74HC1G66; 74HCT1G66

Single-pole single-throw analog switch
Rev. 04 - 19 December 2008
Product data sheet

1. General description

74HC1G66 and 74HCT1G66 are high-speed Si-gate CMOS devices. They are single-pole single-throw analog switches. The switch has two input/output pins (Y and Z) and an active HIGH enable input pin (E). When pin E is LOW, the analog switch is turned off.

The non-standard output currents are equal to those of the 74 HC 4066 and 74 HCT 4066 .

2. Features

- Wide supply voltage range from 2.0 V to 10.0 V for the 74 HC 1 G 66
- Very low ON resistance:
- 45Ω (typ.) at $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
- 30Ω (typ.) at $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$
- 25Ω (typ.) at $\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$
- High noise immunity
- Low power dissipation
- Multiple package options
- ESD protection:
- HBM JESD22-A114E exceeds 2000 V
- MM JESD22-A115-A exceeds 200 V
- Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

3. Ordering information

Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74 HC 1 G 66 GW	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSSOP5	plastic thin shrink small outline package; 5	SOT353-1
74 HCT leads; body width 1.25 mm				

4. Marking

Table 2. Marking codes

Type number	Marking
74HC1G66GW	HL
74HCT1G66GW	TL
74HC1G66GV	H 66
74HCT1G66GV	T66

5. Functional diagram

Fig 1. Logic symbol

Fig 2. Logic diagram

6. Pinning information

6.1 Pinning

Fig 3. Pin configuration SOT353-1 and SOT753

6.2 Pin description

Table 3. Pin description

Symbol	Pin	Description
Y	1	independent input or output
Z	2	independent input or output
GND	3	ground $(0 \mathrm{~V})$
E	4	enable input (active HIGH)
V_{CC}	5	supply voltage

7. Functional description

Table 4. Function table[1]

Input E	Switch
L	OFF
H	ON

[1] $H=$ HIGH voltage level; $L=$ LOW voltage level.

8. Limiting values

Table 5. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+11.0	V
I_{KK}	input clamping current	$\mathrm{V}_{\mathrm{I}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{I}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$\underline{[1]}-$	± 20	mA
I_{SK}	switch clamping current	$\mathrm{V}_{\mathrm{I}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{I}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$\underline{[1]}-$	± 20	mA
I_{SW}	switch current	$\mathrm{V}_{\mathrm{SW}}>-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{SW}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 25	mA
I_{CC}	supply current		-	50	mA
$\mathrm{I}_{\mathrm{GND}}$	ground current		-50	-	mA
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	[2] -	250	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] For TSSOP5 and SC-74A packages: above $87.5^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $4.0 \mathrm{~mW} / \mathrm{K}$.

9. Recommended operating conditions

Table 6. Recommended operating conditions
Voltages are referenced to GND (ground $=0$ V).[1]

Symbol	Parameter	Conditions	74HC1G66			74HCT1G66			Unit
			Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {CC }}$	supply voltage		2.0	5.0	10.0	4.5	5.0	5.5	V
$V_{\text {I }}$	input voltage		0	-	V_{CC}	0	-	$\mathrm{V}_{\text {CC }}$	V
$\mathrm{V}_{\text {SW }}$	switch voltage		0	-	$\mathrm{V}_{\text {CC }}$	0	-	$\mathrm{V}_{\text {cc }}$	V
$\mathrm{T}_{\text {amb }}$	ambient temperature		-40	+25	+125	-40	+25	+125	${ }^{\circ} \mathrm{C}$
$\Delta t / \Delta \mathrm{V}$	input transition rise and fall rate	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	-	625	-	-	-	ns / V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	1.67	139	-	1.67	139	ns / V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	83	-	-	-	ns / V
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	35	-	-	-	ns / V

[1] To avoid drawing $V_{C C}$ current out of pin Z, when switch current flows in pin Y, the voltage drop across the bidirectional switch must not exceed 0.4 V . If the switch current flows into pin Z , no V_{CC} current will flow out of terminal Y . In this case there is no limit for the voltage drop across the switch, but the voltage at pins Y and Z may not exceed $V_{c c}$ or GND.

10. Static characteristics

Table 7. Static characteristics
Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to +125 ${ }^{\circ} \mathrm{C}$		Unit
			Min	Typ[1]	Max	Min	Max	
74HC1G66								
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	1.5	1.2	-	1.5	-	V
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	3.15	2.4	-	3.15	-	V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	4.2	3.2	-	4.2	-	V
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	6.3	4.7	-	6.3	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	0.8	0.5	-	0.5	V
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	-	2.1	1.35	-	1.35	V
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	-	2.8	1.8	-	1.8	V
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	-	4.3	2.7	-	2.7	V
1	input leakage current	$\mathrm{E} ; \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND						
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	-	0.1	1.0	-	1.0	$\mu \mathrm{A}$
		$V_{C C}=10.0 \mathrm{~V}$	-	0.2	2.0	-	2.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	Y or $\mathrm{Z} ; \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$; see $\underline{\text { Figure } 4}$	-	0.1	1.0	-	1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(ON })}$	ON-state leakage current	Y or $\mathrm{Z} ; \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$; see $\underline{\text { Figure } 5}$	-	0.1	1.0	-	1.0	$\mu \mathrm{A}$
ICC	supply current	E, Y or $\mathrm{Z} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND ; $\mathrm{V}_{\mathrm{SW}}=\mathrm{GND}$ or V_{CC}						
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	1.0	10	-	20	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	2.0	20	-	40	$\mu \mathrm{A}$
C_{1}	input capacitance		-	1.5	-	-	-	pF
$\mathrm{C}_{\text {S(ON) }}$	ON-state capacitance		-	8	-	-	-	pF

Table 7. Static characteristics ...continued
Voltages are referenced to GND (ground $=0 \mathrm{~V}$).

