 °C	–40 °C t	o +125 °C	Unit
				Min	Typ <mark>[1]</mark>	Max	Min	Max	Min	Max	
t _{pd}	propagation	An to Yn; see Figure 8	[2]								
	delay	V_{CC} = 2.3 V to 2.7 V									
		C _L = 15 pF		-	5.1	11.3	1	13.5	1	13.5	ns
		C _L = 50 pF		-	7.0	15.9	1	18.5	1	18.5	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$									
		C _L = 15 pF		-	3.9	7	1	8.5	1	8.5	ns
		C _L = 50 pF		-	5.4	10.5	1	12	1	12	ns
		V_{CC} = 4.5 V to 5.5 V									
		C _L = 15 pF		-	3.0	5	1	6	1	6	ns
		C _L = 50 pF		-	4.2	7	1	8	1	8	ns
t _{en}	enable time	OEn to Yn; see Figure 9	[2]								
		V_{CC} = 2.3 V to 2.7 V									
		C _L = 15 pF		-	5.9	17.4	1	21	1	21	ns
		C _L = 50 pF		-	7.9	22.2	1	25.5	1	25.5	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$									
		C _L = 15 pF		-	4.4	10.5	1	12.5	1	12.5	ns
		C _L = 50 pF		-	6.0	14	1	16	1	16	ns
		V_{CC} = 4.5 V to 5.5 V									
		C _L = 15 pF		-	3.2	7.2	1	8.5	1	8.5	ns
		C _L = 50 pF		-	4.5	9.2	1	10.5	1	10.5	ns
t _{dis}	disable time	OEn to Yn; see Figure 9	[2]								
		V_{CC} = 2.3 V to 2.7 V									
		C _L = 15 pF		-	6.7	17.8	1	21	1	21	ns
		C _L = 50 pF		-	11.2	22.3	1	25.5	1	25.5	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$									
		C _L = 15 pF		-	5.4	11.9	1	14	1	14	ns
		C _L = 50 pF		-	8.8	15.4	1	17.5	1	17.5	ns
		V_{CC} = 4.5 V to 5.5 V									
		C _L = 15 pF		-	4.3	8.5	1	9.5	1	9.5	ns
		C _L = 50 pF		-	6.5	10.5	1	11.5	1	11.5	ns
t _{sk(o)}	skew	C _L = 50 pF									
		V_{CC} = 2.3 V to 2.7 V		-	-	2	-	2	-	2	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		-	-	1.5	-	1.5	-	1.5	ns
		$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$		-	-	1	-	1	-	1	ns

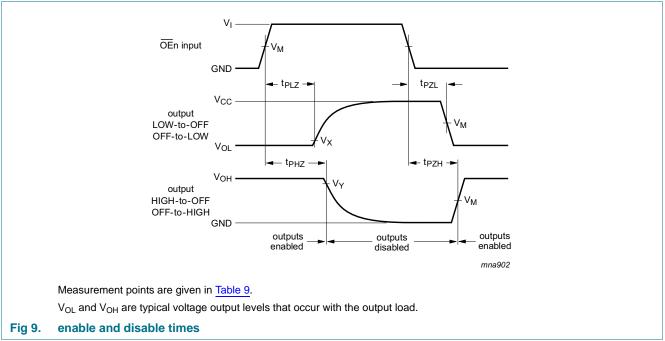
Octal buffer/line driver; 3-state

Symbol	Parameter	Conditions		25 °C		-40 °C 1	to +85 °C	–40 °C t	o +125 °C	Unit
			Min	Typ <mark>[1]</mark>	Max	Min	Max	Min	Max	
Cı	input capacitance	$V_I = V_{CC}$ or GND; $V_{CC} = 3.3 \text{ V}$	-	2	6	-	6	-	6	pF
Co	output capacitance	$V_{O} = V_{CC} \text{ or GND};$ $V_{CC} = 3.3 \text{ V}$	-	5	-	-	-	-	-	pF
C _{PD}	power dissipation capacitance	$\label{eq:constraint} \begin{array}{ll} \mbox{per buffer;} & [3] \\ C_L = 0 \mbox{ pF; } f = 10 \mbox{ MHz;} \\ V_{CC} = 5 \mbox{ V;} \\ V_I = GND \mbox{ to } V_{CC} \end{array}$	-	15	-	-	-	-	-	pF

Table 7. Dynamic characteristics ...continued GND = 0 V. For test circuit see Figure 10.

