74AVC4T245-Q100

4-bit dual supply translating transceiver with configurable voltage translation; 3-state

Rev. 5 — 17 March 2020

Product data sheet

1. General description

The 74AVC4T245-Q100 is an 4-bit, dual supply transceiver that enables bidirectional level translation. The device can be used as two 2-bit transceivers or as a 4-bit transceiver. It features four 2-bit input-output ports (nAn and nBn), a direction control input (nDIR), a output enable input (n \overline{OE}) and dual supply pins (VCC(A) and VCC(B)). Both VCC(A) and VCC(B) can be supplied at any voltage between 0.8 V and 3.6 V making the device suitable for translating between any of the low voltage nodes (0.8 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V and 3.3 V). Pins nAn, n \overline{OE} and nDIR are referenced to VCC(A) and pins nBn are referenced to VCC(B). A HIGH on nDIR allows transmission from nAn to nBn and a LOW on nDIR allows transmission from nBn to nAn. The output enable input (n \overline{OE}) can be used to disable the outputs so the buses are effectively isolated. The device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing any damaging backflow current through the device when it is powered down. In suspend mode when either $V_{CC(A)}$ or $V_{CC(B)}$ are at GND level, both nAn and nBn are in the high-impedance OFF-state.

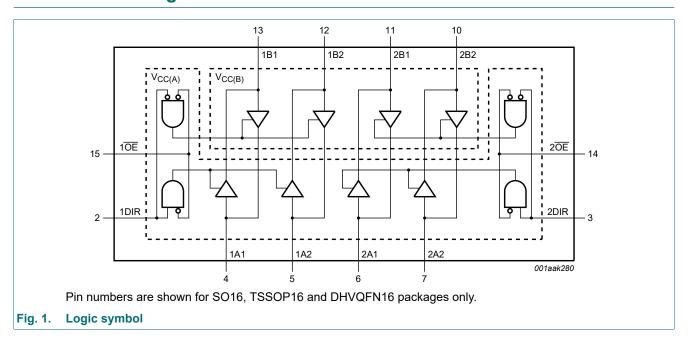
This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

2. Features and benefits

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Wide supply voltage range: V_{CC(A)}: 0.8 V to 3.6 V; V_{CC(B)}: 0.8 V to 3.6 V
- Complies with JEDEC standards:
 - JESD8-12 (0.8 V to 1.3 V)
 - JESD8-11 (0.9 V to 1.65 V)
 - JESD8-7 (1.2 V to 1.95 V)
 - JESD8-5 (1.8 V to 2.7 V)
 - JESD8-B (2.7 V to 3.6 V)
- ESD protection:
 - MIL-STD-883, method 3015 Class 3B exceeds 8000 V
 - HBM JESD22-A114E Class 3B exceeds 8000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pF; R = 0 Ω)
- Maximum data rates:
 - 380 Mbit/s (≥ 1.8 V to 3.3 V translation)
 - 200 Mbit/s (≥ 1.1 V to 3.3 V translation)
 - 200 Mbit/s (≥ 1.1 V to 2.5 V translation)
 - 200 Mbit/s (≥ 1.1 V to 1.8 V translation)
 - 150 Mbit/s (≥ 1.1 V to 1.5 V translation)
 - 100 Mbit/s (≥ 1.1 V to 1.2 V translation)
- Suspend mode
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- Inputs accept voltages up to 3.6 V
- I_{OFF} circuitry provides partial Power-down mode operation
- · Multiple package options
- DHVQFN package with Side-Wettable Flanks enabling Automatic Optical Inspection (AOI) of solder joints

3. Ordering information

Table 1. Ordering information


Type number	Package							
	Temperature range	Name	Description	Version				
74AVC4T245D-Q100	-40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1				
74AVC4T245PW-Q100	-40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1				
74AVC4T245BQ-Q100	-40 °C to +125 °C	DHVQFN16	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body 2.5 × 3.5 × 0.85 mm	SOT763-1				
74AVC4T245GU-Q100	-40 °C to +125 °C	XQFN16	plastic, extremely thin quad flat package; no leads; 16 terminals; body 1.80 × 2.60 × 0.50 mm	SOT1161-1				

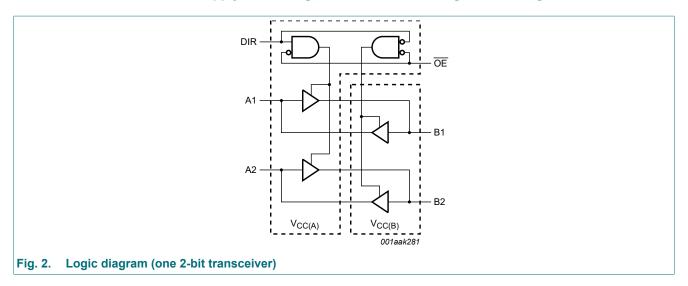

4. Marking

Table 2. Marking codes

Type number	Marking code
74AVC4T245D-Q100	74AVC4T245D
74AVC4T245PW-Q100	VC4T245
74AVC4T245BQ-Q100	C4T245
74AVC4T245GU-Q100	BT5

5. Functional diagram



6. Pinning information

6.1. Pinning

6.2. Pin description

Table 3. Pin description

Symbol	Pin		Description
	SOT109-1, SOT403-1 and SOT763-1	SOT1161-1	
V _{CC(A)}	1	3	supply voltage A (nAn, nOE and nDIR inputs are referenced to V _{CC(A)})
1DIR, 2DIR	2, 3	4, 5	direction control
1A1, 1A2	4, 5	6, 7	data input or output
2A1, 2A2	6, 7	8, 9	data input or output
GND[1]	8, 9	10, 11	ground (0 V)
2B2, 2B1	10, 11	12, 13	data input or output
1B2, 1B1	12, 13	14, 15	data input or output
2 OE , 1 OE	14, 15	16, 1	output enable input (active LOW)
V _{CC(B)}	16	2	supply voltage B (nBn inputs are referenced to $V_{\text{CC(B)}}$)

^[1] All GND pins must be connected to ground (0 V).

7. Functional description

Table 4. Function table

H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

Supply voltage	Input		Input/output[1]		
$V_{CC(A)}, V_{CC(B)}$	nOE[2]	nDIR[2]	nAn[2]	nBn[2]	
0.8 V to 3.6 V	L	L	nAn = nBn	input	
0.8 V to 3.6 V	L	Н	input	nBn = nAn	
0.8 V to 3.6 V	Н	X	Z	Z	
GND[1]	X	X	Z	Z	

- If at least one of $V_{CC(A)}$ or $V_{CC(B)}$ is at GND level, the device goes into suspend mode. The nAn, nDIR and n \overline{OE} input circuit is referenced to $V_{CC(A)}$; The nBn input circuit is referenced to $V_{CC(B)}$.

