74AVC4T774

4-bit dual supply translating transceiver; 3-state Rev. 1 — 25 September 2017 Pr

Product data sheet

General description 1

The 74AVC4T774 is a 4-bit, dual supply transceiver that enables bidirectional level translation. It features eight 1-bit input-output ports (An and Bn), four direction control inputs (DIR1, DIR2, DIR3 and DIR4), an output enable input (OE) and dual supply pins $(V_{CC(A)})$ and $V_{CC(B)}$. Both $V_{CC(A)}$ and $V_{CC(B)}$ can be supplied at any voltage between 0.8 V and 3.6 V making the device suitable for translating between any of the low voltage nodes (0.8 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V and 3.3 V). Pins An, OE and DIRn are referenced to V_{CC(A)} and pins Bn are referenced to V_{CC(B)}. A HIGH on DIRn allows transmission from An to Bn and a LOW on DIRn allows transmission from Bn to An. The output enable input (\overline{OE}) can be used to disable the outputs so the buses are effectively isolated.

The device is fully specified for partial power-down applications using I_{OFF}. The I_{OFF} circuitry disables the output, preventing any damaging backflow current through the device when it is powered down. In suspend mode when either $V_{CC(A)}$ or $V_{CC(B)}$ are at GND level, both An and Bn are in the high-impedance OFF-state.

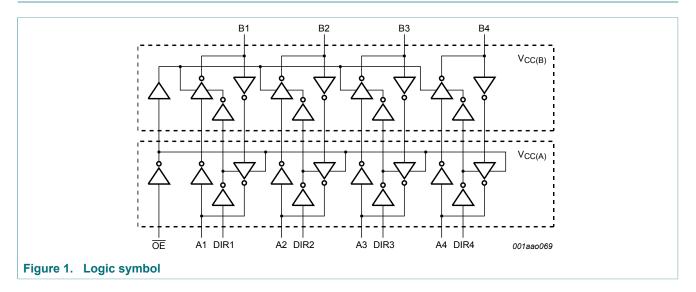
Features and benefits 2

- Wide supply voltage range:
 - V_{CC(A)}: 0.8 V to 3.6 V
 - V_{CC(B)}: 0.8 V to 3.6 V
- · Complies with JEDEC standards:
 - JESD8-12 (0.8 V to 1.3 V)
 - JESD8-11 (0.9 V to 1.65 V)
 - JESD8-7 (1.2 V to 1.95 V)
 - JESD8-5 (1.8 V to 2.7 V)
 - JESD8-B (2.7 V to 3.6 V)
- ESD protection:
 - HBM JESD22-A114E Class 3B exceeds 8000 V
 - CDM JESD22-C101C exceeds 1500 V
- Maximum data rates:
 - 380 Mbit/s (≥ 1.8 V to 3.3 V translation)
 - 200 Mbit/s (≥ 1.1 V to 3.3 V translation)
 - 200 Mbit/s (≥ 1.1 V to 2.5 V translation)
 - 200 Mbit/s (≥ 1.1 V to 1.8 V translation)
 - 150 Mbit/s (≥ 1.1 V to 1.5 V translation)
 - 100 Mbit/s (≥ 1.1 V to 1.2 V translation)
- Suspend mode
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- Inputs accept voltages up to 3.6 V
- I_{OFF} circuitry provides partial Power-down mode operation

Specified from -40 °C to +85 °C and -40 °C to +125 °C

3 Ordering information

Table 1. Ordering information


Type number	Package								
	Temperature range	Name	Description	Version					
74AVC4T774BQ	-40 °C to +125 °C	DHVQFN16	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body 2.5 x 3.5 x 0.85 mm	SOT763-1					
74AVC4T774GU	-40 °C to +125 °C	XQFN16	plastic, extremely thin quad flat package; no leads; 16 terminals; body 1.80 x 2.60 x 0.50 mm	SOT1161-1					

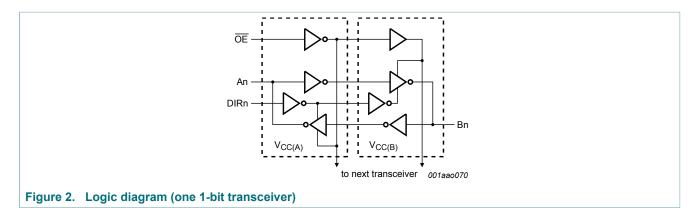
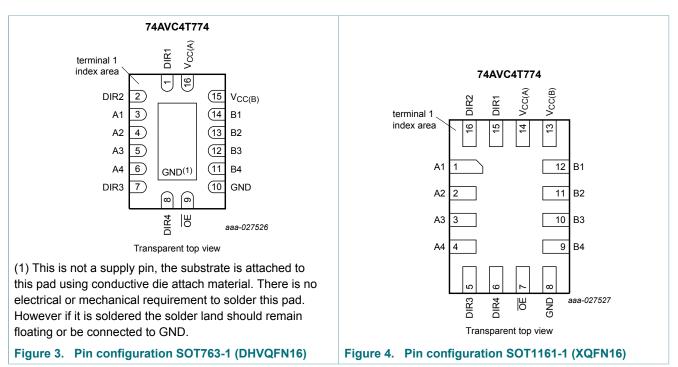

4 Marking

Table 2. Marking codes

Type number	Marking code
74AVC4T774BQ	C4T774
74AVC4T774GU	B77


5 Functional diagram

6 Pinning information

6.1 Pinning

6.2 Pin description

Table 3. Pin description

Symbol	Pin		Description
	SOT763-1	SOT1161-1	
V _{CC(A)}	16	14	supply voltage A (An, $\overline{\text{OE}}$ and DIRn inputs are referenced to $V_{\text{CC(A)}}$)
DIR1, DIR2, DIR3, DIR4	1, 2, 7, 8	15, 16, 5, 6	direction control input
A1, A2, A3, A4	3, 4, 5, 6	1, 2, 3, 4	data input or output
GND	10	8	ground (0 V)
B1, B2, B3, B4	14, 13, 12, 11	12, 11, 10, 9	data input or output
ŌE	9	7	output enable input (active LOW)
V _{CC(B)}	15	13	supply voltage B (Bn pins are referenced to $V_{\text{CC(B)}}$)

Functional description

Table 4. Function table [1] [2]

