74CBTLV3384

10-bit bus switch with 5-bit output enables

Rev. 4 — 11 February 2021

Product data sheet

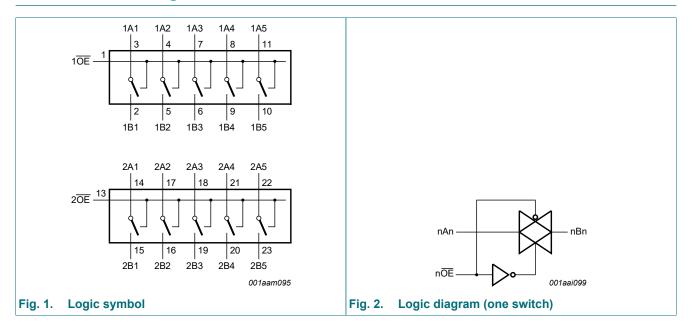
1. General description

The 74CBTLV3384 is a dual 5-pole, single-throw bus switch. The device features two output enable inputs ($\overline{\text{NOE}}$) that each control five switch channels. The switches are disabled when the associated $\overline{\text{NOE}}$ input is HIGH. Schmitt-trigger action at control inputs makes the circuit tolerant of slower input rise and fall times. This device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

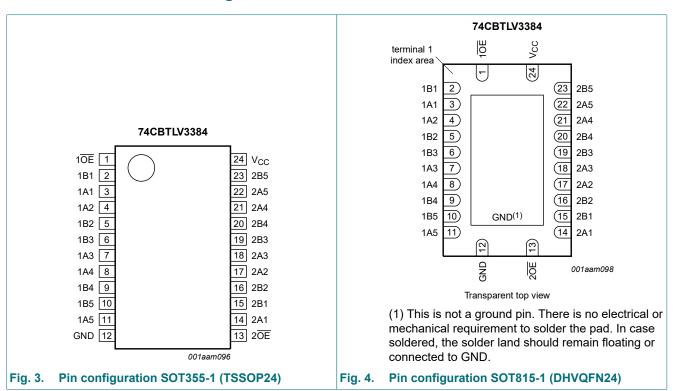
2. Features and benefits

- Supply voltage range from 2.3 V to 3.6 V
- · High noise immunity
- Complies with JEDEC standard:
 - JESD8-5 (2.3 V to 2.7 V)
 - JESD8-B/JESD36 (2.7 V to 3.6 V)
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
 - CDM AEC-Q100-011 revision B exceeds 1000 V
- 5 Ω switch connection between two ports
- Rail to rail switching on data I/O ports
- CMOS low power consumption
- Latch-up performance exceeds 250 mA per JESD78B Class I level A
- I_{OFF} circuitry provides partial Power-down mode operation
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

3. Ordering information


Table 1. Ordering information

Type number	Package	Package										
	Temperature range	Name	Description	Version								
74CBTLV3384PW	-40 °C to +125 °C	TSSOP24	plastic thin shrink small outline package; 24 leads; body width 4.4 mm	SOT355-1								
74CBTLV3384BQ	-40 °C to +125 °C	DHVQFN24	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 24 terminals; body 3.5 × 5.5 × 0.85 mm	SOT815-1								


10-bit bus switch with 5-bit output enables

4. Functional diagram

5. Pinning information

5.1. Pinning

10-bit bus switch with 5-bit output enables

5.2. Pin description

Table 2. Pin description

Symbol	Pin	Description
1 OE , 2 OE	1, 13	output enable input (active LOW)
1A1, 1A2, 1A3, 1A4, 1A5	3, 4, 7, 8, 11	data input/output (A port)
2A1, 2A2, 2A3, 2A4, 2A5	14, 17, 18, 21, 22	data input/output (A port)
1B1, 1B2, 1B3, 1B4, 1B5	2, 5, 6, 9, 10	data input/output (B port)
2B1, 2B2, 2B3, 2B4, 2B5	15, 16, 19, 20, 23	data input/output (B port)
GND	12	ground (0 V)
V _{CC}	24	positive supply voltage

6. Functional description

Table 3. Function selection

H = HIGH voltage level; L = LOW voltage level; Z = high-impedance OFF-state.