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
$V_{CC(A)}$	supply voltage A			-0.5	+4.6	V
$V_{CC(B)}$	supply voltage B			-0.5	+4.6	V
I _{IK}	input clamping current	V _I < 0 V		-50	-	mA
VI	input voltage		[1]	-0.5	+4.6	V
I _{OK}	output clamping current	V _O < 0 V		-50	-	mA
Vo	output voltage	Active mode	[1][2][3]	-0.5	V _{CCO} + 0.5	V
		Suspend or 3-state mode	[1]	-0.5	+4.6	V
Io	output current	V _O = 0 V to V _{CCO}	[2]	-	±50	mA
I _{CC}	supply current	per V _{CC(A)} or V _{CC(B)} pin		-	100	mΑ
I _{GND}	ground current	per GND pin		-100	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	T _{amb} = -40 °C to +125 °C				
		SO16, TSSOP16 and DHVQFN16	[4]	-	500	mW
		XQFN16		-	250	mW

- The minimum input voltage ratings and output voltage ratings may be exceeded if the input and output current ratings are observed.
- V_{CCO} is the supply voltage associated with the output port.
- V_{CCO} + 0.5 V should not exceed 4.6 V.
- For SOT109-1 (SO16) package: P_{tot} derates linearly with 12.4 mW/K above 110 °C.

For SOT403-1 (TSSOP16) package: Ptot derates linearly with 8.5 mW/K above 91 °C.

For SOT763-1 (DHVQFN16) package: Ptot derates linearly with 11.2 mW/K above 106 °C.

9. Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC(A)}	supply voltage A		0.8	3.6	V
V _{CC(B)}	supply voltage B		0.8	3.6	V
VI	input voltage		0	3.6	V
Vo	output voltage	Active mode [1	0	V _{cco}	V
		Suspend or 3-state mode	0	3.6	V
T _{amb}	ambient temperature		-40	+125	°C
Δt/ΔV	input transition rise and fall rate	V _{CCI} =0.8 V to 3.6 V	-	5	ns/V

^[1] V_{CCO} is the supply voltage associated with the output port.

10. Static characteristics

Table 7. Typical static characteristics at T_{amb} = 25 °C

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).[1]

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		I_{O} = -1.5 mA; $V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V}$	-	0.69	-	V
V_{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_O = 1.5 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V}$	-	0.07	-	V
I _I	input leakage current	nDIR, n \overline{OE} input; V _I = 0 V or 3.6 V; V _{CC(A)} = V _{CC(B)} = 0.8 V to 3.6 V	-	±0.025	±0.25	μΑ
l _{OZ}	OFF-state output current	A or B port; $V_O = 0 \text{ V or } V_{CCO}$; [2] $V_{CC(A)} = V_{CC(B)} = 3.6 \text{ V}$		±0.5	±2.5	μΑ
		suspend mode A port; $V_O = 0 \text{ V or } V_{CCO}$; [2] $V_{CC(A)} = 3.6 \text{ V}$; $V_{CC(B)} = 0 \text{ V}$	-	±0.5	±2.5	μA
		suspend mode B port; $V_O = 0 \text{ V or } V_{CCO}$; [2 $V_{CC(A)} = 0 \text{ V}$; $V_{CC(B)} = 3.6 \text{ V}$	-	±0.5	±2.5	μΑ
I _{OFF}	power-off leakage current	A port; V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC(A)} = 0$ V; $V_{CC(B)} = 0.8$ V to 3.6 V	-	±0.1	±1	μΑ
		B port; V_1 or V_0 = 0 V to 3.6 V; $V_{CC(B)}$ = 0 V; $V_{CC(A)}$ = 0.8 V to 3.6 V	-	±0.1	±1	μΑ
Cı	input capacitance	nDIR, n \overline{OE} input; V _I = 0 V or 3.3 V; V _{CC(A)} = V _{CC(B)} = 3.3 V	-	1.0	-	pF
C _{I/O}	input/output capacitance	A and B port; $V_O = 3.3 \text{ V or } 0 \text{ V};$ $V_{CC(A)} = V_{CC(B)} = 3.3 \text{ V}$	-	4.0	-	pF

^[1] V_{CCO} is the supply voltage associated with the output port; V_{CCI} is the supply voltage associated with the data input port.

^[2] V_{CCI} is the supply voltage associated with the input port.

^[2] For I/O ports, the parameter I_{OZ} includes the input leakage current.

Table 8. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).[1]

Symbol	Parameter	Conditions	-40 °C t	o +85 °C	-40 °C to	Unit	
			Min	Max	Min	Max	
V _{IH}	HIGH-level	data input					
	input voltage	V _{CCI} = 0.8 V	0.70V _{CCI}	-	0.70V _{CCI}	-	V
		V _{CCI} = 1.1 V to 1.95 V	0.65V _{CCI}	-	0.65V _{CCI}	-	V
		V _{CCI} = 2.3 V to 2.7 V	1.6	-	1.6	-	V
		V _{CCI} = 3.0 V to 3.6 V	2	-	2	-	V
		nDIR, nOE input					
		V _{CC(A)} = 0.8 V	0.70V _{CC(A)}	-	0.70V _{CC(A)}	-	V
		V _{CC(A)} = 1.1 V to 1.95 V	0.65V _{CC(A)}	-	0.65V _{CC(A)}	-	V
		V _{CC(A)} = 2.3 V to 2.7 V	1.6	-	1.6	-	V
		V _{CC(A)} = 3.0 V to 3.6 V	2	-	2	-	V
V _{IL}	LOW-level	data input					
	input voltage	V _{CCI} = 0.8 V	-	0.30V _{CCI}	-	0.30V _{CCI}	V
		V _{CCI} = 1.1 V to 1.95 V	-	0.35V _{CCI}	-	0.35V _{CCI}	V
		V _{CCI} = 2.3 V to 2.7 V	-	0.7	-	0.7	V
		V _{CCI} = 3.0 V to 3.6 V	-	0.8	-	0.8	V
		nDIR, nOE input					
		V _{CC(A)} = 0.8 V	-	0.30V _{CC(A)}	-	0.30V _{CC(A)}	V
		V _{CC(A)} = 1.1 V to 1.95 V	-	0.35V _{CC(A)}	-	0.35V _{CC(A)}	
		V _{CC(A)} = 2.3 V to 2.7 V	-	0.7	-	0.7	V
		V _{CC(A)} = 3.0 V to 3.6 V	-	0.8	-	0.8	V
V _{OH}	HIGH-level	V _I = V _{IH} or V _{IL}					
	output voltage	I_{O} = -100 µA; $V_{CC(A)}$ = $V_{CC(B)}$ = 0.8 V to 3.6 V	V _{CCO} - 0.1	-	V _{CCO} - 0.1	-	V
		$I_{O} = -3 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 1.1 \text{ V}$	0.85	-	0.85	-	V
		I_{O} = -6 mA; $V_{CC(A)} = V_{CC(B)} = 1.4 \text{ V}$	1.05	-	1.05	-	V
		$I_O = -8 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 1.65 \text{ V}$	1.2	-	1.2	-	V
		$I_{O} = -9 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 2.3 \text{ V}$	1.75	-	1.75	-	V
		$I_O = -12 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 3.0 \text{ V}$	2.3	-	2.3	-	V
V _{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL}					
	output voltage	$I_O = 100 \mu A;$ $V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V}$	-	0.1	-	0.1	V
		I _O = 3 mA; V _{CC(A)} = V _{CC(B)} = 1.1 V	-	0.25	-	0.25	V
		I _O = 6 mA; V _{CC(A)} = V _{CC(B)} = 1.4 V	-	0.35	-	0.35	V
		I _O = 8 mA; V _{CC(A)} = V _{CC(B)} = 1.65 V	-	0.45	-	0.45	V
		I _O = 9 mA; V _{CC(A)} = V _{CC(B)} = 2.3 V	-	0.55	-	0.55	V
		I _O = 12 mA; V _{CC(A)} = V _{CC(B)} = 3.0 V	-	0.7	-	0.7	V
lı	input leakage current	nDIR, n \overline{OE} input; V _I = 0 V or 3.6 V; V _{CC(A)} = V _{CC(B)} = 0.8 V to 3.6 V	-	±1	-	±5	μΑ