Supply voltage	Input					Input/output		
V _{CC(A)} , V _{CC(B)}	ŌĒ	DIR1	DIR2	DIR3	DIR4	An	Bn	
0.8 V to 3.6 V	L	L	Х	Х	Х	A1 = B1	input B1	
0.8 V to 3.6 V	L	Н	Х	Х	Х	input A1	B1 = A1	
0.8 V to 3.6 V	L	Х	L	Х	Х	A2 = B2	input B2	
0.8 V to 3.6 V	L	X	Н	Х	Х	input A2	B2 = A2	
0.8 V to 3.6 V	L	Х	Х	L	Х	A3 = B3	input B3	
0.8 V to 3.6 V	L	X	Х	Н	Х	input A3	B3 = A3	
0.8 V to 3.6 V	L	Х	Х	X	L	A4 = B4	input B4	
0.8 V to 3.6 V	L	Х	Х	X	Н	input A4	B4 = A4	
0.8 V to 3.6 V	Н	X	Х	Х	Х	Z	Z	
GND [3]	X	X	X	Х	Х	Z	Z	

 ^[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.
 [2] The An, DIRn and OE input circuit is referenced to V_{CC(A)}; The Bn input circuit is referenced to V_{CC(B)}.
 [3] If at least one of V_{CC(A)} or V_{CC(B)} is at GND level, the device goes into suspend mode.

Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC(A)}	supply voltage A			-0.5	+4.6	V
$V_{CC(B)}$	supply voltage B			-0.5	+4.6	V
I _{IK}	input clamping current	V _I < 0 V		-50	-	mA
VI	input voltage		[1]	-0.5	+4.6	V
I _{OK}	output clamping current	V _O < 0 V		-50	-	mA
V _O	output voltage	Active mode	[1] [2] [3]	-0.5	V _{CCO} + 0.5	V
		Suspend or 3-state mode	[1]	-0.5	+4.6	V
Io	output current	V _O = 0 V to V _{CCO}	[2]	-	±50	mA
I _{CC}	supply current	I _{CC(A)} or I _{CC(B)}		-	100	mA
I_{GND}	ground current			-100	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	T _{amb} = -40 °C to +125 °C				
		DHVQFN16	[4]	-	500	mW
		XQFN16		-	250	mW

 ^[1] The minimum input voltage ratings and output voltage ratings may be exceeded if the input and output current ratings are observed.
 [2] V_{CCO} is the supply voltage associated with the output port.
 [3] V_{CCO} + 0.5 V should not exceed 4.6 V.
 [4] For DHVQFN16 package: above 60 °C the value of P_{tot} derates linearly at 4.5 mW/K.

Recommended operating conditions 9

Table 6. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC(A)}	supply voltage A		0.8	3.6	V
V _{CC(B)}	supply voltage B		0.8	3.6	V
VI	input voltage		0	3.6	V
Vo	output voltage	Active mode	0	V _{CCO}	V
		Suspend or 3-state mode	0	3.6	V
T _{amb}	ambient temperature		-40	+125	°C
Δt/ΔV	input transition rise and fall rate	V _{CCI} =0.8 V to 3.6 V	-	10	ns/V

V_{CCO} is the supply voltage associated with the output port.
 V_{CCI} is the supply voltage associated with the input port.

10 Static characteristics

Table 7. Typical static characteristics at T_{amb} = 25 °C ^{[1] [2]}

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL}				
	output voltage	I_{O} = -1.5 mA; $V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V}$	-	0.69	-	V
V_{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL}				
	output voltage	$I_O = 1.5 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V}$	-	0.07	-	V
I _I	input leakage current	DIRn, \overline{OE} input; $V_I = 0 \text{ V or } 3.6 \text{ V}$; $V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V}$	-	±0.025	±0.25	μΑ
l _{OZ}	OFF-state output current	A or B port; $V_O = 0 \text{ V or } V_{CCO}$; $V_{CC(A)} = V_{CC(B)} = 3.6 \text{ V}$ [3]	-	±0.5	±2.5	μΑ
		suspend mode A port; $V_O = 0 \text{ V or } V_{CCO}; V_{CC(A)} = 3.6 \text{ V};$ $V_{CC(B)} = 0 \text{ V}$	-	±0.5	±2.5	μΑ
		suspend mode B port; $V_O = 0 \text{ V or } V_{CCO}; V_{CC(A)} = 0 \text{ V};$ $V_{CC(B)} = 3.6 \text{ V}$	-	±0.5	±2.5	μΑ
I _{OFF}	power-off leakage	A port; V_1 or V_0 = 0 V to 3.6 V; $V_{CC(A)}$ = 0 V; $V_{CC(B)}$ = 0.8 V to 3.6 V	-	±0.1	±1	μΑ
	current	B port; V_1 or V_0 = 0 V to 3.6 V; $V_{CC(B)}$ = 0 V; $V_{CC(A)}$ = 0.8 V to 3.6 V	-	±0.1	±1	μΑ
Cı	input capacitance	DIRn, \overline{OE} input; $V_I = 0 \text{ V or } 3.3 \text{ V; } V_{CC(A)} = V_{CC(B)} = 3.3 \text{ V}$	-	2.0	-	pF
C _{I/O}	input/output capacitance	A and B port; V_O = 3.3 V or 0 V; $V_{CC(A)}$ = $V_{CC(B)}$ = 3.3 V	-	4.0	-	pF

V_{CCO} is the supply voltage associated with the output port.
 V_{CCI} is the supply voltage associated with the data input port.
 For I/O ports, the parameter I_{OZ} includes the input leakage current.

