Low-power single buffer; single buffer with open-drain Rev. 2 — 1 December 2020 Product data sheet

1. General description

The 74AUP2G3407 is a single buffer and a single buffer with open-drain output. It features two input pins (nA), an output pin (1Y) and an open-drain output pin (2Y).

Schmitt trigger action at all inputs makes the circuit tolerant of slower input rise and fall times across the entire V_{CC} range from 0.8 V to 3.6 V.

This device ensures a very low static and dynamic power consumption across the entire V_{CC} range from 0.8 V to 3.6 V.

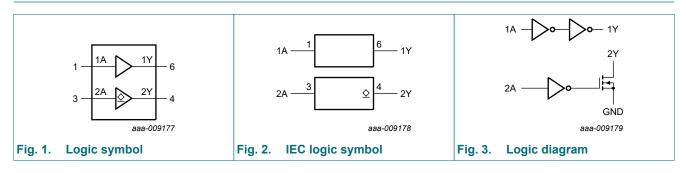
This device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

2. Features and benefits

- Wide supply voltage range from 0.8 V to 3.6 V
- High noise immunity
- Complies with JEDEC standards:
 - JESD8-12 (0.8 V to 1.3 V)
 - JESD8-11 (0.9 V to 1.65 V)
 - JESD8-7 (1.2 V to 1.95 V)
 - JESD8-5 (1.8 V to 2.7 V)
 - JESD8-B (2.7 V to 3.6 V)
- ESD protection:
 - HBM JESD22-A114F Class 3A exceeds 5000 V
 - MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101E exceeds 1000 V
- Low static power consumption; I_{CC} = 0.9 µA (maximum)
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- Inputs accept voltages up to 3.6 V
- Low noise overshoot and undershoot < 10 % of V_{CC}
- IOFF circuitry provides partial power-down mode operation
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

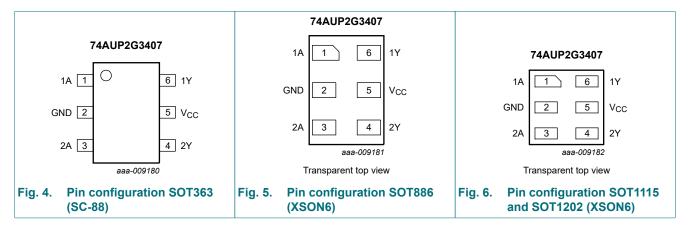
nexperia

3. Ordering information


Type number	Package							
	Temperature range	Name	Description	Version				
74AUP2G3407GW	-40 °C to +125 °C	SC-88	plastic surface-mounted package; 6 leads	SOT363				
74AUP2G3407GM	-40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 × 1.45 × 0.5 mm	SOT886				
74AUP2G3407GN	-40 °C to +125 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body 0.9 × 1.0 × 0.35 mm	SOT1115				
74AUP2G3407GS	-40 °C to +125 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body 1.0 × 1.0 × 0.35 mm	SOT1202				

4. Marking

Table 2. Marking						
Type number	Marking code[1]					
74AUP2G3407GW	aJ					
74AUP2G3407GM	aJ					
74AUP2G3407GN	aJ					
74AUP2G3407GS	aJ					


[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

5. Functional diagram

6. Pinning information

6.2. Pin description

Table 3. Pin description

Symbol	Pin	Description
1A	1	data input
GND	2	ground (0 V)
2A	3	data input
2Y	4	data output (open-drain)
V _{CC}	5	supply voltage
1Y	6	data output

7. Functional description

Table 4. Function table

H = HIGH voltage level; L = LOW voltage level.

Input	Output
1A	1Y
L	L
Н	Н

Table 5. Function table

H = HIGH voltage level; L = LOW voltage level; Z = high-impedance OFF state.

Input	Output
2A	2Y
L	L
Н	Z

8. Limiting values

Table 6. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+4.6	V
I _{IK}	input clamping current	V ₁ < 0 V	-50	-	mA
VI	input voltage	[1]	-0.5	+4.6	V
I _{OK}	output clamping current	V _O < 0 V	-50	-	mA
Vo	output voltage	Active mode and Power-down mode [1]	-0.5	+4.6	V
I _O	output current	$V_{O} = 0 V$ to V_{CC}			
		1Y	-	±20	mA
		2Y	-	+20	mA
I _{CC}	supply current		-	50	mA
I _{GND}	ground current		-50	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \text{ °C to } +125 \text{ °C}$ [2]	-	250	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] For SOT363 (SC-88) package: P_{tot} derates linearly with 3.7 mW/K above 83 °C. For SOT886 (XSON6) package: P_{tot} derates linearly with 3.3 mW/K above 74 °C. For SOT1115 (XSON6) package: P_{tot} derates linearly with 3.2 mW/K above 71 °C. For SOT1202 (XSON6) package: P_{tot} derates linearly with 3.3 mW/K above 74 °C.

