74AXP1G00

Low-power 2-input NAND gate

Rev. 2 — 6 July 2021

Product data sheet

1. General description

The 74AXP1G00 is a single 2-input NAND gate.

Schmitt-trigger action at all inputs makes the circuit tolerant of slower input rise and fall times.

This device ensures very low static and dynamic power consumption across the entire V_{CC} range from 0.7 V to 2.75 V. It is fully specified for partial power down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing the potentially damaging backflow current through the device when it is powered down.

2. Features and benefits

- Wide supply voltage range from 0.7 V to 2.75 V
- Low input capacitance; C_I = 0.5 pF (typical)
- Low output capacitance; C_O = 1.0 pF (typical)
- Low dynamic power consumption; C_{PD} = 2.5 pF at V_{CC} = 1.2 V (typical)
- Low static power consumption; I_{CC} = 0.6 μA (85 °C maximum)
- High noise immunity
- Complies with JEDEC standard:
 - JESD8-12A.01 (1.1 V to 1.3 V)
 - JESD8-11A.01 (1.4 V to 1.6 V)
 - JESD8-7A (1.65 V to 1.95 V)
 - JESD8-5A.01 (2.3 V to 2.7 V)
- ESD protection:
 - HBM ANSI/ESDA/JEDEC JS-001 Class 2 exceeds 2 kV
 - CDM JESD22-C101E exceeds 1000 V
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- Inputs accept voltages up to 2.75 V
- Low noise overshoot and undershoot < 10 % of V_{CC}
- I_{OFF} circuitry provides partial Power-down mode operation
- Multiple package options
- Specified from -40 °C to +85 °C

Low-power 2-input NAND gate

3. Ordering information

Table 1. Ordering information

Type number	Package						
	Temperature range Name		Description	Version			
74AXP1G00GM	-40 °C to +85 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 × 1.45 × 0.5 mm	SOT886			
74AXP1G00GN	-40 °C to +85 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body 0.9 × 1.0 × 0.35 mm	SOT1115			
74AXP1G00GS	-40 °C to +85 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body 1.0 × 1.0 × 0.35 mm	SOT1202			
74AXP1G00GX	-40 °C to +85 °C	X2SON5	plastic thermal enhanced extremely thin small outline package; no leads; 5 terminals; body 0.8 × 0.8 × 0.32 mm	SOT1226-3			

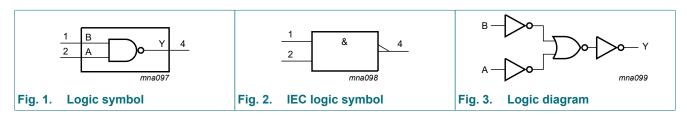
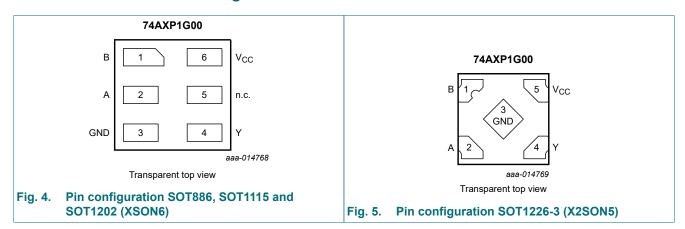

4. Marking

Table 2. Marking

Type number	Marking code[1]
74AXP1G00GM	rA
74AXP1G00GN	rA
74AXP1G00GS	rA
74AXP1G00GX	rA

^[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

5. Functional diagram



Product data sheet

Low-power 2-input NAND gate

6. Pinning information

6.1. Pinning

6.2. Pin description

Table 3. Pin description

Symbol	Pin		Description
	X2SON5 XSON6		
В	1	1	data input
A	2	2	data input
GND	3	3	ground (0 V)
Υ	4	4	data output
n.c.	-	5	not connected
V _{CC}	5	6	supply voltage

7. Functional description

Table 4. Function table

 $H = HIGH \ voltage \ level; \ L = LOW \ voltage \ level.$

Input		Output
A	В	Υ
L	L	Н
L	Н	Н
Н	L	Н
Н	Н	L

Low-power 2-input NAND gate

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+3.3	V
I _{IK}	input clamping current	V _I < 0 V		-50	-	mA
V _I	input voltage		[1]	-0.5	+3.3	V
lok	output clamping current	V _O < 0 V		-50	-	mA
Vo	output voltage		[1]	-0.5	+3.3	V
Io	output current	$V_O = 0 \text{ V to } V_{CC}$		-	±20	mA
I _{CC}	supply current			-	50	mA
I _{GND}	ground current			-50	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	T _{amb} = -40 °C to +85 °C	[2]	-	250	mW

^[1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.