Table 8. Static characteristics [1] [2]

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40 °C to	o +85 °C	-40 °C to	Unit	
			Min	Max	Min	Max	
V _{IH}	HIGH-level	data input					
	input voltage	V _{CCI} = 0.8 V	0.70V _{CCI}	-	0.70V _{CCI}	-	V
		V _{CCI} = 1.1 V to 1.95 V	0.65V _{CCI}	-	0.65V _{CCI}	-	V
		V _{CCI} = 2.3 V to 2.7 V	1.6	-	1.6	-	٧
		V _{CCI} = 3.0 V to 3.6 V	2	-	2	-	V
		DIRn, OE input					
		V _{CC(A)} = 0.8 V	0.70V _{CC(A)}	-	0.70V _{CC(A)}	-	V
		V _{CC(A)} = 1.1 V to 1.95 V	0.65V _{CC(A)}	-	0.65V _{CC(A)}	-	V
		V _{CC(A)} = 2.3 V to 2.7 V	1.6	_	1.6	-	V
		V _{CC(A)} = 3.0 V to 3.6 V	2	_	2	-	V
V _{IL}	LOW-level	data input					
	input voltage	V _{CCI} = 0.8 V	-	0.30V _{CCI}	-	0.30V _{CCI}	V
		V _{CCI} = 1.1 V to 1.95 V	-	0.35V _{CCI}	-	0.35V _{CCI}	V
		V _{CCI} = 2.3 V to 2.7 V	-	0.7	-	0.7	V
		V _{CCI} = 3.0 V to 3.6 V	-	0.8	-	0.8	V
		DIRn, OE input					
		V _{CC(A)} = 0.8 V	-	0.30V _{CC(A)}	-	0.30V _{CC(A)}	V
		V _{CC(A)} = 1.1 V to 1.95 V	-	0.35V _{CC(A)}	-	0.35V _{CC(A)}	
		V _{CC(A)} = 2.3 V to 2.7 V	-	0.7	-	0.7	V
		V _{CC(A)} = 3.0 V to 3.6 V	-	0.8	-	0.8	V
V _{OH}	HIGH-level	V _I = V _{IH} or V _{IL}					
	output voltage	I_{O} = -100 µA; $V_{CC(A)}$ = $V_{CC(B)}$ = 0.8 V to 3.6 V	V _{CCO} - 0.1	-	V _{CCO} - 0.1	-	V
		I_{O} = -3 mA; $V_{CC(A)}$ = $V_{CC(B)}$ = 1.1 V	0.85	-	0.85	-	V
		I _O = -6 mA; V _{CC(A)} = V _{CC(B)} = 1.4 V	1.05	-	1.05	-	V
		I _O = -8 mA; V _{CC(A)} = V _{CC(B)} = 1.65 V	1.2	-	1.2	-	V
		I_{O} = -9 mA; $V_{CC(A)}$ = $V_{CC(B)}$ = 2.3 V	1.75	-	1.75	-	V
		I_{O} = -12 mA; $V_{CC(A)} = V_{CC(B)} = 3.0 \text{ V}$	2.3	-	2.3	-	V

Symbol	Parameter	Conditions		-40 °C t	o +85 °C	-40 °C to	+125 °C	Unit
				Min	Max	Min	Max	
V _{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL}						
	output voltage	$I_O = 100 \mu A;$ $V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V}$		-	0.1	-	0.1	V
		$I_O = 3 \text{ mA};$ $V_{CC(A)} = V_{CC(B)} = 1.1 \text{ V}$		-	0.25	-	0.25	V
		$I_{O} = 6 \text{ mA};$ $V_{CC(A)} = V_{CC(B)} = 1.4 \text{ V}$		-	0.35	-	0.35	V
		$I_{O} = 8 \text{ mA};$ $V_{CC(A)} = V_{CC(B)} = 1.65 \text{ V}$		-	0.45	-	0.45	V
		$I_O = 9 \text{ mA};$ $V_{CC(A)} = V_{CC(B)} = 2.3 \text{ V}$		-	0.55	-	0.55	V
		$I_O = 12 \text{ mA};$ $V_{CC(A)} = V_{CC(B)} = 3.0 \text{ V}$		-	0.7	-	0.7	V
I _I	input leakage current	DIRn, \overline{OE} input; V _I = 0 V or 3.6 V; V _{CC(A)} = V _{CC(B)} = 0.8 V to 3.6 V		-	±1	-	±5	μΑ
I _{OZ}	OFF-state output current	A or B port; $V_O = 0 \text{ V or } V_{CCO}$; $V_{CC(A)} = V_{CC(B)} = 3.6 \text{ V}$	[3]	-	±5	-	±30	μΑ
		suspend mode A port; $V_O = 0 \text{ V or}$ V_{CCO} ; $V_{CC(A)} = 3.6 \text{ V}$; $V_{CC(B)} = 0 \text{ V}$	[3]	-	±5	-	±30	μΑ
		suspend mode B port; $V_O = 0 \text{ V or}$ V_{CCO} ; $V_{CC(A)} = 0 \text{ V}$; $V_{CC(B)} = 3.6 \text{ V}$	[3]	-	±5	-	±30	μΑ
I _{OFF}	power-off leakage	A port; V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC(A)} = 0$ V; $V_{CC(B)} = 0.8$ V to 3.6 V		-	±5	-	±30	μΑ
	current	B port; V_1 or V_0 = 0 V to 3.6 V; $V_{CC(B)}$ = 0 V; $V_{CC(A)}$ = 0.8 V to 3.6 V		-	±5	-	±30	μΑ

Symbol	Parameter	Conditions	-40 °C t	o +85 °C	-40 °C to	+125 °C	Unit
			Min	Max	Min	Max	
I _{CC}	supply current	A port; $V_I = 0 \text{ V or } V_{CCI}$; $I_O = 0 \text{ A}$					
		$V_{CC(A)} = 0.8 \text{ V to } 3.6 \text{ V};$ $V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V}$	-	10	-	55	μA
		$V_{CC(A)} = 1.1 \text{ V to } 3.6 \text{ V};$ $V_{CC(B)} = 1.1 \text{ V to } 3.6 \text{ V}$	-	8	-	50	μA
		V _{CC(A)} = 3.6 V; V _{CC(B)} = 0 V	-	8	-	50	μΑ
		V _{CC(A)} = 0 V; V _{CC(B)} = 3.6 V	-2	-	-12	-	μΑ
		B port; $V_I = 0 \text{ V or } V_{CCI}$; $I_O = 0 \text{ A}$					
		$V_{CC(A)} = 0.8 \text{ V to } 3.6 \text{ V};$ $V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V}$	-	10	-	55	μA
		$V_{CC(A)} = 1.1 \text{ V to } 3.6 \text{ V};$ $V_{CC(B)} = 1.1 \text{ V to } 3.6 \text{ V}$	-	8	-	50	μA
		V _{CC(A)} = 3.6 V; V _{CC(B)} = 0 V	-2	-	-12	-	μΑ
		V _{CC(A)} = 0 V; V _{CC(B)} = 3.6 V	-	8	-	50	μΑ
		A plus B port ($I_{CC(A)} + I_{CC(B)}$); $I_O = 0$ A; $V_I = 0$ V or V_{CCI} ; $V_{CC(A)} = 0.8$ V to 3.6 V; $V_{CC(B)} = 0.8$ V to 3.6 V	-	20	-	70	μА
		A plus B port ($I_{CC(A)} + I_{CC(B)}$); $I_O = 0$ A; $V_I = 0$ V or V_{CCI} ; $V_{CC(A)} = 1.1$ V to 3.6 V; $V_{CC(B)} = 1.1$ V to 3.6 V	-	16	-	65	μΑ
ΔI _{CC}	additional supply current	$V_1 = 3.0 \text{ V}; V_{CC(A)} = V_{CC(B)} = 3.6 \text{ V}$	-	500	-	650	μA

V_{CCO} is the supply voltage associated with the output port.
 V_{CCI} is the supply voltage associated with the data input port.
 For I/O ports, the parameter I_{OZ} includes the input leakage current.