9. Recommended operating conditions

Table 7. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit	
V _{CC}	supply voltage		0.8	3.6	V	
VI	input voltage		0	3.6	V	
Vo	output voltage	Active mode	0	V _{CC}	V	
		Power-down mode; V _{CC} = 0 V	0	3.6	V	
T _{amb}	ambient temperature		-40	+125	°C	
Δt/ΔV	input transition rise and fall rate	V _{CC} = 0.8 V to 3.6 V	0	200	ns/V	

10. Static characteristics

Table 8. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 2	25 °C					
V _{IH}	HIGH-level input voltage	V _{CC} = 0.8 V	0.70 × V _{CC}	-	-	V
		V _{CC} = 0.9 V to 1.95 V	0.65 × V _{CC}	-	-	V
		V _{CC} = 2.3 V to 2.7 V	1.6	-	-	V
		V _{CC} = 3.0 V to 3.6 V	2.0	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 0.8 V	-	-	$0.30 \times V_{CC}$	V
		V _{CC} = 0.9 V to 1.95 V	-	-	$0.35 \times V_{CC}$	V
		V _{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		V _{CC} = 3.0 V to 3.6 V	-	-	0.9	V
V _{OH}	HIGH-level output voltage	1Y; $V_I = V_{IH}$ or V_{IL}				
		I_{O} = -20 µA; V_{CC} = 0.8 V to 3.6 V	V _{CC} - 0.1	-	-	V
		I _O = -1.1 mA; V _{CC} = 1.1 V	0.75 × V _{CC}	-	-	V
		I _O = -1.7 mA; V _{CC} = 1.4 V	1.11	-	-	V
		I _O = -1.9 mA; V _{CC} = 1.65 V	1.32	-	-	V
		$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	V			
		I _O = -3.1 mA; V _{CC} = 2.3 V	1.9	-	-	V
		I _O = -2.7 mA; V _{CC} = 3.0 V	2.72	-	-	V
		I _O = -4.0 mA; V _{CC} = 3.0 V	2.6	-	-	V
V _{OL}	LOW-level output voltage	1Y, 2Y; $V_I = V_{IH}$ or V_{IL}				
		I_{O} = 20 µA; V_{CC} = 0.8 V to 3.6 V	-	-	0.1	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	$0.3 \times V_{CC}$	V
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.31	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.31	V
		I_0 = 2.3 mA; V_{CC} = 2.3 V	-	-	0.31	V
		I _O = 3.1 mA; V _{CC} = 2.3 V	-	-	0.44	V
		I _O = 2.7 mA; V _{CC} = 3.0 V	-	-	0.31	V
		I _O = 4.0 mA; V _{CC} = 3.0 V	-	-	0.44	V
l _l	input leakage current	V_{I} = GND to 3.6 V; V_{CC} = 0 V to 3.6 V	-	-	±0.1	μA
I _{OFF}	power-off leakage current	V_1 or V_0 = 0 V to 3.6 V; V_{CC} = 0 V	-	-	±0.2	μA
ΔI _{OFF}	additional power-off leakage current	$ \begin{array}{ c c c c c c c } \hline I_{0} = 1.1 \text{ mA; } V_{CC} = 1.1 \text{ V} & - & - & 0.3 \times V_{CL} \\ \hline I_{0} = 1.7 \text{ mA; } V_{CC} = 1.4 \text{ V} & - & - & 0.31 \\ \hline I_{0} = 1.9 \text{ mA; } V_{CC} = 1.65 \text{ V} & - & - & 0.31 \\ \hline I_{0} = 2.3 \text{ mA; } V_{CC} = 2.3 \text{ V} & - & - & 0.31 \\ \hline I_{0} = 3.1 \text{ mA; } V_{CC} = 2.3 \text{ V} & - & - & 0.44 \\ \hline I_{0} = 2.7 \text{ mA; } V_{CC} = 3.0 \text{ V} & - & - & 0.31 \\ \hline I_{0} = 4.0 \text{ mA; } V_{CC} = 3.0 \text{ V} & - & - & 0.31 \\ \hline I_{0} = 4.0 \text{ mA; } V_{CC} = 3.0 \text{ V} & - & - & 0.44 \\ \hline I_{0} = 2.7 \text{ mA; } V_{CC} = 0 \text{ V to } 3.6 \text{ V} & - & - & 0.44 \\ \hline I_{0} = 4.0 \text{ mA; } V_{CC} = 0 \text{ V to } 3.6 \text{ V} & - & - & 0.44 \\ \hline I_{0} = 4.0 \text{ mA; } V_{CC} = 0 \text{ V to } 3.6 \text{ V} & - & - & 0.44 \\ \hline I_{0} = 4.0 \text{ mA; } V_{CC} = 0 \text{ V to } 3.6 \text{ V} & - & - & 0.44 \\ \hline I_{0} = 4.0 \text{ mA; } V_{CC} = 0 \text{ V to } 3.6 \text{ V} & - & - & 0.44 \\ \hline I_{0} = 4.0 \text{ mA; } V_{CC} = 0 \text{ V to } 3.6 \text{ V} & - & - & 0.44 \\ \hline I_{0} = 4.0 \text{ mA; } V_{CC} = 0 \text{ V to } 3.6 \text{ V} & - & - & 0.44 \\ \hline I_{0} = 4.0 \text{ mA; } V_{CC} = 0 \text{ V to } 3.6 \text{ V} & - & - & \pm 0.1 \\ \hline I_{0} = 4.0 \text{ mA; } V_{CC} = 0 \text{ V to } 3.6 \text{ V} & - & - & \pm 0.2 \\ \hline I_{0} = 0 \text{ V to } 3.6 \text{ V; } V_{CC} = 0 \text{ V to } 0.2 \text{ V} & - & - & \pm 0.2 \\ \hline I_{0} = 0 \text{ V to } 3.6 \text{ V; } V_{CC} = 0 \text{ V to } 0.2 \text{ V} & - & - & \pm 0.2 \\ \hline I_{0} = 0 \text{ V to } 3.6 \text{ V; } V_{CC} = 0 \text{ A; } V_{CC} = 0.8 \text{ V to } 3.6 \text{ V} \\ \hline I_{0} = 0.8 \text{ V to } 3.6 \text{ V} \\ \hline I_{0} = 0.8 \text{ V to } 3.6 \text{ V} \\ \hline I_{0} = 0 \text{ A; } V_{CC} = 0.8 \text{ V to } 3.6 \text{ V} \\ \hline I_{0} = 0.8 \text{ V to } 3.6 \text{ V} \\ \hline I_{0} = 0.8 \text{ V to } 3.6 \text{ V} \\ \hline I_{0} = 0.8 \text{ V to } 3.6 \text{ V} \\ \hline I_{0} = 0.8 \text{ V to } 3.6 \text{ V} \\ \hline I_{0} = 0.8 \text{ V to } 3.6 \text{ V} \\ \hline I_{0} = 0.8 \text{ V to } 3.6 \text{ V} \\ \hline I_{0} = 0.8 \text{ V to } 3.6 \text{ V} \\ \hline I_{0} = 0.8 \text{ V to } 3.6 \text{ V} \\ \hline I_{0} = 0.8 \text{ V to } 3.6 \text{ V} \\ \hline I_{0} = 0.8 \text{ V to } 3.6 \text{ V} \\ \hline I_{0} = 0.8 \text{ V to } 3.6 \text{ V} \\ \hline I_{0} = 0.8 \text{ V to } 3.6 \text{ V} \\ \hline I_{0} = 0.8 \text{ V to } 3.6 V$				μA
I _{CC}	supply current		-	-	0.5	μA
ΔI _{CC}	additional supply current	$V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A}; V_{CC} = 3.3 \text{ V}$	-	-	40	μA
CI	input capacitance	$V_{1} = V_{CC} - 0.6 \text{ V}; \ I_{0} = 0 \text{ A}; \ V_{CC} = 3.3 \text{ V} - 40$ $V_{CC} = 0 \text{ V to } 3.6 \text{ V}; \ V_{1} = \text{GND or } V_{CC} - 0.8 - 0.8$			-	pF
Co	output capacitance	$V_{O} = GND; V_{CC} = 0 V$				
		2Y output; enabled	-	1.7	-	pF
		2Y output; disabled	-	1.1	-	pF
		1Y output	-	1.7	-	pF