Input		Input/output					
1 OE	2 OE	1An, 1Bn	2An, 2Bn				
L	L	1An = 1Bn	2An = 2Bn				
L	Н	1An = 1Bn	Z				
Н	L	Z	2An = 2Bn				
Н	Н	Z	Z				

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Parameter	Conditions	Min	Max	Unit
supply voltage		-0.5	+4.6	V
input voltage	[1]	-0.5	+4.6	V
switch voltage	enable and disable mode [1]	-0.5	V _{CC} + 0.5	V
input clamping current	V _I < -0.5 V	-50	-	mA
switch clamping current	V _I < -0.5 V	-50	-	mA
switch current	V _{SW} = 0 V to V _{CC}	-	±128	mA
supply current		-	+100	mA
ground current		-100	-	mA
storage temperature		-65	+150	°C
total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$ [2]	-	500	mW
	supply voltage input voltage switch voltage input clamping current switch clamping current switch current supply current ground current storage temperature	supply voltage input voltage input voltage enable and disable mode [1] input clamping current $V_1 < -0.5 \text{ V}$ switch clamping current $V_1 < -0.5 \text{ V}$ switch current $V_{SW} = 0 \text{ V to V}_{CC}$ supply current ground current storage temperature	supply voltage-0.5input voltage[1]-0.5switch voltageenable and disable mode[1]-0.5input clamping current $V_1 < -0.5 \text{ V}$ -50switch clamping current $V_1 < -0.5 \text{ V}$ -50switch current $V_{SW} = 0 \text{ V to V}_{CC}$ -supply currentground current-100storage temperature-65	supply voltage-0.5 $+4.6$ input voltage[1] -0.5 $+4.6$ switch voltageenable and disable mode[1] -0.5 $V_{CC} + 0.5$ input clamping current $V_1 < -0.5 \ V$ -50 $-$ switch clamping current $V_1 < -0.5 \ V$ -50 $-$ switch current $V_{SW} = 0 \ V$ to V_{CC} $ \pm 128$ supply current $ +100$ $-$ ground current -100 $-$ storage temperature -65 $+150$

^[1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.

^[2] For SOT355-1 (TSSOP24) package: P_{tot} derates linearly with 12.4 mW/K above 110 °C. For SOT815-1 (DHVQFN24) package: P_{tot} derates linearly with 15.0 mW/K above 117 °C.

10-bit bus switch with 5-bit output enables

8. Recommended operating conditions

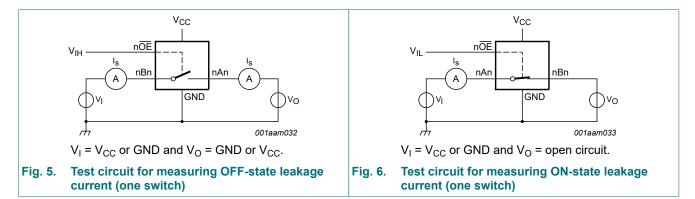
Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		2.3	3.6	V
VI	input voltage		0	3.6	V
V_{SW}	switch voltage	enable and disable mode	0	V _{CC}	V
T _{amb}	ambient temperature		-40	+125	°C
Δt/ΔV	input transition rise and fall rate	$V_{CC} = 2.3 \text{ V to } 3.6 \text{ V}$ [1]	-	200	ns/V

^[1] Applies to control signal levels.