9. Recommended operating conditions

Table 6. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		0.7	2.75	V
V _I	input voltage		0	2.75	V
Vo	output voltage	Active mode	0	V _{CC}	V
		Power-down mode; V _{CC} = 0 V	0	2.75	V
T _{amb}	ambient temperature		-40	+85	°C
Δt/ΔV	input transition rise and fall rate	V _{CC} = 0.7 V to 2.75 V	0	200	ns/V

^[2] For SOT886 (XSON6) package: Ptot derates linearly with 3.3 mW/K above 74 °C.

For SOT1115 (XSON6) package: Ptot derates linearly with 3.2 mW/K above 71 °C.

For SOT1202 (XSON6) package: Ptot derates linearly with 3.3 mW/K above 74 °C.

For SOT1226-3 (X2SON5) package: Ptot derates linearly with 3.0 mW/K above 67 °C.

Low-power 2-input NAND gate

10. Static characteristics

Table 7. Static characteristics

At recommended operating conditions, unless otherwise specified; voltages are referenced to GND (ground = 0 V).

Symbol Parameter		Conditions	Ta	_{imb} = 25	°C	T _{amb} = -40 °C to +85 °C		Unit
			Min	Тур	Max	Min	Max	
V _{IH}	HIGH-level input	V _{CC} = 0.75 V to 0.85 V	0.75V _{CC}	-	-	0.75V _{CC}	-	V
	voltage	V _{CC} = 1.1 V to 1.95 V	0.65V _{CC}	-	-	0.65V _{CC}	-	V
		V _{CC} = 2.3 V to 2.7 V	1.6	-	-	1.6	-	V
V_{IL}	LOW-level input	V _{CC} = 0.75 V to 0.85 V	-	-	0.25V _{CC}	-	0.25V _{CC}	V
	voltage	V _{CC} = 1.1 V to 1.95 V	-	-	0.35V _{CC}	-	0.35V _{CC}	V
		V _{CC} = 2.3 V to 2.7 V	-	-	0.7	-	0.7	V
V _{OH}	HIGH-level	$I_O = -20 \mu A; V_{CC} = 0.7 V$	-	0.69	-	-	-	V
	output voltage	I _O = -100 μA; V _{CC} = 0.75 V	0.65	-	-	0.65	-	V
		I _O = -2 mA; V _{CC} = 1.1 V	0.825	-	-	0.825	-	V
		I _O = -3 mA; V _{CC} = 1.4 V	1.05	-	-	1.05	-	V
		I _O = -4.5 mA; V _{CC} = 1.65 V	1.2	-	-	1.2	-	V
		I _O = -8 mA; V _{CC} = 2.3 V	1.7	-	-	1.7	-	V
V_{OL}	1	$I_O = 20 \mu A; V_{CC} = 0.7 V$	-	0.01	-	-	-	V
	voltage	I _O = 100 μA; V _{CC} = 0.75 V	-	-	0.1	-	0.1	V
		I _O = 2 mA; V _{CC} = 1.1 V	-	-	0.275	-	0.275	V
		I _O = 3 mA; V _{CC} = 1.4 V	-	-	0.35	-	0.35	V
		I _O = 4.5 mA; V _{CC} = 1.65 V	-	-	0.45	-	0.45	V
		I _O = 8 mA; V _{CC} = 2.3 V	-	-	0.7	-	0.7	V
l _l	input leakage current	$V_I = 0 V \text{ to } 2.75 V;$ [1] $V_{CC} = 0 V \text{ to } 2.75 V$	-	0.001	±0.1	-	±0.5	μA
I _{OFF}	power-off leakage current	$V_I \text{ or } V_O = 0 \text{ V to } 2.75 \text{ V}; $ [1] $V_{CC} = 0 \text{ V}$	-	0.01	±0.1	-	±0.5	μΑ
ΔI _{OFF}	additional power- off leakage current	$V_1 \text{ or } V_O = 0 \text{ V or } 2.75 \text{ V};$ [1] $V_{CC} = 0 \text{ V to } 0.1 \text{ V}$	-	0.02	±0.1	-	±0.5	μΑ
I _{CC}	supply current	$V_I = 0 \text{ V or } V_{CC}; I_O = 0 \text{ A}$ [1]	-	0.01	0.3	-	0.6	μA
ΔI _{CC}	additional supply current	$V_I = V_{CC} - 0.5 \text{ V}; I_O = 0 \text{ A};$ $V_{CC} = 2.5 \text{ V}$	-	2	100	-	150	μΑ

^[1] Typical values are measured at V_{CC} = 1.2 V.