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
T _{amb} = -4	40 °C to +85 °C				_		
V _{IH}	HIGH-level input voltage	V _{CC} = 0.8 V	0.70 × V _{CC}	-	-	V	
		V _{CC} = 0.9 V to 1.95 V	$0.65 \times V_{CC}$	-	-	V	
		V _{CC} = 2.3 V to 2.7 V	1.6	-	-	V	
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ $V_{CC} = 0.8 \text{ V}$		-	-	V	
V _{IL}	LOW-level input voltage	V _{CC} = 0.8 V	-	-	$0.30 \times V_{CC}$	V	
		V _{CC} = 0.9 V to 1.95 V	-	-	0.35 × V _{CC}	V	
		V _{CC} = 2.3 V to 2.7 V	-	-	0.7	V	
		V _{CC} = 3.0 V to 3.6 V	-	-	0.9	V	
V _{OH}	HIGH-level output voltage	1Y; $V_I = V_{IH}$ or V_{IL}					
		I_{O} = -20 µA; V_{CC} = 0.8 V to 3.6 V	V _{CC} - 0.1	-	-	V	
		I _O = -1.1 mA; V _{CC} = 1.1 V	0.7 × V _{CC}	-	-	V	
		I _O = -1.7 mA; V _{CC} = 1.4 V	1.03	-	-	V	
		I _O = -1.9 mA; V _{CC} = 1.65 V	1.30	-	-	V	
		I _O = -2.3 mA; V _{CC} = 2.3 V	1.97	-	-	V	
		I _O = -3.1 mA; V _{CC} = 2.3 V	1.85	-	-	V	
		I _O = -2.7 mA; V _{CC} = 3.0 V	2.67	-	-	V	
		I _O = -4.0 mA; V _{CC} = 3.0 V	2.55	-	-	V	
V _{OL}	LOW-level output voltage	1Y, 2Y; $V_I = V_{IH}$ or V_{IL}					
		I_{O} = 20 µA; V_{CC} = 0.8 V to 3.6 V	-	-	0.1	V	
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	$0.3 \times V_{CC}$	V	
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.37	V	
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.35	V	
		I _O = 2.3 mA; V _{CC} = 2.3 V	-	-	0.33	V	
		I _O = 3.1 mA; V _{CC} = 2.3 V	-	-	0.45	V	
		I _O = 2.7 mA; V _{CC} = 3.0 V	-	-	0.33	V	
		I _O = 4.0 mA; V _{CC} = 3.0 V	-	-	0.45	V	
l _l	input leakage current	V_{I} = GND to 3.6 V; V_{CC} = 0 V to 3.6 V	-	-	±0.5	μA	
I _{OFF}	power-off leakage current	V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC} = 0$ V	-	-	±0.5	μA	
∆I _{OFF}	additional power-off leakage current	V_{I} or V_{O} = 0 V to 3.6 V; V_{CC} = 0 V to 0.2 V	-	- 0.45 \ - 0.33 \ - 0.45 \ - 0.45 \ - ±0.5 \ - ±0.5 \ - ±0.6 \			
I _{CC}	supply current	$V_{I} = GND \text{ or } V_{CC}; I_{O} = 0 \text{ A}; V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	-	-	0.9	μA	
ΔI _{CC}	additional supply current	$V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A}; V_{CC} = 3.3 \text{ V}$	-	-	50	μA	