7 / 25

Symbol	Parameter	Conditions	-40 °C 1	to +85 °C	-40 °C to	+125 °C	Unit
			Min	Max	Min	Max	
I _{OZ}	OFF-state output current	A or B port; $V_O = 0 \text{ V or } V_{CCO}$; [2] $V_{CC(A)} = V_{CC(B)} = 3.6 \text{ V}$	-	±5	-	±30	μΑ
		suspend mode A port; [2] $V_O = 0 \text{ V or } V_{CC(A)}$; $V_{CC(B)} = 0 \text{ V}$	-	±5	-	±30	μΑ
		suspend mode B port; [2] $V_O = 0 \text{ V or } V_{CC(B)}$; $V_{CC(B)} = 0 \text{ V}$; $V_{CC(B)} = 3.6 \text{ V}$	-	±5	-	±30	μΑ
	power-off leakage	A port; V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC(A)} = 0$ V; $V_{CC(B)} = 0.8$ V to 3.6 V	-	±5	-	±30	μA
	current	B port; V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC(B)} = 0$ V; $V_{CC(A)} = 0.8$ V to 3.6 V	-	±5	-	±30	μA
I _{CC} s	supply current	A port; $V_I = 0 \text{ V or } V_{CCI}$; $I_O = 0 \text{ A}$					
		$V_{CC(A)} = 0.8 \text{ V to } 3.6 \text{ V};$ $V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V}$	-	10	-	55	μA
		V _{CC(A)} = 1.1 V to 3.6 V; V _{CC(B)} = 1.1 V to 3.6 V	-	8	-	50	μΑ
		V _{CC(A)} = 3.6 V; V _{CC(B)} = 0 V	-	8	-	50	μA
		V _{CC(A)} = 0 V; V _{CC(B)} = 3.6 V	-2	-	-12	-	μA
		B port; V _I = 0 V or V _{CCI} ; I _O = 0 A					
		$V_{CC(A)} = 0.8 \text{ V to } 3.6 \text{ V};$ $V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V}$	-	10	-	55	μΑ
		V _{CC(A)} = 1.1 V to 3.6 V; V _{CC(B)} = 1.1 V to 3.6 V	-	8	-	50	μA
		V _{CC(A)} = 3.6 V; V _{CC(B)} = 0 V	-2	-	-12	-	μA
		V _{CC(A)} = 0 V; V _{CC(B)} = 3.6 V	-	8	-	50	μA
		A plus B port ($I_{CC(A)} + I_{CC(B)}$); $I_O = 0$ A; $V_I = 0$ V or V_{CCI} ; $V_{CC(A)} = 0.8$ V to 3.6 V; $V_{CC(B)} = 0.8$ V to 3.6 V	-	20	-	70	μΑ
		A plus B port ($I_{CC(A)} + I_{CC(B)}$); $I_O = 0$ A; $V_I = 0$ V or V_{CCI} ; $V_{CC(A)} = 1.1$ V to 3.6 V; $V_{CC(B)} = 1.1$ V to 3.6 V	-	16	-	65	μΑ

 V_{CCO} is the supply voltage associated with the output port; V_{CCI} is the supply voltage associated with the data input port. For I/O ports, the parameter I_{OZ} includes the input leakage current.

Table 9. Typical total supply current $(I_{CC(A)} + I_{CC(B)})$

V _{CC(A)}	V _{CC(B)}	$V_{CC(B)}$							
	0 V	0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V		
0 V	0	0.1	0.1	0.1	0.1	0.1	0.1	μΑ	
0.8 V	0.1	0.1	0.1	0.1	0.1	0.3	1.6	μΑ	
1.2 V	0.1	0.1	0.1	0.1	0.1	0.1	0.8	μΑ	
1.5 V	0.1	0.1	0.1	0.1	0.1	0.1	0.4	μΑ	
1.8 V	0.1	0.1	0.1	0.1	0.1	0.1	0.2	μΑ	
2.5 V	0.1	0.3	0.1	0.1	0.1	0.1	0.1	μΑ	
3.3 V	0.1	1.6	0.8	0.4	0.2	0.1	0.1	μΑ	

8 / 25

11. Dynamic characteristics

Table 10. Typical power dissipation capacitance at $V_{CC(A)} = V_{CC(B)}$ and $T_{amb} = 25$ °C

Voltages are referenced to GND (ground = 0 V).[1][2]