9. Static characteristics

Table 6. Static characteristics


At recommended operating conditions voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	T _{amb} =	-40 °C to -	+85 °C	T _{amb} = -40 °	C to +125 °C	Unit
			Min	Typ [1]	Max	Min	Max	
V _{IH}	HIGH-level	V _{CC} = 2.3 V to 2.7 V	1.7	-	-	1.7	-	V
	input voltage	V _{CC} = 3.0 V to 3.6 V	2.0	-	-	2.0	-	V
V _{IL}	LOW-level input	V _{CC} = 2.3 V to 2.7 V	-	-	0.7	-	0.7	V
	voltage	V _{CC} = 3.0 V to 3.6 V	-	-	0.9	-	0.9	V
I _I	input leakage current	pin \overline{OE} ; $V_I = GND$ to V_{CC} ; $V_{CC} = 3.6 \text{ V}$	-	-	±1	-	±20	μA
I _{S(OFF)}	OFF-state leakage current	V _{CC} = 3.6 V; see <u>Fig. 5</u>	-	-	±1	-	±20	μA
I _{S(ON)}	ON-state leakage current	ON-state $V_{CC} = 3.6 \text{ V}$; see Fig. 6		-	±1	-	±20	μA
I _{OFF}	power-off leakage current	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V}$	-	-	±10	-	±50	μA
I _{CC}	supply current	V_I = GND or V_{CC} ; I_O = 0 A; V_{SW} = GND or V_{CC} ; V_{CC} = 3.6 V	-	-	10	-	50	μΑ
ΔI _{CC}	additional supply current	pin n \overline{OE} ; V _I = V _{CC} - 0.6 V; V _{SW} = GND or V _{CC} ; V _{CC} = 3.6 V; one input at 3 V, other inputs at V _{CC} or GND.	-	-	300	-	2000	μА
C _I	input capacitance	pin n OE ; V _{CC} = 3.3 V; V _I = 0 V to 3.3 V	-	0.9	-	-	-	pF
C _{S(OFF)}	OFF-state capacitance	$V_{CC} = 3.3 \text{ V}; V_{I} = 0 \text{ V to } 3.3 \text{ V}$	-	5.2	-	-	-	pF
C _{S(ON)}	ON-state capacitance	$V_{CC} = 3.3 \text{ V}; V_{I} = 0 \text{ V to } 3.3 \text{ V}$	-	14.3	-	-	-	pF

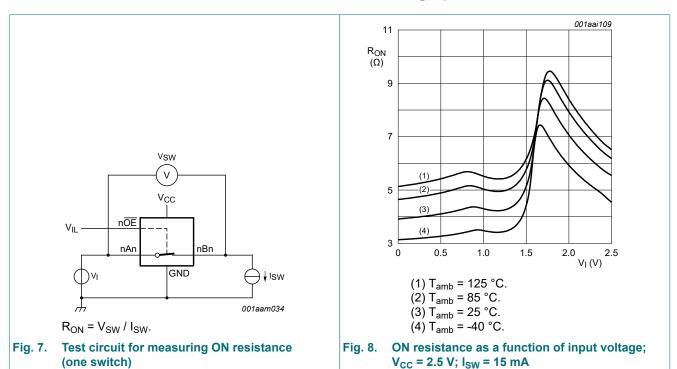
^[1] All typical values are measured at T_{amb} = 25 °C.

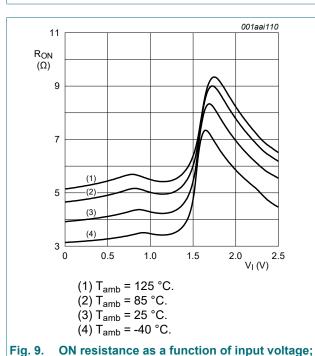
10-bit bus switch with 5-bit output enables

9.1. Test circuits

10. ON resistance

Table 7. Resistance RoN


At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 7.


Symbol	Parameter	Conditions	T _{amb} =	-40 °C to	+85 °C	T _{amb} = -40 °(C to +125 °C	Unit
			Min	Typ [1]	Max	Min	Max	
R _{ON}	ON resistance	V _{CC} = 2.3 V to 2.7 V; [2] see <u>Fig. 8</u> to <u>Fig. 10</u>						
		I _{SW} = 64 mA; V _I = 0 V	-	4.2	8.0	-	15.0	Ω
		I _{SW} = 24 mA; V _I = 0 V	-	4.2	8.0	-	15.0	Ω
		I _{SW} = 15 mA; V _I = 1.7 V	-	8.4	40	-	60.0	Ω
		V _{CC} = 3.0 V to 3.6 V; see <u>Fig. 11</u> to <u>Fig. 13</u>						
		I _{SW} = 64 mA; V _I = 0 V	-	4.0	7.0	-	11.0	Ω
		I _{SW} = 24 mA; V _I = 0 V	-	4.0	7.0	-	11.0	Ω
		I _{SW} = 15 mA; V _I = 2.4 V	-	6.2	15	-	25.5	Ω