Low-power single buffer; single buffer with open-drain

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
T _{amb} = -4	40 °C to +125 °C						
V _{IH}	HIGH-level input voltage	V _{CC} = 0.8 V	0.75 × V _{CC}	-	-	V	
		V _{CC} = 0.9 V to 1.95 V	0.70 × V _{CC}	-	-	V	
		V _{CC} = 2.3 V to 2.7 V	1.6	-	-	V	
		$V_{CC} = 3.0 \text{ V}$ to 3.6 V 2.0 - $V_{CC} = 0.8 \text{ V}$ - 0.25				V	
V _{IL}	LOW-level input voltage	V _{CC} = 0.8 V	-	-	0.25 × V _{CC}	V	
		V _{CC} = 0.9 V to 1.95 V	-	-	$0.30 \times V_{CC}$	V	
		V _{CC} = 2.3 V to 2.7 V	-	-	0.7	V	
		V _{CC} = 3.0 V to 3.6 V	-	-	0.9	V	
V _{OH}	HIGH-level output voltage	1Y; $V_I = V_{IH}$ or V_{IL}					
		I_{O} = -20 µA; V_{CC} = 0.8 V to 3.6 V	V _{CC} - 0.11	-	-	V	
		I _O = -1.1 mA; V _{CC} = 1.1 V	0.6 × V _{CC}	-	-	V	
		I _O = -1.7 mA; V _{CC} = 1.4 V	= -1.7 mA; $V_{CC} = 1.4 V$ 0.93 - = -1.9 mA; $V_{CC} = 1.65 V$ 1.17 - = -2.3 mA; $V_{CC} = 2.3 V$ 1.77 - = -3.1 mA; $V_{CC} = 2.3 V$ 1.67 -	-	V		
		I _O = -1.9 mA; V _{CC} = 1.65 V	1.17	-	-	V	
		I _O = -2.3 mA; V _{CC} = 2.3 V	1.77	-	-	V	
		I _O = -3.1 mA; V _{CC} = 2.3 V	1.67	-	-	V	
		I _O = -2.7 mA; V _{CC} = 3.0 V	2.40	-	-	V	
		I _O = -4.0 mA; V _{CC} = 3.0 V	2.30	-	-	V	
V _{OL}	LOW-level output voltage	1Y, 2Y; $V_I = V_{IH}$ or V_{IL}					
		I_{O} = 20 µA; V_{CC} = 0.8 V to 3.6 V	-	-	0.11	V	
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	0.33 × V _{CC}	V	
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.41	V	
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.39	V	
		I _O = 2.3 mA; V _{CC} = 2.3 V	-	-	0.36	V	
		I _O = 3.1 mA; V _{CC} = 2.3 V	-	-	0.50	V	
		I _O = 2.7 mA; V _{CC} = 3.0 V	-	-	0.36	V	
		I _O = 4.0 mA; V _{CC} = 3.0 V	-	-	0.50	V	
I	input leakage current	V_I = GND to 3.6 V; V_{CC} = 0 V to 3.6 V	-	-	±0.75	μA	
I _{OFF}	power-off leakage current	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V}; V_{CC} = 0 \text{ V}$	-	-	- 0.36 - 0.50 - ±0.75 - ±0.75		
ΔI _{OFF}	additional power-off leakage current	V_{I} or V_{O} = 0 V to 3.6 V; V_{CC} = 0 V to 0.2 V	-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
I _{CC}	supply current	$V_{I} = GND \text{ or } V_{CC}; I_{O} = 0 \text{ A}; V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	-	-	1.4	μA	
ΔI _{CC}	additional supply current	$V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A}; V_{CC} = 3.3 \text{ V}$	-	-	75	μA	