Symbol	Parameter	Conditions			V _{CC(A)} =	= V _{CC(B)}			Unit	
			0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V		
	dissipation	A port: (direction nAn to nBn); output enabled	0.2	0.2	0.2	0.2	0.3	0.4	pF	
	capacitance	A port: (direction nAn to nBn); output disabled	0.2	0.2	0.2	0.2	0.3	0.4	pF	
		A port: (direction nBn to nAn); output enabled	9.5	9.7	9.8	9.9	10.7	11.9	pF	
			A port: (direction nBn to nAn); output disabled	0.6	0.6	0.6	0.6	0.7	0.7	pF
		B port: (direction nAn to nBn); output enabled	9.5	9.7	9.8	9.9	10.7	11.9	pF	
		B port: (direction nAn to nBn); output disabled	0.6	0.6	0.6	0.6	0.7	0.7	pF	
		B port: (direction nBn to nAn); output enabled	0.2	0.2	0.2	0.2	0.3	0.4	pF	
		B port: (direction nBn to nAn); output disabled	0.2	0.2	0.2	0.2	0.3	0.4	pF	

[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

f_i = input frequency in MHz;

f_o = output frequency in MHz;

C_L = load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

$$\begin{split} &\Sigma(C_L \ x \ V_{CC}^{\ 2} \ x \ f_o) = \text{sum of the outputs.} \\ [2] \quad &f_i = 10 \ \text{MHz}; \ V_i = \text{GND to } V_{CC}; \ t_r = t_f = 1 \ \text{ns}; \ C_L = 0 \ \text{pF}; \ R_L = \infty \ \Omega. \end{split}$$

Table 11. Typical dynamic characteristics at $V_{CC(A)}$ = 0.8 V and T_{amb} = 25 °C

Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 9; for waveforms see Fig. 7 and Fig. 8.[1]

Symbol	Parameter	Conditions		V _{CC(B)}					
			0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	
t _{pd}	propagation delay	nAn to nBn	14.5	7.3	6.5	6.2	5.9	6.0	ns
		nBn to nAn	14.5	12.7	12.4	12.3	12.1	12.0	ns
t _{dis}	disable time	nOE to nAn	14.3	14.3	14.3	14.3	14.3	14.3	ns
		nOE to nBn	17.0	9.9	9.0	9.4	9.0	9.7	ns
t _{en}	enable time	n OE to nAn	18.2	18.2	18.2	18.2	18.2	18.2	ns
		nOE to nBn	19.2	10.7	9.8	9.6	9.7	10.2	ns

^[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .

Table 12. Typical dynamic characteristics at $V_{CC(B)}$ = 0.8 V and T_{amb} = 25 °C

Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 9; for waveforms see Fig. 7 and Fig. 8.[1]

Symbol	Parameter	Conditions		V _{CC(A)}							
			0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V			
t _{pd}	propagation delay	nAn to nBn	14.5	12.7	12.4	12.3	12.1	12.0	ns		
		nBn to nAn	14.5	7.3	6.5	6.2	5.9	6.0	ns		
t _{dis}	disable time	nOE to nAn	14.3	5.5	4.1	4.0	3.0	3.5	ns		
		nOE to nBn	17.0	13.8	13.4	13.1	12.9	12.7	ns		
t _{en}	enable time	nOE to nAn	18.2	5.6	4.0	3.2	2.4	2.2	ns		
		nOE to nBn	19.2	14.6	14.1	13.9	13.7	13.6	ns		

^[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .

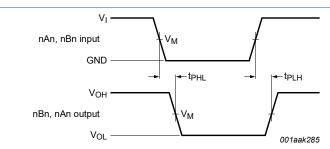
Table 13. Dynamic characteristics for temperature range -40 °C to +85 °C

Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 9; for waveforms see Fig. 7 and Fig. 8.[1]

Symbol	Parameter	Conditions					Vc	C(B)					Unit
			1.2 V	± 0.1 V	1.5 V	± 0.1 V	1.8 V ±	0.15 V	2.5 V :	± 0.2 V	3.3 V	± 0.3 V	1
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
V _{CC(A)} =	1.1 V to 1.3 V												
t _{pd}	propagation	nAn to nBn	0.5	9.4	0.5	7.1	0.5	6.2	0.5	5.2	0.5	5.1	ns
	delay	nBn to nAn	0.5	9.4	0.5	8.9	0.5	8.7	0.5	8.4	0.5	8.2	ns
t _{dis}	disable time	n OE to nAn	1.8	10.9	1.8	10.9	1.8	10.9	1.8	10.9	1.8	10.9	ns
		nOE to nBn	1.9	12.4	1.9	9.6	1.9	9.5	1.4	8.1	1.2	9.1	ns
t _{en}	enable time	nOE to nAn	1.4	12.8	1.4	12.8	1.4	12.8	1.4	12.8	1.4	12.8	ns
		nOE to nBn	1.1	13.3	1.1	10.0	1.1	8.9	1.0	7.9	1.0	7.7	ns
V _{CC(A)} =	1.4 V to 1.6 V												
t _{pd}	propagation	nAn to nBn	0.3	8.9	0.3	6.3	0.3	5.2	0.3	4.2	0.3	4.2	ns
	delay	nBn to nAn	0.7	7.1	0.7	6.3	0.5	6.0	0.4	5.7	0.3	5.6	ns
t _{dis} d	disable time	nOE to nAn	1.8	10.2	1.8	10.2	1.5	10.2	1.3	10.2	1.6	10.2	ns
		nOE to nBn	1.9	11.3	1.9	10.3	1.9	9.1	1.4	7.4	1.2	7.6	ns
t _{en}	enable time	nOE to nAn	1.1	9.4	1.4	9.4	1.1	9.4	0.7	9.4	0.4	9.4	ns
		nOE to nBn	1.4	12.1	1.4	9.6	1.1	7.7	0.9	5.8	0.9	5.6	ns
V _{CC(A)} =	1.65 V to 1.95	V									•	<u>'</u>	
t _{pd}	propagation	nAn to nBn	0.1	8.7	0.1	6.0	0.1	4.9	0.1	3.9	0.3	3.9	ns
	delay	nBn to nAn	0.6	6.2	0.6	5.3	0.5	4.9	0.3	4.6	0.3	4.5	ns
t _{dis}	disable time	nOE to nAn	1.8	8.6	1.6	8.6	1.8	8.6	1.3	8.6	1.6	8.6	ns
		nOE to nBn	1.7	10.9	1.7	9.9	1.6	8.7	1.2	6.9	1.0	6.9	ns
t _{en}	enable time	nOE to nAn	1.0	7.2	1.0	7.2	1.0	7.2	0.6	7.2	0.4	7.2	ns
		nOE to nBn	1.2	11.7	1.2	9.2	1.0	7.4	0.8	5.3	0.8	4.6	ns
V _{CC(A)} =	2.3 V to 2.7 V												
t _{pd}	propagation	nAn to nBn	0.1	8.4	0.1	5.7	0.1	4.6	0.2	3.5	0.1	3.6	ns
	delay	nBn to nAn	0.6	5.2	0.6	4.2	0.4	3.9	0.2	3.4	0.2	3.3	ns
t _{dis}	disable time	nOE to nAn	1.0	6.2	1.0	6.2	1.0	6.2	1.0	6.2	1.0	6.2	ns
		nOE to nBn	1.5	10.4	1.5	8.8	1.3	8.2	1.1	6.2	0.9	5.2	ns
t _{en}	enable time	nOE to nAn	0.7	4.8	0.7	4.8	0.7	4.8	0.6	4.8	0.4	4.8	ns
		nOE to nBn	0.9	11.3	0.9	8.8	0.8	7.0	0.6	4.8	0.6	4.0	ns
V _{CC(A)} =	3.0 V to 3.6 V			'		'				'		'	
t _{pd}	propagation	nAn to nBn	0.1	8.2	0.1	5.6	0.1	4.5	0.1	3.3	0.1	2.9	ns
	delay	nBn to nAn	0.6	5.1	0.6	4.2	0.4	3.4	0.2	3.0	0.1	2.8	ns
t _{dis}	disable time	n OE to nAn	0.7	5.6	0.7	5.6	0.7	5.6	0.7	5.6	0.7	5.6	ns
		n OE to nBn	1.4	10.2	1.4	9.3	1.2	8.1	1.0	6.4	0.8	6.2	ns
t _{en}	enable time	nOE to nAn	0.6	3.8	0.6	3.8	0.6	3.8	0.6	3.8	0.4	3.8	ns
		nOE to nBn	0.8	11.3	0.8	8.7	0.6	6.8	0.5	4.7	0.5	3.8	ns