Table 9. Typical total supply current (I _{CC(A)} + I _{CC(B)})									
V _{CC(A)}	$V_{CC(B)}$	V _{CC(B)}							
	0 V	0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V		
0 V	0	0.1	0.1	0.1	0.1	0.1	0.1	μΑ	
0.8 V	0.1	0.1	0.1	0.1	0.1	0.3	1.6	μΑ	
1.2 V	0.1	0.1	0.1	0.1	0.1	0.1	0.8	μΑ	
1.5 V	0.1	0.1	0.1	0.1	0.1	0.1	0.4	μΑ	
1.8 V	0.1	0.1	0.1	0.1	0.1	0.1	0.2	μΑ	
2.5 V	0.1	0.3	0.1	0.1	0.1	0.1	0.1	μΑ	
3.3 V	0.1	1.6	0.8	0.4	0.2	0.1	0.1	μA	

11 Dynamic characteristics

Table 10. Typical power dissipation capacitance at $V_{CC(A)} = V_{CC(B)}$ and $T_{amb} = 25 \, ^{\circ}C^{[1][2]}$

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions			V _{CC(A)} =	= V _{CC(B)}			Unit
			0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	
C_{PD}	power dissipation capacitance	A port: (direction An to Bn); output enabled	0.2	0.2	0.2	0.2	0.3	0.4	pF
		A port: (direction An to Bn); output disabled	0.2	0.2	0.2	0.2	0.3	0.4	pF
		A port: (direction Bn to An); output enabled	9.5	9.7	9.8	9.9	10.7	11.9	pF
		A port: (direction Bn to An); output disabled	0.6	0.6	0.6	0.6	0.7	0.7	pF
		B port: (direction An to Bn); output enabled	9.5	9.7	9.8	9.9	10.7	11.9	pF
		B port: (direction An to Bn); output disabled	0.6	0.6	0.6	0.6	0.7	0.7	pF
		B port: (direction Bn to An); output enabled	0.2	0.2	0.2	0.2	0.3	0.4	pF
		B port: (direction Bn to An); output disabled	0.2	0.2	0.2	0.2	0.3	0.4	pF

^[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times {V_{CC}}^2 \times f_i \times N + \Sigma (C_L \times {V_{CC}}^2 \times f_o)$ where: f_i = input frequency in MHz;

f_o = output frequency in MHz;

C_L = load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching; $\Sigma(C_L \times V_{CC}^2 \times f_0) = \text{sum of the outputs.}$ [2] $f_i = 10 \text{ MHz}$; $V_i = GND \text{ to } V_{CC}$; $f_r = f_f = 1 \text{ ns}$; $C_L = 0 \text{ pF}$; $R_L = \infty \Omega$.

Table 11. Typical dynamic characteristics at $V_{CC(A)} = 0.8 \text{ V}$ and $T_{amb} = 25 \, ^{\circ}\text{C}^{[1]}$

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7; for waveforms see Figure 5 and Figure 6

Symbol	Parameter	Conditions	V _{CC(B)}							
			0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V		
t _{pd}	propagation delay	An to Bn	14.5	7.3	6.5	6.2	5.9	6.0	ns	
		Bn to An	14.5	12.7	12.4	12.3	12.1	12.0	ns	
t _{dis}	disable time	OE to An	14.3	14.3	14.3	14.3	14.3	14.3	ns	
		OE to Bn	17.0	9.9	9.0	9.4	9.0	9.7	ns	
t _{en}	enable time	OE to An	18.2	18.2	18.2	18.2	18.2	18.2	ns	
		OE to Bn	19.2	10.7	9.8	9.6	9.7	10.2	ns	

^[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .

Table 12. Typical dynamic characteristics at $V_{CC(B)}$ = 0.8 V and T_{amb} = 25 °C $^{[1]}$

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7; for waveforms see Figure 5 and Figure 6

Symbol	Parameter	Conditions	V _{CC(A)}							
			0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V		
t _{pd}	propagation delay	An to Bn	14.5	12.7	12.4	12.3	12.1	12.0	ns	
		Bn to An	14.5	7.3	6.5	6.2	5.9	6.0	ns	
t _{dis}	disable time	OE to An	14.3	5.5	4.1	4.0	3.0	3.5	ns	
		OE to Bn	17.0	13.8	13.4	13.1	12.9	12.7	ns	
t _{en}	enable time	OE to An	18.2	5.6	4.0	3.2	2.4	2.2	ns	
		OE to Bn	19.2	14.6	14.1	13.9	13.7	13.6	ns	

^[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .

Table 13. Dynamic characteristics for temperature range -40 °C to +85 °C $^{[1]}$

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7; for waveforms see Figure 5 and Figure 6