Typical values are measured at T_{amb} = 25 °C and nominal V_{CC} . Measured by the voltage drop between the A and B terminals at the indicated current through the switch. ON-state resistance is determined by the lower of the voltages of the two (A or B) terminals.

10-bit bus switch with 5-bit output enables

10.1. ON resistance test circuit and graphs

 $V_{CC} = 2.5 \text{ V}; I_{SW} = 24 \text{ mA}$

001aai111 11 Ron (Ω) 9 7 (1) (2) 0.5 1.0 (1) T_{amb} = 125 °C. (2) $T_{amb} = 85 \,^{\circ}C$. (3) $T_{amb} = 25 \,^{\circ}C$. (4) $T_{amb} = -40 \, ^{\circ}C$.

10-bit bus switch with 5-bit output enables

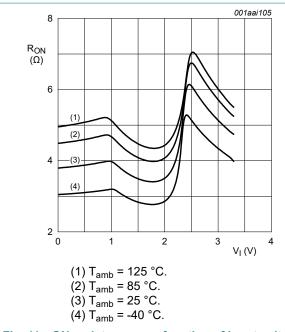
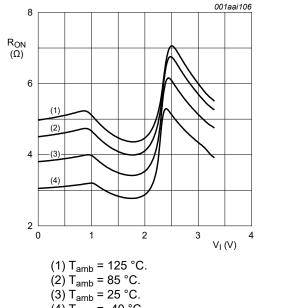
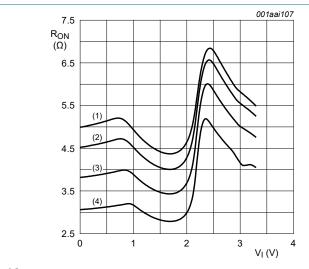




Fig. 11. ON resistance as a function of input voltage; $V_{CC} = 3.3 \text{ V}; I_{SW} = 15 \text{ mA}$

(4) $T_{amb} = -40 \, ^{\circ}C$.

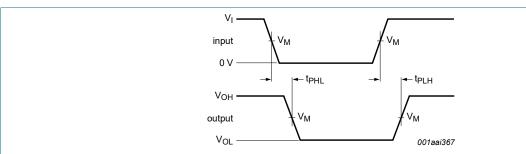
Fig. 12. ON resistance as a function of input voltage; $V_{CC} = 3.3 \text{ V}; I_{SW} = 24 \text{ mA}$

(1) T_{amb} = 125 °C. (2) T_{amb} = 85 °C. (3) T_{amb} = 25 °C. (4) T_{amb} = -40 °C.

Fig. 13. ON resistance as a function of input voltage; $V_{CC} = 3.3 \text{ V}$; $I_{SW} = 64 \text{ mA}$

10-bit bus switch with 5-bit output enables

11. Dynamic characteristics


Table 8. Dynamic characteristics

GND = 0 V; for test circuit see Fig. 16

Symbol	Parameter	Conditions	T _{amb} :	= -40 °C to	+85 °C	T _{amb} = -40 °	C to +125 °C	Unit
			Min	Typ [1]	Max	Min	Max	
t _{pd}	propagation delay	nAn to nBn or nBn to nAn; [2] [see Fig. 14	3]					
		V _{CC} = 2.3 V to 2.7 V	-	-	0.13	-	0.20	ns
		V _{CC} = 3.0 V to 3.6 V	-	-	0.20	-	0.31	ns
t _{en}	enable time	able time nOE to nAn or nBn; see Fig. 15						
		V _{CC} = 2.3 V to 2.7 V	1.0	3.0	5.0	1.0	7.0	ns
		V _{CC} = 3.0 V to 3.6 V	1.0	2.6	4.3	1.0	6.0	ns
t _{dis}	disable time	disable time nOE to nAn or nBn; see Fig. 15						
		V _{CC} = 2.3 V to 2.7 V	1.0	2.6	5.5	1.0	7.5	ns
		V _{CC} = 3.0 V to 3.6 V	1.0	3.2	5.5	1.0	7.5	ns