Product data sheet

5 / 16

Low-power 2-input NAND gate

11. Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit, see Fig. 12.

Symbol	Parameter	Conditions		T _{amb} = 25 °C			T _{amb} = -40 °C to +85 °C		Unit
				Min	Typ[1]	Max	Min	Max	1
t _{pd}	propagation	A, B to Y; see <u>Fig. 6</u> [2]	[3]						
	delay	V _{CC} = 0.75 V to 0.85 V		3	12	36	1	120	ns
		V _{CC} = 1.1 V to 1.3 V		1.9	4.5	7.1	1.8	7.4	ns
		V _{CC} = 1.4 V to 1.6 V		1.5	3.3	4.9	1.4	5.2	ns
		V _{CC} = 1.65 V to 1.95 V		1.3	2.7	4.0	1.1	4.3	ns
		V _{CC} = 2.3 V to 2.7 V		1.1	2.1	3.0	0.9	3.2	ns
t _t	transition time	V _{CC} = 2.7 V; see <u>Fig. 6</u>	[4]	-	-	-	1.0	-	ns
Cı	input capacitance	V _I = 0 V or V _{CC} ; V _{CC} = 0 V to 2.75 V		-	0.5	-	-	-	pF
Co	output capacitance	V _O = 0 V; V _{CC} = 0 V		-	1.0	-	-	-	pF
C _{PD}	1:	$f_i = 1 \text{ MHz}; V_i = 0 \text{ V to } V_{CC}$	[5]						
	capacitance	V _{CC} = 0.75 V to 0.85 V		-	2.4	-	-	-	pF
		V _{CC} = 1.1 V to 1.3 V		-	2.5	-	-	-	pF
		V _{CC} = 1.4 V to 1.6 V		-	2.5	-	-	-	pF
		V _{CC} = 1.65 V to 1.95 V		-	2.6	-	-	-	pF
		V _{CC} = 2.3 V to 2.7 V		-	3.0	-	-	-	pF

- All typical values are measured at nominal V_{CC}.
- t_{pd} is the same as t_{PLH} and t_{PHL} . For additional propagation delay values at different load capacitances, see <u>Fig. 7</u> to <u>Fig. 11</u>.
- [4] t_t is the same as t_{THL} and t_{TLH}.
 [5] C_{PD} is used to determine the dynamic power dissipation (P_D in μW). P_D = C_{PD} x V_{CC}² x f_i x N + C_L x V_{CC}² x f_o where:

f_i = input frequency in MHz;

f_o = output frequency in MHz;

C_L = output load capacitance in pF;

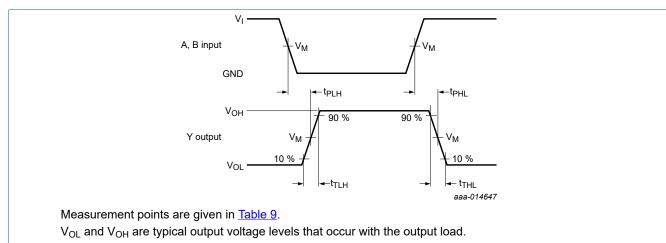
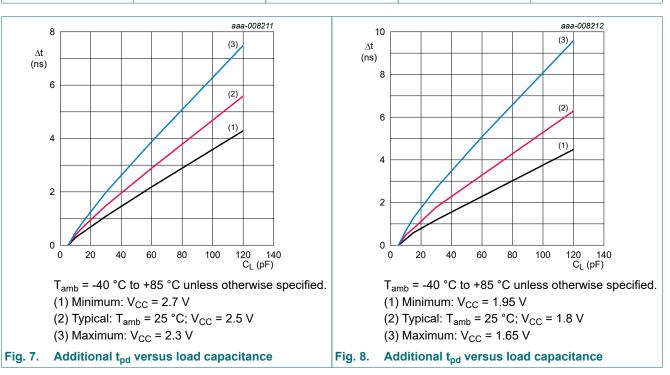
V_{CC} = supply voltage in V;

N = number of inputs switching.