Symbol	Parameter	Conditions					Vc	C(B)					Unit
			1.2 V	±0.1 V	1.5 V	±0.1 V	1.8 V ±	±0.15 V	2.5 V	±0.2 V	3.3 V	±0.3 V	
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
V _{CC(A)} =	1.1 V to 1.3 V			'					,				
t _{pd}	propagation	An to Bn	2.0	10.5	1.3	7.8	1.2	6.9	1.0	5.9	0.8	5.7	ns
	delay	Bn to An	2.0	10.5	1.5	9.9	1.5	9.7	1.4	9.4	1.4	9.3	ns
t _{dis}	disable time	OE to An	2.0	10.0	2.0	10.0	2.0	10.0	2.0	10.0	2.0	10.0	ns
		OE to Bn	2.0	11.1	2.0	8.6	1.0	8.0	0.7	7.0	1.0	8.0	ns
t _{en}	enable time	OE to An	2.0	13.5	2.0	13.5	2.0	13.5	2.0	13.5	2.0	13.5	ns
		OE to Bn	2.0	15.0	2.0	11.0	2.0	9.4	1.0	7.8	1.0	7.4	ns
V _{CC(A)} =	1.4 V to 1.6 V	'		'		·		'	,	<u> </u>	'		
t_{pd}	propagation	An to Bn	1.5	9.9	1.0	7.1	1.0	6.0	0.5	4.8	0.5	4.3	ns
	delay	Bn to An	1.3	7.8	1.0	7.1	0.9	6.9	0.8	6.6	0.6	6.5	ns
t _{dis}	disable time	OE to An	1.0	6.0	1.0	6.0	1.0	6.0	1.0	6.0	1.0	6.0	ns
		OE to Bn	2.0	10.2	1.5	7.5	0.9	7.2	0.4	6.2	0.4	6.1	ns
t _{en}	enable time	OE to An	1.0	7.5	1.0	7.5	1.0	7.5	1.0	7.5	1.0	7.5	ns
		OE to Bn	2.0	14.4	1.4	7.9	1.3	7.7	1.1	6.4	1.1	5.6	ns
V _{CC(A)} =	1.65 V to 1.95	V		-		·	1	'	,	<u> </u>	'		
t _{pd}	propagation	An to Bn	1.5	9.7	0.9	6.9	8.0	5.7	0.5	4.5	0.3	4.0	ns
	delay	Bn to An	1.2	6.9	1.0	6.0	8.0	5.7	0.5	5.5	0.5	5.3	ns
t _{dis}	disable time	OE to An	0.5	5.7	0.5	5.7	0.5	5.7	0.5	5.7	0.5	5.7	ns
		OE to Bn	2.0	9.9	1.5	7.0	8.0	6.9	0.2	5.8	0.2	5.9	ns
t _{en}	enable time	OE to An	1.0	6.7	1.0	6.7	1.0	6.7	1.0	6.7	1.0	6.7	ns
		OE to Bn	1.5	13.9	1.2	7.2	1.2	6.9	0.8	5.4	0.6	5.0	ns
V _{CC(A)} =	2.3 V to 2.7 V		1			_				·		1	
t _{pd}	propagation	An to Bn	1.4	9.4	0.8	6.6	0.5	5.5	0.4	4.2	0.2	3.7	ns
	delay	Bn to An	1.0	5.9	0.5	4.8	0.5	4.5	0.4	4.2	0.3	3.9	ns
t _{dis}	disable time	OE to An	0.2	4.0	0.2	4.0	0.2	4.0	0.2	4.0	0.2	4.0	ns
		OE to Bn	2.0	9.3	1.5	6.7	0.7	6.3	0.2	5.0	0.2	5.7	ns
t _{en}	enable time	OE to An	0.6	4.5	0.6	4.5	0.6	4.5	0.6	4.5	0.6	4.5	ns
		OE to Bn	1.5	13.6	1.0	6.8	1.0	6.0	0.8	4.6	0.6	4.2	ns

Symbol	Parameter	r Conditions					Vc	C(B)					Unit
			1.2 V ±0.1 V		1.5 V	1.5 V ±0.1 V		1.8 V ±0.15 V		±0.2 V	3.3 V ±0.3 V		
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
V _{CC(A)} = :	3.0 V to 3.6 V			-	-		1	-	<u> </u>		1	-	
t _{pd}	propagation delay	An to Bn	1.4	9.3	0.6	6.5	0.5	5.3	0.3	3.9	0.2	3.5	ns
		delay	Bn to An	0.8	5.7	0.5	4.3	0.3	4.0	0.2	3.7	0.2	3.5
t _{dis}	disable time	OE to An	0.2	4.5	0.2	4.5	0.2	4.5	0.2	4.5	0.2	4.5	ns
		OE to Bn	2.0	9.0	1.5	6.4	0.7	6.1	0.2	4.8	0.2	5.6	ns
t _{en} 6	enable time	OE to An	0.5	4.0	0.5	4.0	0.5	4.0	0.5	4.0	0.5	4.0	ns
		OE to Bn	1.5	13.4	1.0	6.7	1.0	5.9	0.7	4.4	0.5	4.0	ns

^[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .

Table 14. Dynamic characteristics for temperature range -40 °C to +125 °C ^[1]

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7; for waveforms see Figure 5 and Figure 6

Symbol	Parameter	Conditions	_				Vc	C(B)					Unit
			1.2 V	±0.1 V	1.5 V	±0.1 V	1.8 V ±	±0.15 V	2.5 V	±0.2 V	3.3 V	±0.3 V	
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
V _{CC(A)} =	1.1 V to 1.3 V			-	-		1						
t _{pd}	propagation	An to Bn	2.0	12.1	1.3	9.0	1.2	8.0	1.0	6.8	8.0	6.6	ns
	delay	Bn to An	2.0	12.1	1.5	11.4	1.5	11.2	1.4	10.9	1.4	10.7	ns
t _{dis}	disable time	OE to An	2.0	11.5	2.0	11.5	2.0	11.5	2.0	11.5	2.0	11.5	ns
		OE to Bn	2.0	12.8	2.0	9.9	1.0	9.2	0.7	8.1	1.0	9.2	ns
t _{en} ena	enable time	OE to An	2.0	15.6	2.0	15.6	2.0	15.6	2.0	15.6	2.0	15.6	ns
		OE to Bn	2.0	17.3	2.0	12.7	2.0	10.9	1.0	9.0	1.0	8.6	ns
V _{CC(A)} =	1.4 V to 1.6 V			'					'	'		1	
t _{pd}	propagation	An to Bn	1.5	11.4	1.0	8.2	1.0	6.9	0.5	5.6	0.5	5.0	ns
	delay	Bn to An	1.3	9.0	1.0	8.2	0.9	8.0	0.8	7.6	0.6	7.5	ns
t _{dis}	disable time	OE to An	1.0	6.9	1.0	6.9	1.0	6.9	1.0	6.9	1.0	6.9	ns
		OE to Bn	2.0	11.8	1.5	8.7	0.9	8.3	0.4	7.2	0.4	7.1	ns
t _{en}	enable time	OE to An	1.0	8.7	1.0	8.7	1.0	8.7	1.0	8.7	1.0	8.7	ns
		OE to Bn	2.0	16.6	1.4	9.1	1.3	8.9	1.1	7.4	1.1	6.5	ns