- All typical values are measured at T_{amb} = 25 °C and at nominal V_{CC} . The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the load capacitance, when driven by an ideal voltage source (zero output impedance).
- t_{pd} is the same as t_{PLH} and t_{PHL} .
- t_{en} is the same as t_{PZH} and t_{PZL} .
- t_{dis} is the same as t_{PHZ} and t_{PLZ}.

11.1. Waveforms and test circuit

Measurement points are given in <u>Table 9</u>.

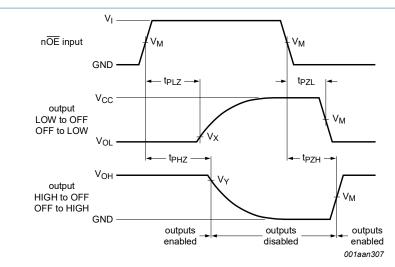
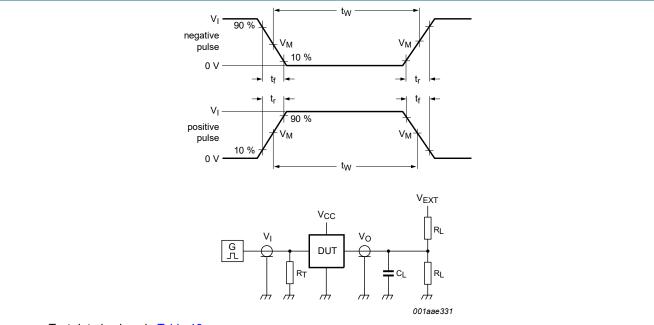

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig. 14. The data input (nAn, nBn) to output (nBn, nAn) propagation delay times

Table 9. Measurement points

Supply voltage	Input			Output					
V _{CC}	V _M V _I		$t_r = t_f$	V _M	V _X	V _Y			
2.3 V to 2.7 V	0.5V _{CC}	V _{CC}	≤ 2.0 ns	0.5V _{CC}	V _{OL} + 0.15 V	V _{OH} - 0.15 V			
3.0 V to 3.6 V	0.5V _{CC} V _{CC} :		≤ 2.0 ns 0.5V _{CC}		V _{OL} + 0.3 V	V _{OH} - 0.3 V			


10-bit bus switch with 5-bit output enables

Measurement points are given in Table 9.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig. 15. Enable and disable times

Test data is given in Table 10.

Definitions for test circuit:

 R_L = Load resistance.

C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to the output impedance Z_0 of the pulse generator.

 V_{EXT} = External voltage for measuring switching times.

Fig. 16. Test circuit for measuring switching times

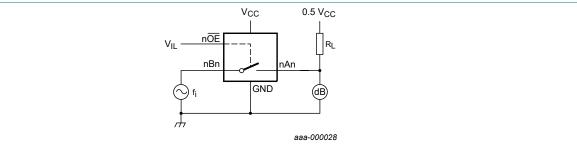
Table 10. Test data

Supply voltage	Load		V _{EXT}						
V _{CC}	CL	R_L	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}				
2.3 V to 2.7 V	30 pF	500 Ω	open	GND	2V _{CC}				
3.0 V to 3.6 V	50 pF	500 Ω	open	GND	2V _{CC}				