Product data sheet

Low-power 2-input NAND gate

11.1. Waveforms, graphs and test circuit

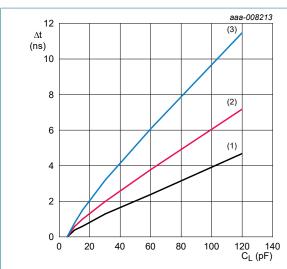
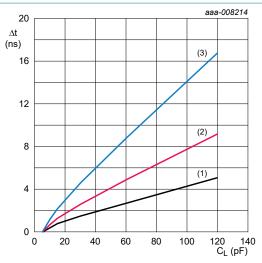

Fig. 6. The data input (A, B) to output (Y) propagation delays

Table 9. Measurement points

Supply voltage	Input	Output		
V _{CC}	V _M	V _M		
0.75 V to 2.7 V	0.5 × V _{CC}	V _{CC}	≤ 3.0 ns	0.5 × V _{CC}

Low-power 2-input NAND gate

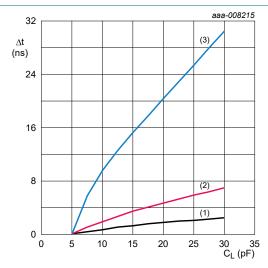

 T_{amb} = -40 °C to +85 °C unless otherwise specified.

(1) Minimum: $V_{CC} = 1.6 \text{ V}$

(2) Typical: T_{amb} = 25 °C; V_{CC} = 1.5 V

(3) Maximum: $V_{CC} = 1.4 \text{ V}$

Fig. 9. Additional t_{pd} versus load capacitance


 T_{amb} = -40 °C to +85 °C unless otherwise specified.

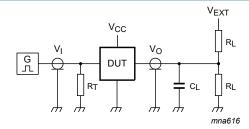
(1) Minimum: $V_{CC} = 1.3 \text{ V}$

(2) Typical: T_{amb} = 25 °C; V_{CC} = 1.2 V

(3) Maximum: $V_{CC} = 1.1 \text{ V}$

Fig. 10. Additional t_{pd} versus load capacitance

 T_{amb} = -40 °C to +85 °C unless otherwise specified.


(1) Minimum: $V_{CC} = 0.85 \text{ V}$

(2) Typical: T_{amb} = 25 °C; V_{CC} = 0.8 V

(3) Maximum: $V_{CC} = 0.75 \text{ V}$

Fig. 11. Additional t_{pd} versus load capacitance

Low-power 2-input NAND gate

Test data is given in Table 10.

Definitions for test circuit:

 R_L = Load resistance.

 $\ensuremath{C_L}$ = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to the output impedance Z_o of the pulse generator.

 V_{EXT} = External voltage for measuring switching times.

Fig. 12. Test circuit for measuring switching times

Table 10. Test data

Supply voltage	Load	ad V _{EXT}			
V _{CC}	CL	R _L	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
0.75 V to 2.7 V	5 pF	10 kΩ	0 V	0 V	2 × V _{CC}

Low-power 2-input NAND gate

12. Package outline

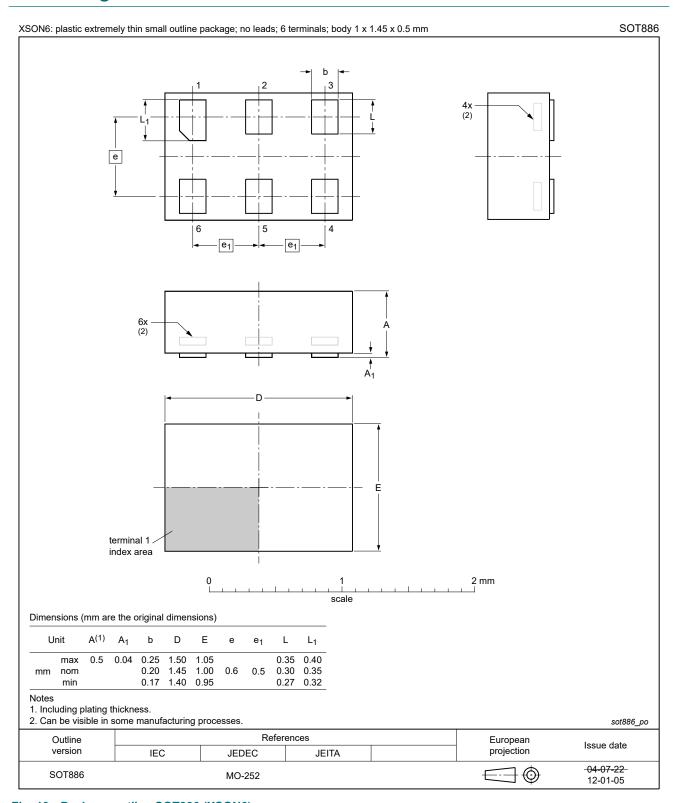


Fig. 13. Package outline SOT886 (XSON6)