Symbol	Parameter	Conditions					Vc	C(B)					Unit
			1.2 V	±0.1 V	1.5 V	±0.1 V	1.8 V ±	±0.15 V	2.5 V	±0.2 V	3.3 V	±0.3 V	
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
V _{CC(A)} =	1.65 V to 1.95	V		-	J				,		·	'	
t _{pd}	propagation	An to Bn	1.5	11.2	0.9	8.0	8.0	6.6	0.5	5.2	0.3	4.6	ns
	delay	Bn to An	1.2	8.0	1.0	6.9	0.8	6.6	0.5	6.4	0.5	6.1	ns
t _{dis}	disable time	OE to An	0.5	6.6	0.5	6.6	0.5	6.6	0.5	6.6	0.5	6.6	ns
		OE to Bn	2.0	11.4	1.5	8.1	8.0	8.0	0.2	6.7	0.2	6.8	ns
t _{en}	enable time	OE to An	1.0	7.8	1.0	7.8	1.0	7.8	1.0	7.8	1.0	7.8	ns
		OE to Bn	1.5	16.0	1.2	8.3	1.2	8.0	0.8	6.3	0.6	5.8	ns
V _{CC(A)} =	2.3 V to 2.7 V								·	<u> </u>	'		
t _{pd}	propagation	An to Bn	1.4	10.9	8.0	7.6	0.5	6.4	0.4	4.9	0.2	4.3	ns
	delay	Bn to An	1.0	6.8	0.5	5.6	0.5	5.2	0.4	4.9	0.3	4.5	ns
t _{dis}	disable time	OE to An	0.2	4.6	0.2	4.6	0.2	4.6	0.2	4.6	0.2	4.6	ns
		OE to Bn	2.0	10.7	1.5	7.8	0.7	7.3	0.2	5.8	0.2	6.6	ns
t _{en}	enable time	OE to An	0.6	5.2	0.6	5.2	0.6	5.2	0.6	5.2	0.6	5.2	ns
		OE to Bn	1.5	15.7	1.0	7.9	1.0	6.9	0.8	5.3	0.6	4.9	ns
V _{CC(A)} =	3.0 V to 3.6 V		1		I						1		
t _{pd}	propagation	An to Bn	1.4	10.7	0.6	7.5	0.5	6.1	0.3	4.5	0.2	4.1	ns
	delay	Bn to An	0.8	6.6	0.5	5.0	0.3	4.6	0.2	4.3	0.2	4.1	ns
t _{dis}	disable time	OE to An	0.2	5.2	0.2	5.2	0.2	5.2	0.2	5.2	0.2	5.2	ns
		OE to Bn	2.0	10.4	1.5	7.4	0.7	7.1	0.2	5.6	0.2	6.5	ns
t _{en}	enable time	OE to An	0.5	4.6	0.5	4.6	0.5	4.6	0.5	4.6	0.5	4.6	ns
-CII		OE to Bn	1.5	15.5	1.0	7.8	1.0	6.8	0.7	5.1	0.5	4.6	ns
	1		The second second	1		1	I control of the cont	1	1	1	1	T. Control of the Con	1

^[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .

11.1 Waveforms and test circuit

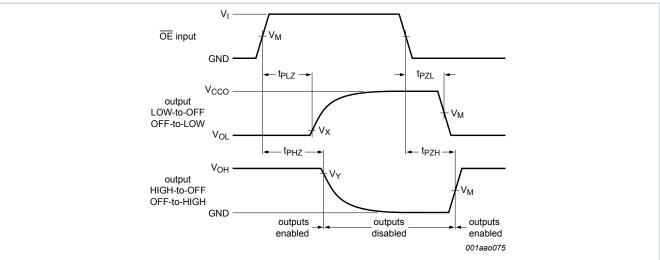


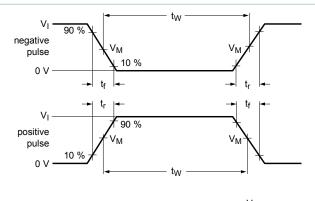
Figure 5. The data input (An, Bn) to output (Bn, An) propagation delay times

74AVC4T774

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserved.

Measurement points are given in Table 15.


 V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

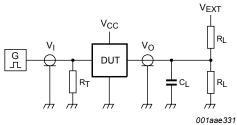

Figure 6. Enable and disable times

Table 15. Measurement points

	pointe								
Supply voltage	Input ^[1]	Output [2]	Output ^[2]						
V _{CC(A)} , V _{CC(B)}	V _M	V _M	V _X	V _Y					
0.8 V to 1.6 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.1 V	V _{OH} - 0.1 V					
1.65 V to 2.7 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.15 V	V _{OH} - 0.15 V					
3.0 V to 3.6 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.3 V	V _{OH} - 0.3 V					

 $[\]begin{tabular}{ll} [1] & V_{CCI} is the supply voltage associated with the data input port. \\ [2] & V_{CCO} is the supply voltage associated with the output port. \\ \end{tabular}$

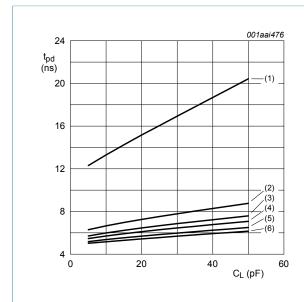
Test data is given in Table 16.

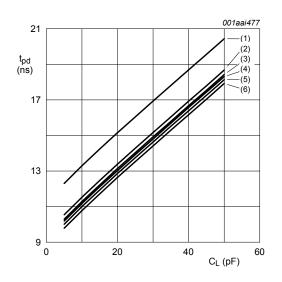
R_L = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to the output impedance Z_0 of the pulse generator.

 V_{EXT} = External voltage for measuring switching times.