^[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .

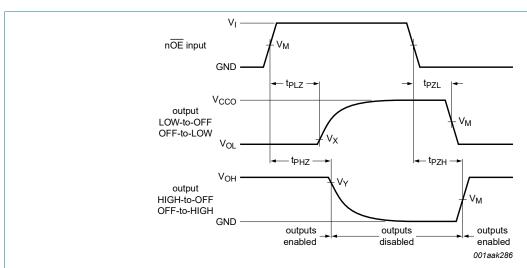
Table 14. Dynamic characteristics for temperature range -40 °C to +125 °C


Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 9; for waveforms see Fig. 7 and Fig. 8.[1]

Symbol	Parameter	Conditions					Vc	C(B)					Unit
			1.2 V	± 0.1 V	1.5 V	± 0.1 V		0.15 V	2.5 V	± 0.2 V	3.3 V	± 0.3 V	
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
V _{CC(A)} =	1.1 V to 1.3 V	1		-			1			-		-	
t _{pd}	propagation	nAn to nBn	0.5	10.4	0.5	7.9	0.5	6.9	0.5	5.8	0.5	5.7	ns
	delay	nBn to nAn	0.5	10.4	0.5	9.8	0.5	9.6	0.5	9.3	0.5	9.1	ns
t _{dis}	disable time	n OE to nAn	1.8	12.0	1.8	12.0	1.8	12.0	1.8	12.0	1.8	12.0	ns
		n OE to nBn	1.9	13.7	1.9	10.6	1.9	10.5	1.4	9.0	1.2	10.1	ns
t _{en}	enable time	n OE to nAn	1.4	14.1	1.4	14.1	1.4	14.1	1.4	14.1	1.4	14.1	ns
		nOE to nBn	1.1	14.7	1.1	11.0	1.1	9.8	1.0	8.7	1.0	8.5	ns
V _{CC(A)} =	1.4 V to 1.6 V			'	'	'	'	'	l	'	'	'	
t _{pd}	propagation	nAn to nBn	0.3	9.8	0.3	7.0	0.3	5.8	0.3	4.7	0.3	4.7	ns
	delay	nBn to nAn	0.7	7.9	0.7	7.0	0.5	6.6	0.4	6.3	0.3	6.2	ns
t _{dis} disable time	disable time	nOE to nAn	1.8	11.3	1.8	11.3	1.5	11.3	1.3	11.3	1.6	11.3	ns
		nOE to nBn	1.9	12.5	1.9	11.4	1.9	10.1	1.4	8.2	1.2	8.4	ns
t _{en}	enable time	n OE to nAn	1.1	10.4	1.4	10.4	1.1	10.4	0.7	10.4	0.4	10.4	ns
		nOE to nBn	1.4	13.3	1.4	10.6	1.1	8.5	0.9	6.4	0.9	6.2	ns
V _{CC(A)} =	1.65 V to 1.95	V				'							
t _{pd}	propagation	nAn to nBn	0.1	9.6	0.1	6.6	0.1	5.4	0.1	4.3	0.3	4.3	ns
	delay	nBn to nAn	0.6	6.9	0.6	5.9	0.5	5.4	0.3	5.1	0.3	5.0	ns
t _{dis}	disable time	nOE to nAn	1.8	9.5	1.6	9.5	1.8	9.5	1.3	9.5	1.6	9.5	ns
		nOE to nBn	1.7	12.0	1.7	10.9	1.6	9.6	1.2	7.6	1.0	7.6	ns
t _{en}	enable time	nOE to nAn	1.0	8.0	1.0	8.0	1.0	8.0	0.6	8.0	0.4	8.0	ns
		n OE to nBn	1.2	12.9	1.2	10.2	1.0	8.2	0.8	5.9	0.8	5.1	ns
V _{CC(A)} =	2.3 V to 2.7 V												
t _{pd}	propagation	nAn to nBn	0.1	9.3	0.1	6.3	0.1	5.1	0.2	4.0	0.1	4.0	ns
	delay	nBn to nAn	0.6	5.8	0.6	4.7	0.4	4.3	0.2	3.9	0.2	3.8	ns
t _{dis}	disable time	nOE to nAn	1.0	6.9	1.0	6.9	1.0	6.9	1.0	6.9	1.0	6.9	ns
		n OE to nBn	1.5	11.5	1.5	10.4	1.3	9.1	1.1	6.9	0.9	5.8	ns
t _{en}	enable time	n OE to nAn	0.7	5.3	0.7	5.3	0.7	5.3	0.6	5.3	0.4	5.3	ns
		nOE to nBn	0.9	12.4	0.9	9.7	0.8	7.7	0.6	5.3	0.6	4.4	ns
V _{CC(A)} =	3.0 V to 3.6 V				•	'	'			'			
t _{pd}	propagation	nAn to nBn	0.1	9.1	0.1	6.2	0.1	5.0	0.1	3.8	0.1	3.3	ns
	delay	nBn to nAn	0.6	5.7	0.6	4.7	0.4	3.9	0.2	3.4	0.1	3.3	ns
t _{dis}	disable time	nOE to nAn	0.7	6.2	0.7	6.2	0.7	6.2	0.7	6.2	0.7	6.2	ns
		n OE to nBn	1.4	11.3	1.4	10.3	1.2	9.0	1.0	7.1	0.8	6.9	ns
t _{en}	enable time	nOE to nAn	0.6	4.2	0.6	4.2	0.6	4.2	0.6	4.2	0.4	4.2	ns
		n OE to nBn	0.8	12.4	0.8	9.6	0.6	7.5	0.5	5.2	0.5	4.2	ns

^[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .

12 / 25


11.1. Waveforms and test circuit

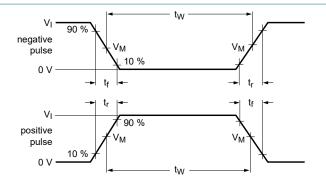
Measurement points are given in Table 15.

V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig. 7. The data input (nAn, nBn) to output (nBn, nAn) propagation delay times

Measurement points are given in <u>Table 15</u>.

 V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.


Fig. 8. Enable and disable times

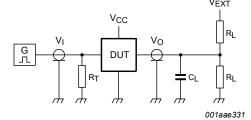

Table 15. Measurement points

Table Tel Incacal cilici	Table 181 medeal emeric								
Supply voltage	Input[1]	Output[2]	Output[2]						
V _{CC(A)} , V _{CC(B)}	V _M	V _M	V _X	V _Y					
0.8 V to 1.6 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.1 V	V _{OH} - 0.1 V					
1.65 V to 2.7 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.15 V	V _{OH} - 0.15 V					
3.0 V to 3.6 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.3 V	V _{OH} - 0.3 V					

^[1] V_{CCI} is the supply voltage associated with the data input port.

^[2] V_{CCO} is the supply voltage associated with the output port.

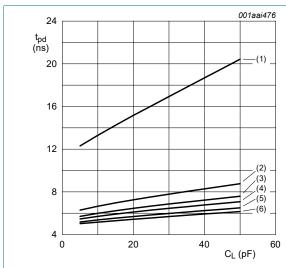
Test data is given in Table 16.

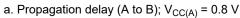
 R_L = Load resistance.

C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance.

V_{EXT} = External voltage for measuring switching times.

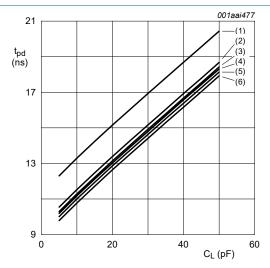

Fig. 9. Test circuit for measuring switching times


Table 16. Test data

Supply voltage	Input		Load		V _{EXT}			
$V_{CC(A)}, V_{CC(B)}$	V _I [1]	Δt/ΔV [2]	CL	R_L	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ} [3]	
0.8 V to 1.6 V	V _{CCI}	≤ 1.0 ns/V	15 pF	2 kΩ	open	GND	2V _{CCO}	
1.65 V to 2.7 V	V _{CCI}	≤ 1.0 ns/V	15 pF	2 kΩ	open	GND	2V _{CCO}	
3.0 V to 3.6 V	V _{CCI}	≤ 1.0 ns/V	15 pF	2 kΩ	open	GND	2V _{CCO}	

- [1] V_{CCI} is the supply voltage associated with the data input port.
- [2] dV/dt ≥ 1.0 V/ns
- [3] V_{CCO} is the supply voltage associated with the output port.

12. Typical propagation delay characteristics


(1)
$$V_{CC(B)} = 0.8 \text{ V}$$

(2)
$$V_{CC(B)} = 1.2 \text{ V}$$

(2)
$$V_{CC(B)} = 1.2 \text{ V}$$

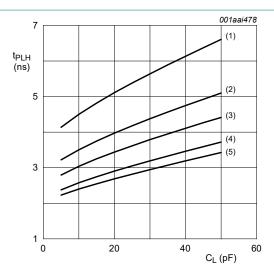
(3) $V_{CC(B)} = 1.5 \text{ V}$
(4) $V_{CC(B)} = 1.8 \text{ V}$
(5) $V_{CC(B)} = 2.5 \text{ V}$
(6) $V_{CC(B)} = 3.3 \text{ V}$

(5)
$$V_{CC(B)} = 2.5 V$$

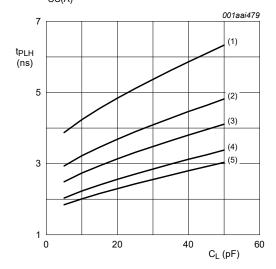
(6)
$$V_{CC(B)} = 3.3 \text{ V}$$

b. Propagation delay (A to B); $V_{CC(B)} = 0.8 \text{ V}$

(1)
$$V_{CC(A)} = 0.8 \text{ V}$$


(2)
$$V_{CC(A)} = 1.2 \text{ V}$$

(3)
$$V_{CC(A)} = 1.5 \text{ V}$$


(4)
$$V_{CC(A)} = 1.8 \text{ V}$$

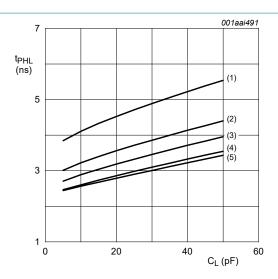
(1)
$$V_{CC(A)} = 1.2 \text{ V}$$

(2) $V_{CC(A)} = 1.5 \text{ V}$
(3) $V_{CC(A)} = 1.5 \text{ V}$
(4) $V_{CC(A)} = 1.8 \text{ V}$
(5) $V_{CC(A)} = 2.5 \text{ V}$
(6) $V_{CC(A)} = 3.3 \text{ V}$