11. Dynamic characteristics

Table 9. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit, see Fig. 8.

Symbol	Parameter	Conditions	T _{amb} = 25 °C			T _{amb} = -40 °C to +85 °C		T _{amb} = -40 °C to +125 °C		Unit
			Min	Typ[1]	Max	Min	Max	Min	Max	
C _L = 5 p	F									
t _{pd}	propagation delay	1A to 1Y or 2A to 2Y; [2] see <u>Fig. 7</u>								
		V _{CC} = 0.8 V	-	13.3	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	2.1	4.4	9.2	1.7	10.0	1.7	11.0	ns
		V _{CC} = 1.4 V to 1.6 V	1.6	3.2	5.7	1.3	6.5	1.3	7.2	ns
		V _{CC} = 1.65 V to 1.95 V	1.6	2.8	4.5	1.2	5.2	1.2	5.8	ns
		V _{CC} = 2.3 V to 2.7 V	1.1	2.2	3.5	0.9	4.2	0.9	4.6	ns
		V _{CC} = 3.0 V to 3.6 V	1.4	2.1	3.2	1.0	3.8	1.0	4.2	ns
C _L = 10	pF			1	. <u></u>	1			1	
t _{pd}	propagation delay	1A to 1Y or 2A to 2Y; [2] see Fig. 7								
		V _{CC} = 0.8 V	-	16.6	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	3.0	5.4	10.9	2.3	11.8	2.3	13.1	ns
		V _{CC} = 1.4 V to 1.6 V	2.3	3.9	6.7	1.9	7.7	1.9	8.5	ns
		V _{CC} = 1.65 V to 1.95 V	2.3	3.5	5.3	1.7	6.2	1.7	6.9	ns
		V _{CC} = 2.3 V to 2.7 V	1.7	2.8	4.2	1.3	5.0	1.3	5.5	ns
		V _{CC} = 3.0 V to 3.6 V	1.7	2.9	4.2	1.4	4.6	1.4	5.1	ns
C _L = 15	pF			1		1	1	1	1	1
t _{pd}	propagation delay	1A to 1Y or 2A to 2Y; [2] see Fig. 7								
		V _{CC} = 0.8 V	-	19.8	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	3.5	6.3	12.6	2.6	13.8	2.6	15.2	ns
		V _{CC} = 1.4 V to 1.6 V	3.0	4.6	7.6	2.2	8.9	2.2	9.8	ns
		V _{CC} = 1.65 V to 1.95 V	2.6	4.1	6.7	2.0	7.8	2.0	8.6	ns
		V _{CC} = 2.3 V to 2.7 V	2.3	3.4	4.8	1.8	5.7	1.8	6.3	ns
		V _{CC} = 3.0 V to 3.6 V	2.1	3.5	5.7	1.6	6.1	1.6	6.7	ns
C _L = 30	pF			1						
t _{pd}	propagation delay	1A to 1Y or 2A to 2Y; [2] see Fig. 7								
		V _{CC} = 0.8 V	-	28.4	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	4.8	8.9	16.3	3.6	18.9	3.6	20.8	ns
		V _{CC} = 1.4 V to 1.6 V	4.0	6.4	10.3	3.4	12.2	3.4	13.4	ns
		V _{CC} = 1.65 V to 1.95 V	3.6	6.0	9.7	3.2	11.0	3.2	12.1	ns
		V _{CC} = 2.3 V to 2.7 V	3.0	4.8	6.7	2.7	7.7	2.7	8.5	ns
		V _{CC} = 3.0 V to 3.6 V	2.9	5.3	9.7	2.5	10.4	2.5	11.4	ns