[1] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 2.5 V, 3.3 V, and 5 V respectively, unless otherwise specified.


- t_{pd} is the same as t_{PLH} and t_{PHL}.
 t_{en} is the same as t_{PZL} and t_{PZH}.
 t_{dis} is the same as t_{PLZ} and t_{PHZ}.
- [3] C_{PD} is used to determine the dynamic power dissipation P_D (μ W).
 - $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:
 - f_i = input frequency in MHz;
 - $f_o = output frequency in MHz;$
 - C_L = output load capacitance in pF;
 - V_{CC} = supply voltage in Volts.


Table 8.Noise characteristics

GND = 0 V. For test circuit see <u>Figure 10</u>.

Symbol	Parameter	Conditions	т	_{amb} = 25 °C	;	Unit V V V V V V V V V
			Min	Тур	Max	
$V_{\rm CC} = 3.3$	³ V; C _L = 50 pF					
V _{OL(p)}	LOW-level output voltage (peak)		-	0.3	0.8	V
V _{OL(v)}	LOW-level output voltage (valley)		-0.8	-0.2	-	V
V _{OH(v)}	HIGH-level output voltage (valley)		-	2.9	-	V
V _{IH(AC)}	AC HIGH-level input voltage		2.31	-	-	V
V _{IL(AC)}	AC LOW-level input voltage		-	-	0.99	V
$V_{\rm CC} = 5.0$	V; C _L = 50 pF					
V _{OL(p)}	LOW-level output voltage (peak)		-	0.6	1.5	V
V _{OL(v)}	LOW-level output voltage (valley)		-1.5	-0.6	-	V
V _{OH(v)}	HIGH-level output voltage (valley)		-	4.0	-	V
V _{IH(AC)}	AC HIGH-level input voltage		3.5	-	-	V
V _{IL(AC)}	AC LOW-level input voltage		-	-	1.5	V

11. Waveforms

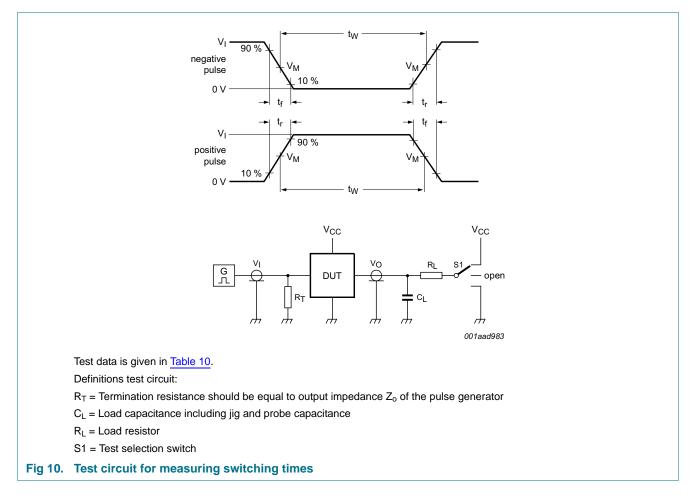


Table 9.Measurement points

Input	Output		
V _M	V _M	V _X	V _Y
0.5V _{CC}	0.5V _{CC}	V _{OL} + 0.3 V	V _{OH} – 0.3 V

74AHCV541A

Octal buffer/line driver; 3-state

Table 10. Test data

Input		Load		S1 position		
VI	t _r , t _f	CL	RL	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
GND to V_{CC}	3.0 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}