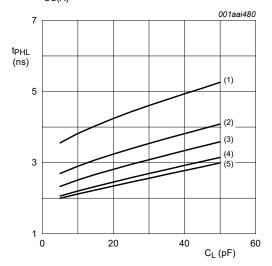
Fig. 10. Typical propagation delay versus load capacitance; T_{amb} = 25 °C

a. LOW to HIGH propagation delay (A to B); $V_{CC(A)} = 1.2 \text{ V}$

c. LOW to HIGH propagation delay (A to B); $V_{CC(A)} = 1.5 \text{ V}$

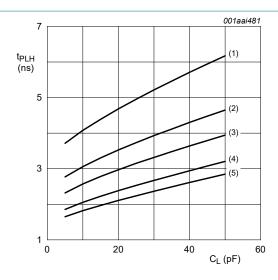

(1) $V_{CC(B)} = 1.2 \text{ V}$

(2) $V_{CC(B)} = 1.5 \text{ V}$

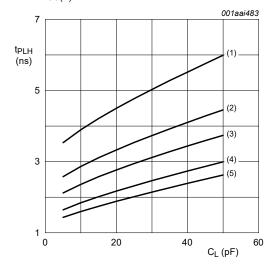

(3) $V_{CC(B)} = 1.8 \text{ V}$

(4) $V_{CC(B)} = 2.5 \text{ V}$

 $(5) V_{CC(B)} = 3.3 V$

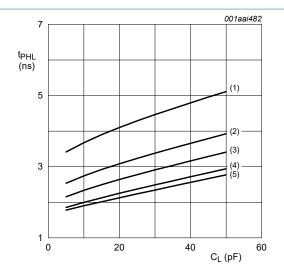


b. HIGH to LOW propagation delay (A to B); $V_{CC(A)} = 1.2 \text{ V}$



d. HIGH to LOW propagation delay (A to B); $V_{CC(A)} = 1.5 \text{ V}$

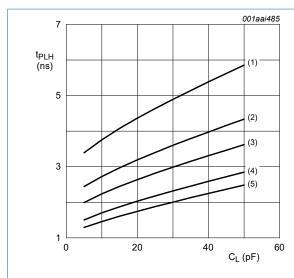
Fig. 11. Typical propagation delay versus load capacitance; T_{amb} = 25 °C



a. LOW to HIGH propagation delay (A to B); $V_{CC(A)} = 1.8 \text{ V}$

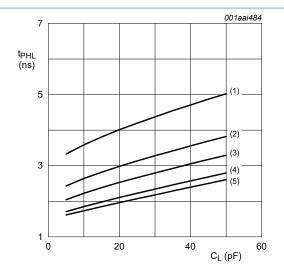
c. LOW to HIGH propagation delay (A to B); $V_{CC(A)} = 2.5 \text{ V}$

- (1) $V_{CC(B)} = 1.2 \text{ V}$
- (2) $V_{CC(B)} = 1.5 \text{ V}$
- (3) $V_{CC(B)} = 1.8 \text{ V}$
- (4) $V_{CC(B)} = 2.5 \text{ V}$
- $(5) V_{CC(B)} = 3.3 V$



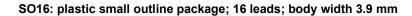
b. HIGH to LOW propagation delay (A to B); $V_{CC(A)} = 1.8 \text{ V}$

d. HIGH to LOW propagation delay (A to B); $V_{CC(A)} = 2.5 \text{ V}$



a. LOW to HIGH propagation delay (A to B);

 $V_{CC(A)} = 3.3 \text{ V}$


- (1) $V_{CC(B)} = 1.2 \text{ V}$
- (2) $V_{CC(B)} = 1.5 \text{ V}$
- (3) $V_{CC(B)} = 1.8 \text{ V}$
- (4) $V_{CC(B)} = 2.5 \text{ V}$
- (5) $V_{CC(B)} = 3.3 \text{ V}$

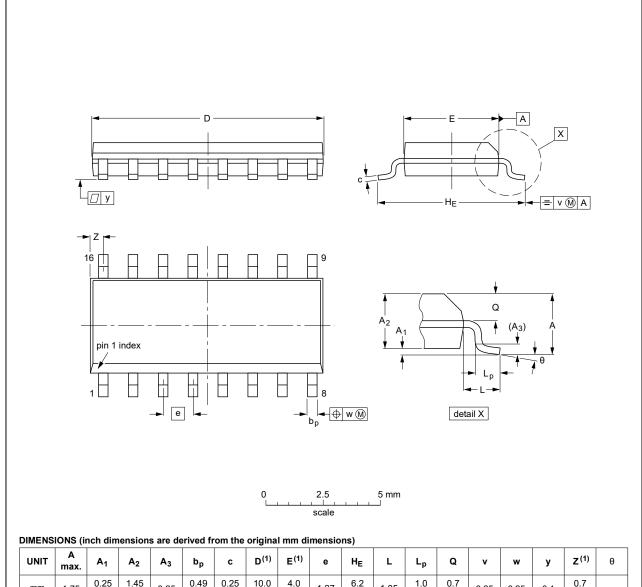

b. HIGH to LOW propagation delay (A to B); $V_{\text{CC(A)}}$ = 3.3 V

Fig. 13. Typical propagation delay versus load capacitance; T_{amb} = 25 °C

13. Package outline

SOT109-1

UNI	T A	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	٧	w	у	Z ⁽¹⁾	θ
mn	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	10.0 9.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inch	es 0.069	0.010 0.004	0.057 0.049	0.01	l	0.0100 0.0075	0.39 0.38	0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016	0.028 0.020	0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	133UE DATE	
SOT109-1	076E07	MS-012				99-12-27 03-02-19	

Fig. 14. Package outline SOT109-1 (SO16)

TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm

SOT403-1

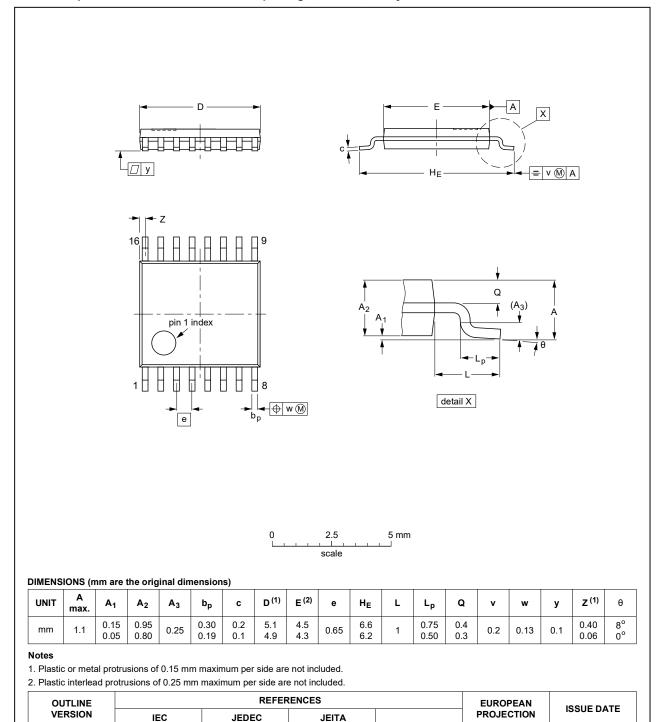


Fig. 15. Package outline SOT403-1 (TSSOP16)

MO-153

SOT403-1

99-12-27

03-02-18

DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body 2.5 x 3.5 x 0.85 mm SOT763-1