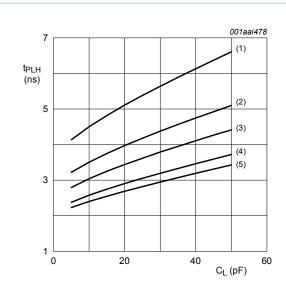

Figure 7. Test circuit for measuring switching times

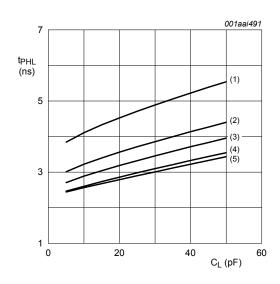

Table 16. Test data

Supply voltage	Input		Load		V _{EXT}			
$V_{CC(A)}, V_{CC(B)}$	V _I ^[1]	Δt/ΔV ^[2]	CL	R _L	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t_{PZL}, t_{PLZ} [3]	
0.8 V to 1.6 V	V _{CCI}	≤ 1.0 ns/V	15 pF	2 kΩ	open	GND	2V _{CCO}	
1.65 V to 2.7 V	V _{CCI}	≤ 1.0 ns/V	15 pF	2 kΩ	open	GND	2V _{CCO}	
3.0 V to 3.6 V	V _{CCI}	≤ 1.0 ns/V	15 pF	2 kΩ	open	GND	2V _{CCO}	

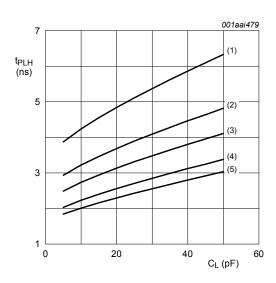
 ^[1] V_{CCI} is the supply voltage associated with the data input port.
 [2] dV/dt ≥ 1.0 V/ns
 [3] V_{CCO} is the supply voltage associated with the output port.

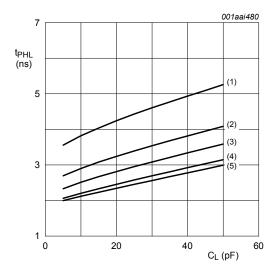
11.2 Typical propagation delay characteristics



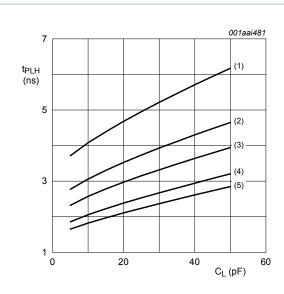


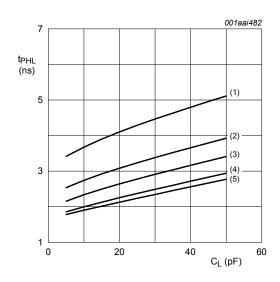
- a. Propagation delay (A to B); $V_{CC(A)} = 0.8 \text{ V}$
- (1) $V_{CC(B)} = 0.8 \text{ V}$
- (2) $V_{CC(B)} = 1.2 \text{ V}$
- (3) $V_{CC(B)} = 1.5 \text{ V}$
- (4) $V_{CC(B)} = 1.8 \text{ V}$
- $(5) V_{CC(B)} = 2.5 V$
- (6) $V_{CC(B)} = 3.3 \text{ V}$


- b. Propagation delay (A to B); $V_{CC(B)}$ = 0.8 V
- (1) $V_{CC(A)} = 0.8 \text{ V}$
- (2) $V_{CC(A)} = 1.2 \text{ V}$
- (3) $V_{CC(A)} = 1.5 \text{ V}$
- (4) $V_{CC(A)} = 1.8 \text{ V}$
- (5) $V_{CC(A)} = 2.5 \text{ V}$
- (6) $V_{CC(A)} = 3.3 \text{ V}$

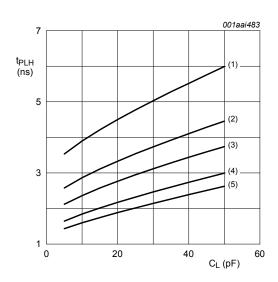

Figure 8. Typical propagation delay versus load capacitance; T_{amb} = 25 °C

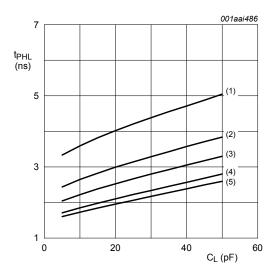
a. LOW to HIGH propagation delay (A to B); $V_{CC(A)} = 1.2 \text{ V}$ b. HIGH to LOW propagation delay (A to B); $V_{CC(A)} = 1.2 \text{ V}$



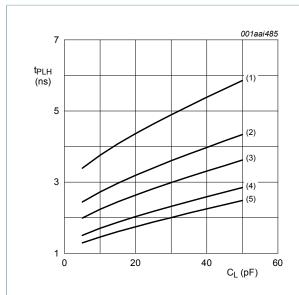


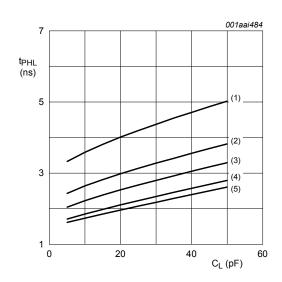
c. LOW to HIGH propagation delay (A to B); $V_{CC(A)} = 1.5 \text{ V}$ d. HIGH to LOW propagation delay (A to B); $V_{CC(A)} = 1.5 \text{ V}$


- (1) $V_{CC(B)} = 1.2 \text{ V}$
- (2) $V_{CC(B)} = 1.5 \text{ V}$
- (3) $V_{CC(B)} = 1.8 \text{ V}$
- (4) $V_{CC(B)} = 2.5 \text{ V}$
- (5) $V_{CC(B)} = 3.3 \text{ V}$


Figure 9. Typical propagation delay versus load capacitance; T_{amb} = 25 °C

a. LOW to HIGH propagation delay (A to B); $V_{CC(A)} = 1.8 \text{ V}$ b. HIGH to LOW propagation delay (A to B); $V_{CC(A)} = 1.8 \text{ V}$





c. LOW to HIGH propagation delay (A to B); $V_{CC(A)} = 2.5 \text{ V}$ d. HIGH to LOW propagation delay (A to B); $V_{CC(A)} = 2.5 \text{ V}$

- (1) $V_{CC(B)} = 1.2 \text{ V}$
- (2) $V_{CC(B)} = 1.5 \text{ V}$
- (3) $V_{CC(B)} = 1.8 \text{ V}$
- (4) $V_{CC(B)} = 2.5 \text{ V}$
- (5) $V_{CC(B)} = 3.3 \text{ V}$

Figure 10. Typical propagation delay versus load capacitance; T_{amb} = 25 °C

- a. LOW to HIGH propagation delay (A to B); $V_{CC(A)} = 3.3 \text{ V}$ b. HIGH to LOW propagation delay (A to B); $V_{CC(A)} = 3.3 \text{ V}$
- (1) $V_{CC(B)} = 1.2 \text{ V}$
- (2) $V_{CC(B)} = 1.5 \text{ V}$
- (3) $V_{CC(B)} = 1.8 \text{ V}$
- (4) $V_{CC(B)} = 2.5 \text{ V}$
- (5) $V_{CC(B)} = 3.3 \text{ V}$