Octal buffer/line driver; 3-state

12. Package outline

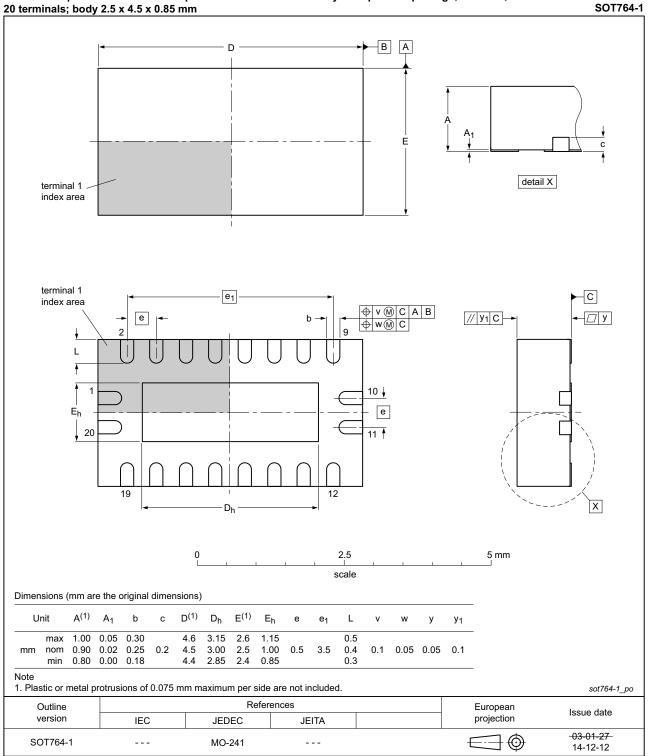


Fig 11. Package outline SOT360-1 (TSSOP20)

All information provided in this document is subject to legal disclaimers.

74AHCV541A

Octal buffer/line driver; 3-state

DHVQFN20: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 20 terminals; body 2.5 x 4.5 x 0.85 mm

Fig 12. Package outline SOT764-1 (DHVQFN20)

All information provided in this document is subject to legal disclaimers.

74AHCV541A

13. Abbreviations

Table 11. Abbreviations					
Acronym	Description				
CDM	Charge Device Model				
DUT	Device Under Test				
ESD	ElectroStatic Discharge				
HBM	Human Body Model				
ММ	Machine Model				

14. Revision history

Table 12. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes	
74AHCV541A v.6	20161215	Product data sheet	-	74AHCV541A v.5	
Modifications:	Added type number 74AHCV541ABQ (SOT764-1)				
74AHCV541A v.5	20161107	Product data sheet	-	74AHCV541A v.4	
Modifications:	Type number 74AHCV541ABQ removed.				
74AHCV541A v.4	20160420	Product data sheet	-	74AHCV541A v.3	
Modifications:	• Figure 1 updated.				
74AHCV541A v.3	20160224	Product data sheet	-	74AHCV541A v.2	
Modifications:	• <u>Table 7</u> : C _{PD} value corrected (errata).				
74AHCV541A v.2	20160126	Product data sheet	-	74AHCV541A v.1	
Modifications:	• <u>Table 7</u> : conditions C _{PD} corrected (errata).				
	• Figure 7 updated.				
74AHCV541A v.1	20151223	Product data sheet	-	-	

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any

representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Product data sheet

74AHCV541A

Octal buffer/line driver; 3-state

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of

non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the

product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

74AHCV541A

Octal buffer/line driver; 3-state

17. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 2
4	Functional diagram 2
5	Pinning information 3
5.1	Pinning 3
5.2	Pin description 3
6	Functional description 4
7	Limiting values 4
8	Recommended operating conditions 5
9	Static characteristics 5
9.1	Transfer characteristics waveforms 6
10	Dynamic characteristics 8
11	Waveforms 10
12	Package outline 12
13	Abbreviations 14
14	Revision history 14
15	Legal information
15.1	Data sheet status 15
15.2	Definitions 15
15.3	Disclaimers 15
15.4	Trademarks 16
16	Contact information 16
17	Contents

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by Nexperia manufacturer:

Other Similar products are found below :

LXV200-024SW 74AUP2G34FW3-7 HEF4043BP NLU1GT126CMUTCG NLV27WZ125USG PI74FCT3244L MC74HCT365ADTR2G Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB NL17SZ07P5T5G NLU1GT126AMUTCG 74AUP1G17FW5-7 74LVC2G17FW4-7 CD4502BE 5962-8982101PA 5962-9052201PA 74LVC1G125FW4-7 NL17SH17P5T5G NL17SH125P5T5G NLV37WZ07USG RHRXH162244K1 74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC2G126RA3-7 NLX2G17CMUTCG 74LVCE1G125FZ4-7 Le87501NQC 74AUP1G126FW5-7 TC74HC4050AP(F) 74LVCE1G07FZ4-7 NLX3G16DMUTCG NLX2G06AMUTCG NLVVHC1G50DFT2G NLU2G17AMUTCG LE87100NQC LE87290YQC LE87290YQCT LE87511NQC LE87511NQCT LE87557NQC LE87557NQCT LE87614MQC LE87614MQCT 74AUP1G125FW5-7 NLU2G16CMUTCG MC74LCX244MN2TWG