Low-power single buffer; single buffer with open-drain

Symbol	Parameter	arameter Conditions		T _{amb} = 25 °C		T _{amb} = -40 °C to +85 °C		T _{amb} = -40 °C to +125 °C		Unit
			Min	Typ[1]	Мах	Min	Max	Min	Max	
C _L = 5 p	F, 10 pF, 15 p	F and 30 pF		· · · · · ·		-	-			
C _{PD}	power dissipation	$ \begin{array}{ll} \mbox{1A to 1Y; } f_i\mbox{=}1 \mbox{ MHz;} & \mbox{[3]} \\ \mbox{V}_I\mbox{=}GND \mbox{ to } V_{CC} & \mbox{[4]} \end{array} $								
	capacitance	V _{CC} = 0.8 V	-	2.5	-	-	-	-	-	pF
		V _{CC} = 1.1 V to 1.3 V	-	2.6	-	-	-	-	-	pF
		V _{CC} = 1.4 V to 1.6 V	-	2.7	-	-	-	-	-	pF
		V _{CC} = 1.65 V to 1.95 V	-	2.9	-	-	-	-	-	pF
		V _{CC} = 2.3 V to 2.7 V	-	3.4	-	-	-	-	-	pF
		V _{CC} = 3.0 V to 3.6 V	-	4.0	-	-	-	-	-	pF
		2A to 2Y; f _i =1 MHz; [3] V _I = GND to V _{CC} [5]								
		V _{CC} = 0.8 V	-	0.5	-	-	-	-	-	pF
		V _{CC} = 1.1 V to 1.3 V	-	0.6	-	-	-	-	-	pF
		V _{CC} = 1.4 V to 1.6 V	-	0.6	-	-	-	-	-	pF
		V _{CC} = 1.65 V to 1.95 V	-	0.7	-	-	-	-	-	pF
		V _{CC} = 2.3 V to 2.7 V	-	0.9	-	-	-	-	-	pF
		V _{CC} = 3.0 V to 3.6 V	-	1.2	-	-	-	-	-	pF

[1] All typical values are measured at nominal V_{CC} .

 t_{pd} is the same as t_{PLH} and t_{PHL} (1A to 1Y) and t_{PLZ} and t_{PZL} (2A to 2Y). All specified values are the average typical values over all stated loads. [2] [3]

 C_{PD} is used to determine the dynamic power dissipation (P_D in μW). [4]

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N \text{ where:}$ f_i = input frequency in MHz;

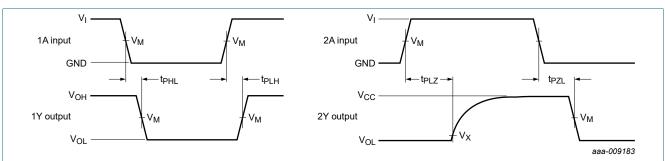
C_L = load capacitance in pF;

N = number of inputs switching;

[5] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W). $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma(C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

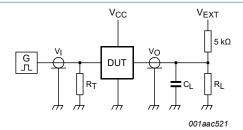
fo = output frequency in MHz;


C_L = load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_0)$ = sum of the outputs.


Measurement points are given in <u>Table 10</u>.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig. 7. The data input 1A to output 1Y and input 2A to output 2Y propagation delays

Table 10. Measurement points

Supply voltage	Output		Input		
V _{cc}	V _M	V _X	V _M	VI	t _r = t _f
0.8 V to 1.6 V	$0.5 \times V_{CC}$	VOL + 0.1 V	$0.5 \times V_{CC}$	V _{CC}	≤ 3.0 ns
1.65 V to 2.7 V	$0.5 \times V_{CC}$	VOL + 0.15 V	$0.5 \times V_{CC}$	V _{CC}	≤ 3.0 ns
3.0 V to 3.6 V	$0.5 \times V_{CC}$	VOL + 0.3 V	$0.5 \times V_{CC}$	V _{CC}	≤ 3.0 ns

Test data is given in Table 11.

Definitions for test circuit:

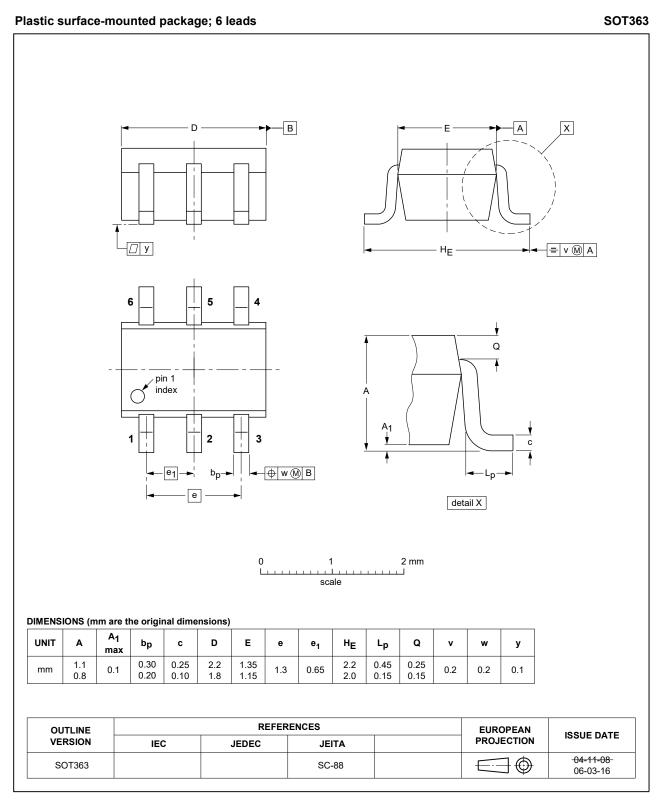
R_L = Load resistance.

C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to the output impedance Z_o of the pulse generator.

V_{EXT} = External voltage for measuring switching times.

Fig. 8. Test circuit for measuring switching times


Table 11. Test data

Supply voltage	Load	V _{EXT}			
V _{cc}	CL	R _L [1]	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
0.8 V to 3.6 V	5 pF, 10 pF, 15 pF and 30 pF	5 kΩ or 1 MΩ	open	GND	$2 \times V_{CC}$

[1] For measuring enable and disable times $R_L = 5 k\Omega$.

For measuring propagation delays, setup and hold times and pulse width R_L = 1 M Ω .

12. Package outline

Fig. 9. Package outline SOT363 (SC-88)

Low-power single buffer; single buffer with open-drain

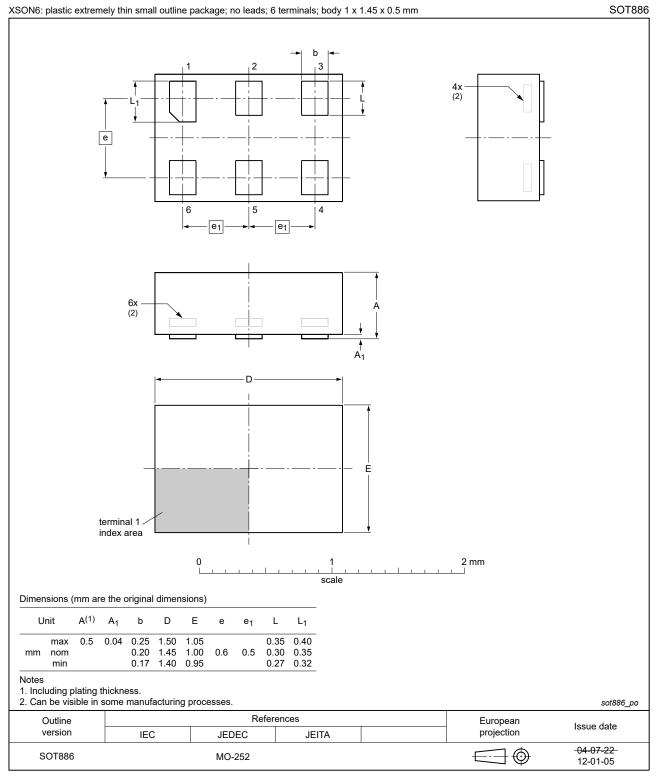


Fig. 10. Package outline SOT886 (XSON6)

Low-power single buffer; single buffer with open-drain

XSON6: extremely thin small outline package; no leads; 6 terminals; body 0.9 x 1.0 x 0.35 mm