Low-power 2-input NAND gate

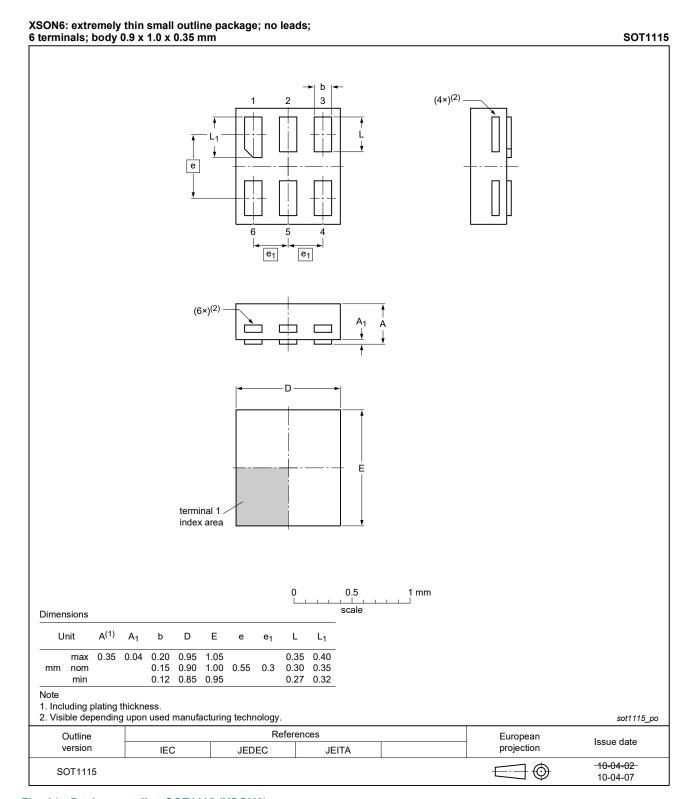


Fig. 14. Package outline SOT1115 (XSON6)

Product data sheet

11 / 16

Low-power 2-input NAND gate

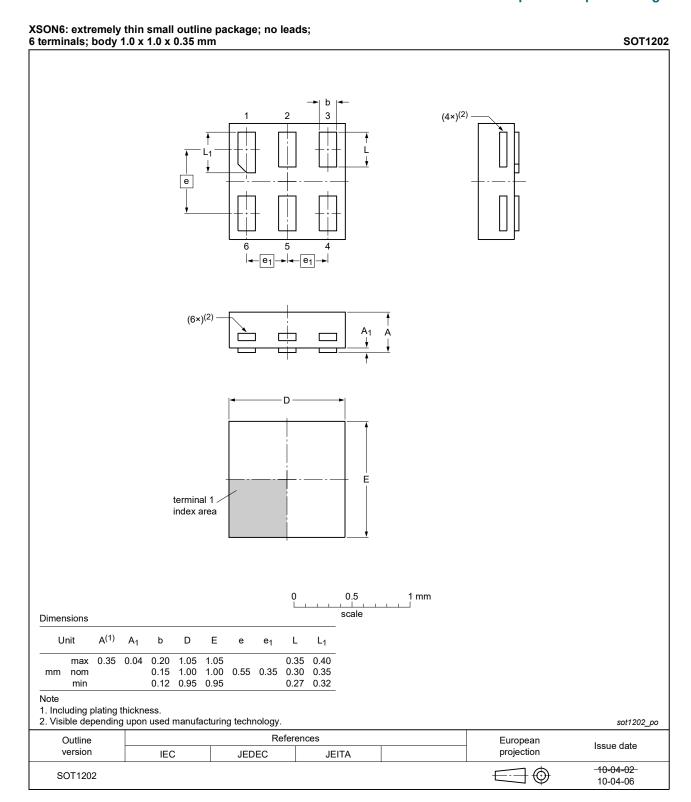


Fig. 15. Package outline SOT1202 (XSON6)