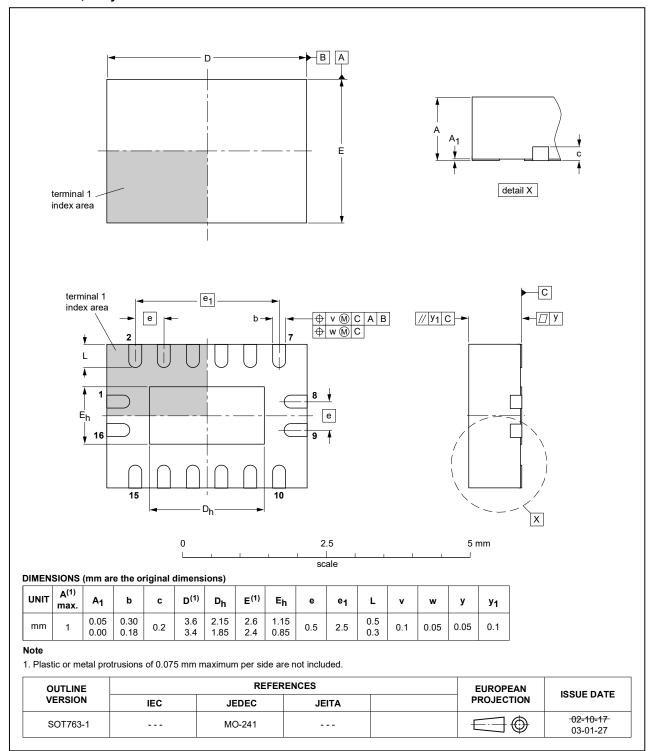


Fig. 16. Package outline SOT763-1 (DHVQFN16)

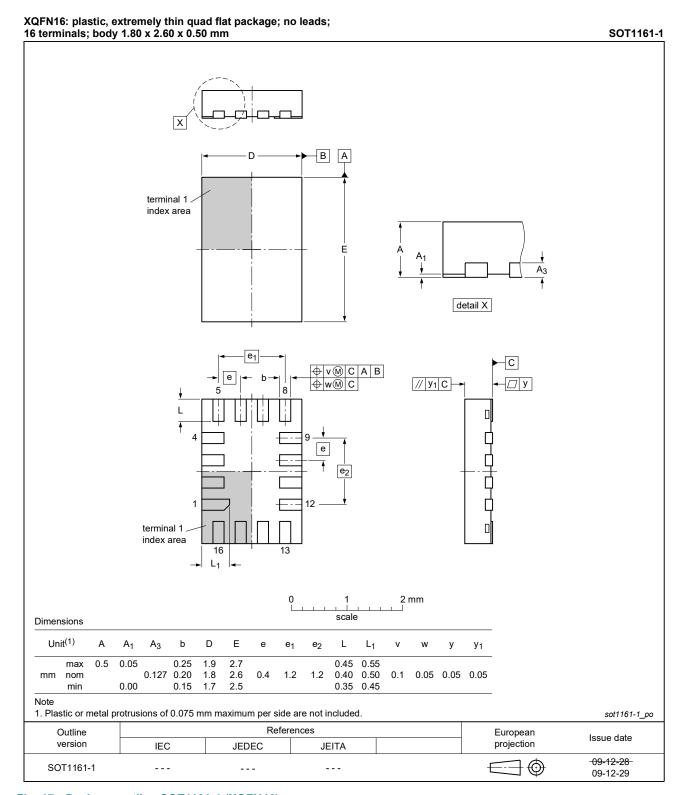


Fig. 17. Package outline SOT1161-1 (XQFN16)

14. Abbreviations

Table 17. Abbreviations

Acronym	Description
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MIL	Military
MM	Machine Model

15. Revision history

Table 18. Revision history

		_		_						
Document ID	Release date	Data sheet status	Change notice	Supersedes						
74AVC4T245_Q100 v.5	20200317	Product data sheet	-	74AVC4T245_Q100 v.4						
Modifications:	Section 2 up	Section 2 updated.								
74AVC4T245_Q100 v.4	20190613	Product data sheet	-	74AVC4T245_Q100 v.3						
Modifications:	 Type number 74AVC4T245GU-Q100 (SOT1161-1/XQFN16) added. Table 5: Derating values for total power dissipation (Ptot) have changed. 									
74AVC4T245_Q100 v.3	20190320	Product data sheet	-	74AVC4T245_Q100 v.2						
Modifications:	 The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia. Legal texts have been adapted to the new company name where appropriate. 									
74AVC4T245_Q100 v.2	20151207	Product data sheet	-	74AVC4T245_Q100 v.1						
Modifications:	<u>Table 5</u> : conditions I _{CC} and I _{GND} changed (errata).									
74AVC4T245_Q100 v.1	20130402	Product data sheet	-	-						

16. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or

equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Contents

1. General description	1
2. Features and benefits	1
3. Ordering information	2
4. Marking	2
5. Functional diagram	2
6. Pinning information	3
6.1. Pinning	3
6.2. Pin description	4
7. Functional description	5
8. Limiting values	5
9. Recommended operating conditions.	ε
10. Static characteristics	6
11. Dynamic characteristics	9
11.1. Waveforms and test circuit	13
12. Typical propagation delay character	stics15
13. Package outline	19
14. Abbreviations	
15. Revision history	23
16. Legal information	24
-	

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 17 March 2020

[©] Nexperia B.V. 2020. All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Translation - Voltage Levels category:

Click to view products by Nexperia manufacturer:

Other Similar products are found below:

NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT1G PCA9306FMUTAG MC100EPT622MNG NLSX3014MUTAG NLSX5011MUTCG NLVSX4373MUTAG NB3U23CMNTAG NLSX3013BFCT1G NLV7WBD3125USG NLSX3012DMR2G NLA9306MU3TCG PI4ULS3V304AZMAEX PI4ULS3V504AZMAEX 74AVCH1T45FW3-7 NLSX5011AMUTAG 74AXP1T34GWH ST2149BQTR MC100ELT21DR2G MC100LVELT22MNRG MC10ELT20DR2G MC10EPT20MNR4G MC14504BFELG NLSV4T3234FCT1G NLSX3378BFCT1G UM3208QA UM3208H UM3304 UM3304QT UM3202H UM3308 RS0104YTQE12 RS0204YUTQH12 AW39204QNR AW39114FOR RS0104YTQF14 RS0204YTQF14 UM3204QT UM3204QB UM3204QV AIPTS0104TA14.TR AIPTB0104TA14.TR UM3304QS SN74LXC2T45DCUR TCA39306DTMR NTS0102TL-Q100H AW39112DNR XP7660 RS4T774XTSS16