Product data sheet

10-bit bus switch with 5-bit output enables

11.2. Additional dynamic characteristics


Table 11. Additional dynamic characteristics

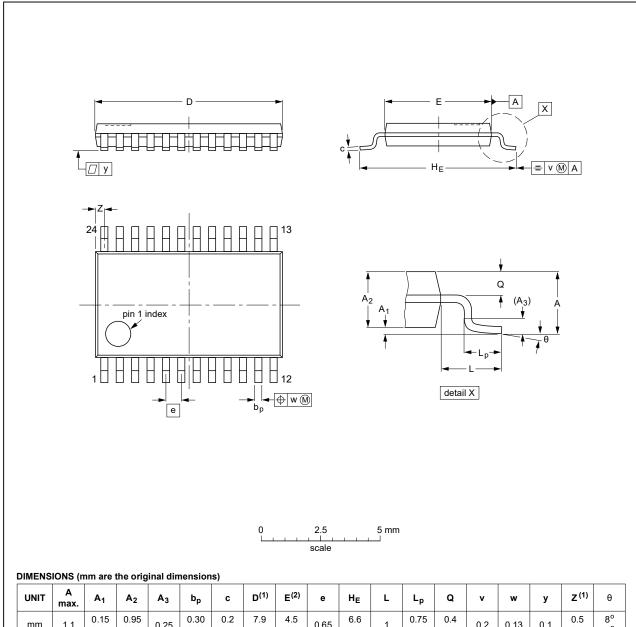
 $\textit{At recommended operating conditions; Voltages are referenced to GND (ground = 0 \ V); } \\$

 V_I = GND or V_{CC} (unless otherwise specified); t_r = $t_f \le 2.5$ ns.

Symbol	Parameter	Conditions		7	r _{amb} = 25 °C	;	Unit
			M	1in	Тур	Max	
f _(-3dB)	-3 dB frequency response	$V_{CC} = 3.3 \text{ V; } R_L = 50 \Omega; \text{ see } Fig. 17$ [1]	-	406	-	MHz

[1] f_i is biased at $0.5V_{CC}$.

 $n\overline{OE}$ connected to GND; Adjust f_i voltage to obtain 0 dBm level at output. Increase f_i frequency until dB meter reads -3 dB.


Fig. 17. Test circuit for measuring the frequency response when channel is in ON-state

10-bit bus switch with 5-bit output enables

12. Package outline

TSSOP24: plastic thin shrink small outline package; 24 leads; body width 4.4 mm

SOT355-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	7.9 7.7	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.5 0.2	8° 0°

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION		REFERENCES				ISSUE DATE	
	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT355-1		MO-153				99-12-27 03-02-19	

Fig. 18. Package outline SOT355-1 (TSSOP24)

10-bit bus switch with 5-bit output enables

DHVQFN24: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 24 terminals; body $3.5 \times 5.5 \times 0.85$ mm

SOT815-1

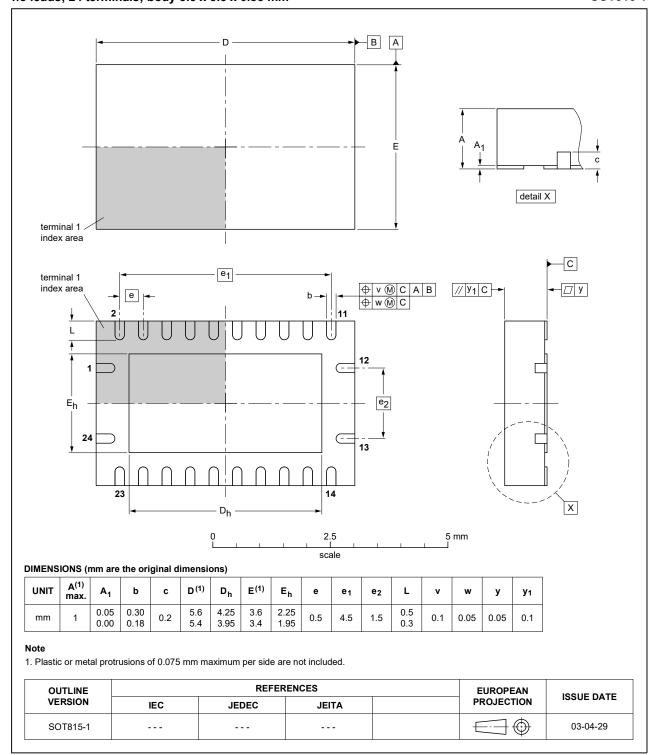


Fig. 19. Package outline SOT815-1 (DHVQFN24)