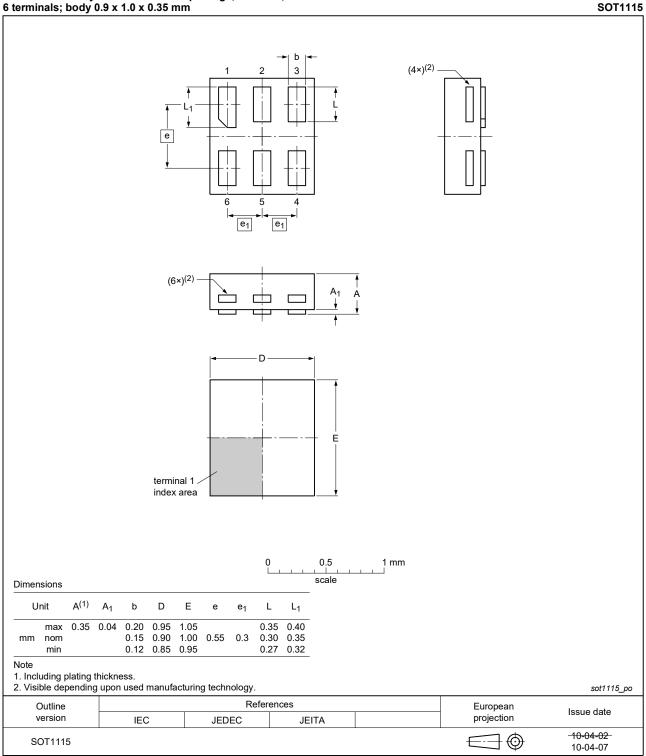
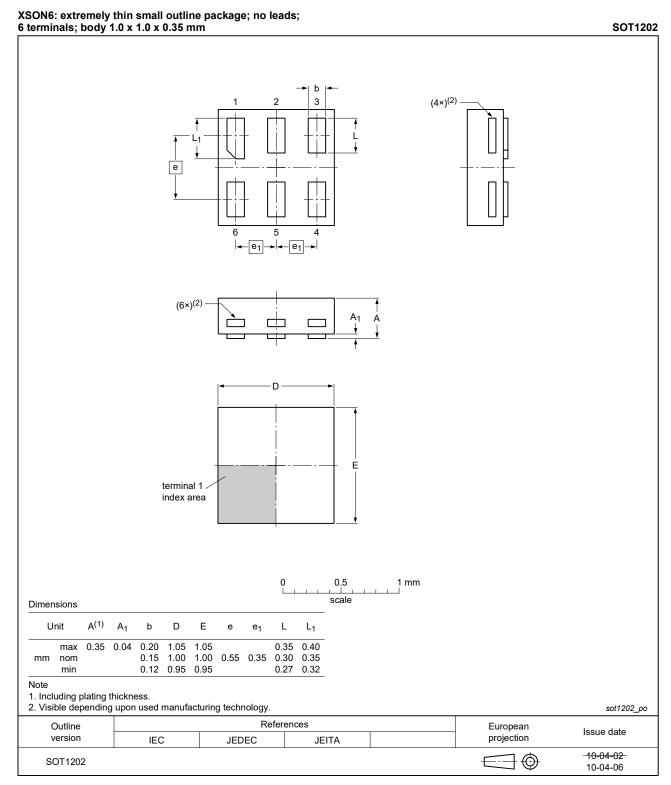



Fig. 11. Package outline SOT1115 (XSON6)

Low-power single buffer; single buffer with open-drain

13. Abbreviations

Acronym	Description
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model

14. Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes	
74AUP2G3407 v.2	20201201	Product data sheet	-	74AUP2G3407 v.1	
Modifications:	Nexperia. • Legal texts have b • Type number 74A	 The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia. Legal texts have been adapted to the new company name where appropriate. Type number 74AUP2G3407GF (SOT1089/XSON8) removed. <u>Section 8</u>: Derating values for P_{tot} total power dissipation updated. 			
74AUP2G3407 v.1	20131018	Product data sheet	-	-	

15. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

 Please consult the most recently issued document before initiating or completing a design.

- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at <u>https://www.nexperia.com</u>.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

Low-power single buffer; single buffer with open-drain

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nexperia.com/profile/terms</u>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Contents

1. General description	1
2. Features and benefits	1
3. Ordering information	2
4. Marking	2
5. Functional diagram	2
6. Pinning information	3
6.1. Pinning	3
6.2. Pin description	3
7. Functional description	3
8. Limiting values	4
9. Recommended operating conditions	4
10. Static characteristics	5
11. Dynamic characteristics	8
11.1. Waveforms and test circuit	10
12. Package outline	11
13. Abbreviations	15
14. Revision history	15
15. Legal information	16

© Nexperia B.V. 2020. All rights reserved

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 1 December 2020

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by Nexperia manufacturer:

Other Similar products are found below :

LXV200-024SW 74AUP2G34FW3-7 HEF4043BP NLU1GT126CMUTCG PI74FCT3244L MC74HCT365ADTR2G Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB NL17SZ07P5T5G NLU1GT126AMUTCG 74AUP1G17FW5-7 74LVC2G17FW4-7 CD4502BE 5962-8982101PA 5962-9052201PA 74LVC1G125FW4-7 NL17SH17P5T5G 74HCT126T14-13 NL17SH125P5T5G NLV37WZ07USG RHRXH162244K1 74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC2G126RA3-7 NLX2G17CMUTCG 74LVCE1G125FZ4-7 Le87501NQC 74AUP1G126FW5-7 TC74HC4050AP(F) 74LVCE1G07FZ4-7 NLX3G16DMUTCG NLX2G06AMUTCG NLU2G17AMUTCG LE87100NQC LE87100NQCT LE87285NQC LE87285NQCT LE87290YQC LE87290YQCT LE87511NQC LE87511NQCT LE87557NQC LE87557NQCT LE87614MQC LE87614MQCT LE87286NQCT