Low-power 2-input NAND gate

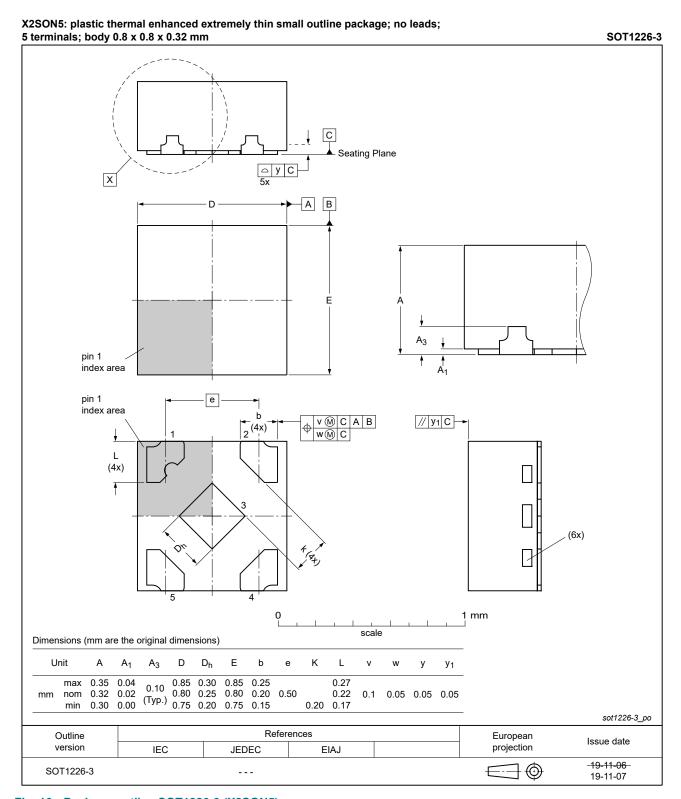


Fig. 16. Package outline SOT1226-3 (X2SON5)

Low-power 2-input NAND gate

13. Abbreviations

Table 11. Abbreviations

Acronym	Description
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model

14. Revision history

Table 12. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes			
74AXP1G00 v.2	20210706	Product data sheet	-	74AXP1G00 v.1			
Modifications:	 SOT1226 (X2SON5) package changed to SOT1226-3 (X2SON5) package. Table 5: Derating values for P_{tot} total power dissipation updated. 						
74AXP1G00 v.1	20140924	Product data sheet	-	-			

Low-power 2-input NAND gate

15. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by sustained.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Low-power 2-input NAND gate

Contents

1. General description	1
2. Features and benefits	1
3. Ordering information	2
4. Marking	2
5. Functional diagram	2
6. Pinning information	3
6.1. Pinning	3
6.2. Pin description	3
7. Functional description	3
8. Limiting values	4
9. Recommended operating conditions	4
10. Static characteristics	5
11. Dynamic characteristics	6
11.1. Waveforms, graphs and test circuit	7
12. Package outline	10
13. Abbreviations	14
14. Revision history	14
15. Legal information	15

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 6 July 2021

[©] Nexperia B.V. 2021. All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Gates category:

Click to view products by Nexperia manufacturer:

Other Similar products are found below:

 74HC85N
 NLUIG32AMUTCG
 NLVHC1G08DFT1G
 CD4068BE
 NL17SG32P5T5G
 NL17SG86DFT2G
 NLV14001UBDR2G

 NLX1G11AMUTCG
 NLX1G97MUTCG
 74LS38
 74LVC32ADTR2G
 MC74HCT20ADTR2G
 NLV17SZ00DFT2G
 NLV17SZ02DFT2G

 NLV74HC02ADR2G
 74HC32S14-13
 74LS133
 M38510/30402BDA
 74LVC1G86Z-7
 74LVC2G08RA3-7
 NLV74HC08ADTR2G

 NLV74HC14ADR2G
 NLV74HC20ADR2G
 NLX2G86MUTCG
 5962-8973601DA
 74LVC2G02HD4-7
 NLU1G00AMUTCG

 74LVC2G32RA3-7
 74LVC2G00HD4-7
 NL17SG02P5T5G
 74LVC2G00HK3-7
 74LVC2G86HK3-7
 NLX1G99DMUTWG

 NLV7HC1G00DFT2G
 NLV7SZ57DFT2G
 NLV74VHC04DTR2G
 NLV27WZ86USG
 NLV27WZ00USG

 NLU1G86CMUTCG
 NLU1G08CMUTCG
 NL17SZ32P5T5G
 NL17SZ00P5T5G
 NL17SH02P5T5G
 74AUP2G00RA3-7

 NLV74HC02ADTR2G
 NLX1G332CMUTCG
 NL17SG86P5T5G
 NL17SZ05P5T5G
 NLV74VHC00DTR2G