10-bit bus switch with 5-bit output enables

13. Abbreviations

Table 12. Abbreviations

Table 1217 tool of tation o				
Acronym	Description			
CDM	Charged Device Model			
CMOS	Complementary Metal-Oxide Semiconductor			
DUT	Device Under Test			
ESD	ElectroStatic Discharge			
НВМ	Human Body Model			
MM	Machine Model			
TTL	Transistor-Transistor Logic			

14. Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes	
74CBTLV3384 v.4	20210211	Product data sheet	-	74CBTLV3384 v.3	
Modifications:	guidelines Legal texts Type numb	 The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia. Legal texts have been adapted to the new company name where appropriate. Type number 74CBTLV3384DK (SOT556-1 / SSOP24) removed. Section 7: Derating values for Ptot total power dissipation updated. 			
74CBTLV3384 v.3	20161111	Product data sheet	-	74CBTLV3384 v.2	
Modifications:	Section 11.	<u>2</u> added.			
74CBTLV3384 v.2	20111216	Product data sheet	-	74CBTLV3384 v.1	
Modifications:	Legal page	Legal pages updated.			
74CBTLV3384 v.1	20101230	Product data sheet	-	-	
				1	

injury, death or severe property or environmental damage. Nexperia and its

15. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or [1] completing a design.
- The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

 $\label{eq:product} \textbf{Product specification} \ -- \ \text{The information and data provided in a Product}$ data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

the customer's own risk. Quick reference data — The Quick reference data is an extract of the

suppliers accept no liability for inclusion and/or use of Nexperia products in

such equipment or applications and therefore such inclusion and/or use is at

product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

10-bit bus switch with 5-bit output enables

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

10-bit bus switch with 5-bit output enables

Contents

1. General description	1
2. Features and benefits	1
3. Ordering information	1
4. Functional diagram	2
5. Pinning information	
5.1. Pinning	
5.2. Pin description	3
6. Functional description	3
7. Limiting values	
8. Recommended operating conditions	4
9. Static characteristics	
9.1. Test circuits	5
10. ON resistance	5
10.1. ON resistance test circuit and graphs	6
11. Dynamic characteristics	
11.1. Waveforms and test circuit	8
11.2. Additional dynamic characteristics	
12. Package outline	
13. Abbreviations	13
14. Revision history	
15. Legal information	
-	

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 11 February 2021

[©] Nexperia B.V. 2021. All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Digital Bus Switch ICs category:

Click to view products by Nexperia manufacturer:

Other Similar products are found below:

MT8986AE1 TC7MPB9307FT(EL) MT8985AE1 MT8986AP1 PI3CH800LE PI3C32X384BE ZL50023GAG2 MT8986AL1 MT8981DP1
PI3VT3245-ALE PI3CH800QE MT90823AB1 PI3VT3245-AQE PI3CH800QEX PI3C3384QE PI3C3305UEX PI3B3861QE
PI3B3245QEX PI3B3245QE PI3CH1000LE PI3CH400ZBEX PI3CH401LE PI3CH401LEX TC7WBL3305CFK(5L,F
74CB3Q3125DBQRE4 TC7WBL3305CFK,LF SN74CBT16245CDGGR PI5C3245QE 72V90823PQFG PI3B3861QEX PI3C3126QEX
PI3C3245QE PI5C3384QE PI3CH281QE QS3VH16244PAG8 PI3CH400LE PI3B3245LEX PI3B3245LE PI3C3306LEX PI5C3245LEX
PI5C3306LEX PI3B3126LE PI3B3125LEX 72V73273BBG 74CBTLV3862PGG QS3126QG QS32245QG QS3244QG QS3245SOG8
QS32X384Q1G