Figure 11. Typical propagation delay versus load capacitance; T_{amb} = 25 °C

12 Package outline

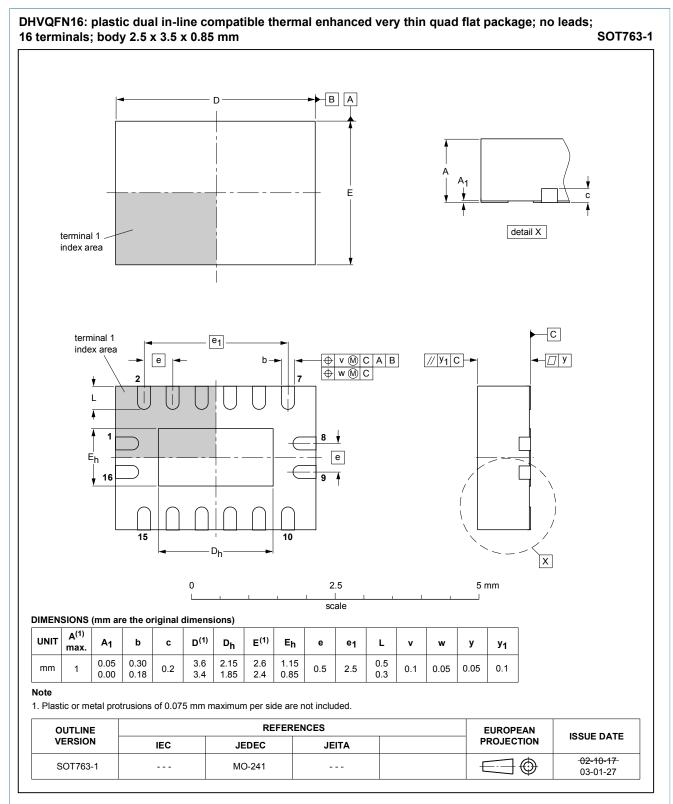
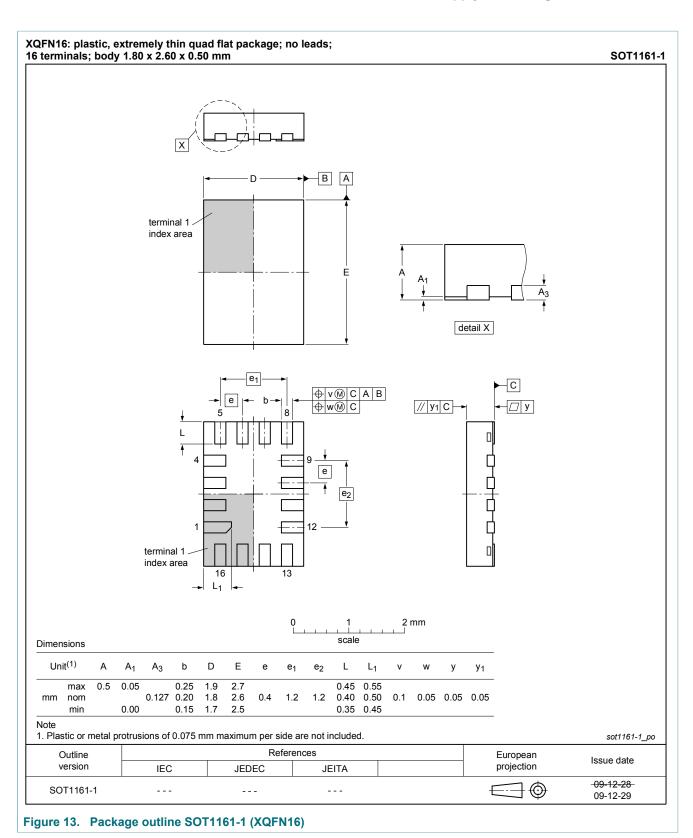



Figure 12. Package outline SOT763-1 (DHVQFN16)

13 Abbreviations

Table 17. Abbreviations

Acronym	Description
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model

14 Revision history

Table 18. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74AVC4T774 v.1	20170925	Product data sheet	-	-

15 Legal information

15.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- The term 'short data sheet' is explained in section "Definitions". [2] [3]
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia. In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserved.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer

design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Contents

1	General description	1
2	Features and benefits	
3	Ordering information	2
4	Marking	
5	Functional diagram	
6	Pinning information	
6.1	Pinning	
6.2	Pin description	
7	Functional description	
8	Limiting values	5
9	Recommended operating conditions	5
10	Static characteristics	
11	Dynamic characteristics	10
11.1	Waveforms and test circuit	
11.2	Typical propagation delay characteristics	17
12	Package outline	
13	Abbreviations	
14	Revision history	
15	Legal information	

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Translation - Voltage Levels category:

Click to view products by Nexperia manufacturer:

Other Similar products are found below:

NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT2G NLSX4302EBMUTCG PCA9306FMUTAG MC100EPT622MNG
NLSX3014MUTAG NLSV4T244EMUTAG NLSX5011MUTCG NLV9306USG NLVSX4014MUTAG NLSV4T3144MUTAG
NLVSX4373MUTAG NB3U23CMNTAG MAX3371ELT+T NLSX3013BFCT1G NLV7WBD3125USG NLSX3012DMR2G
74AVCH1T45FZ4-7 NLVSV1T244MUTBG 74AVC1T45GS-Q100H CLVC16T245MDGGREP MC10H124FNG
CAVCB164245MDGGREP CD40109BPWR MC10H350FNG MC10H125FNG MC100EPT21MNR4G MC100EP91DWG
NLSV2T244MUTAG NLSX3013FCT1G NLSX5011AMX1TCG PCA9306USG SN74AVCA406LZQSR NLSX4014DTR2G
NLSX3018DTR2G LTC1045CSW#PBF LTC1045CN#PBF SY100EL92ZG 74AXP1T34GMH 74AXP1T34GNH PI4ULS3V204LE
ADG3245BRUZ-REEL7 ADG3123BRUZ ADG3245BRUZ ADG3246BCPZ ADG3308BCPZ-REEL ADG3223BRJZ-REEL7
ADG32233BRMZ ADG3241BKSZ-500RL7