Symbol	Parameter	Conditions	$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$		Unit
			Min	Typ[]]	Max	Min	Max	
74HCT1G66								
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	2.0	1.6	-	2.0	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	0.1	1.2	0.8	-	0.8	V
1	input leakage current	$\mathrm{E} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-	0.1	1.0	-	1.0	$\mu \mathrm{A}$
$I_{\text {S(OFF) }}$	OFF-state leakage current	Y or Z ; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; see $\underline{\text { Figure } 4}$	-	0.1	1.0	-	1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(ON })}$	ON-state leakage current	Y or $\mathrm{Z} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; see $\underline{\text { Figure } 5}$	-	0.1	1.0	-	1.0	$\mu \mathrm{A}$
$I_{\text {cc }}$	supply current	$\begin{aligned} & \mathrm{E}, \mathrm{Y} \text { or } \mathrm{Z} ; \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or GND; } \\ & \mathrm{V}_{\mathrm{SW}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$	-	1	10	-	20	$\mu \mathrm{A}$
$\Delta l_{\text {cC }}$	additional supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} \end{aligned}$	-	-	500	-	850	$\mu \mathrm{A}$
C	input capacitance		-	1.5	-	-	-	pF
$\mathrm{C}_{\text {S(ON) }}$	ON-state capacitance		-	8	-	-	-	pF

[1] Typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

10.1 Test circuits

$V_{I}=V_{C C}$ or $G N D$ and $V_{O}=G N D$ or $V_{C C}$.
Fig 4. Test circuit for measuring OFF-state leakage current

$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND and $\mathrm{V}_{\mathrm{O}}=$ open circuit.
Fig 5. Test circuit for measuring ON -state leakage current

10.2 ON resistance

Table 8. ON resistance
At recommended operating conditions; voltages are referenced to GND (ground 0 V); for graph see Figure 7.

Symbol	Parameter	Conditions	$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
			Min	Typ[${ }^{[2]}$	Max	Min	Max	
74HC1G66[1]								
$\mathrm{R}_{\mathrm{ON}(\text { peak })}$	ON resistance (peak)	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}; see Figure 6						
		$\mathrm{I}_{\mathrm{SW}}=0.1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	-	-	-	-	Ω
		$\mathrm{I}_{\mathrm{SW}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	42	118	-	142	Ω
		$\mathrm{I}_{\mathrm{SW}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	31	105	-	126	Ω
		$\mathrm{I}_{\mathrm{SW}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$	-	23	88	-	105	Ω
$\mathrm{R}_{\mathrm{ON}(\text { rail }}$	ON resistance (rail)	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text {; see Figure } 6$						
		$\mathrm{I}_{\mathrm{SW}}=0.1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	75	-	-	-	Ω
		$\mathrm{I}_{\mathrm{SW}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	29	95	-	115	Ω
		$\mathrm{I}_{\mathrm{SW}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	23	82	-	100	Ω
		$\mathrm{I}_{\text {SW }}=1 \mathrm{~mA} ; \mathrm{V}_{\text {CC }}=9.0 \mathrm{~V}$	-	18	70	-	80	Ω
		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$; see Figure 6						
		$\mathrm{I}_{\mathrm{SW}}=0.1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	75	-	-	-	Ω
		$\mathrm{I}_{\mathrm{SW}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	35	106	-	128	Ω
		$\mathrm{I}_{\mathrm{SW}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	27	94	-	113	Ω
		$\mathrm{I}_{\mathrm{SW}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$	-	21	78	-	95	Ω
74HCT1G66								
$\mathrm{R}_{\mathrm{ON}(\text { peak })}$	ON resistance (peak)	$\mathrm{V}_{1}=\mathrm{GND}$ to V_{CC}; see Figure 6						
		$\mathrm{I}_{\mathrm{SW}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	42	118	-	142	Ω
$\mathrm{R}_{\mathrm{ON}(\text { rail })}$	ON resistance (rail)	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$; see Figure 6						
		$\mathrm{I}_{\mathrm{SW}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	29	95	-	115	Ω
		$V_{I}=V_{C C} ; \text { see Figure } 6$						
		$\mathrm{I}_{\mathrm{SW}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	35	106	-	128	Ω

[1] At supply voltages approaching 2 V , the ON resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital signals only, when using this supply voltage.
[2] Typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

10.3 ON resistance test circuit and graphs

$\mathrm{R}_{\mathrm{ON}}=\mathrm{V}_{\mathrm{SW}} / \mathrm{I}_{\mathrm{SW}}$.
Fig 6. Test circuit for measuring ON resistance

Fig 7. Typical ON resistance as a function of input voltage

11. Dynamic characteristics

Table 9. Dynamic characteristics
Voltages are referenced to $G N D$ (ground $=0 \mathrm{~V}$); $C_{L}=50 \mathrm{pF} ; R_{L}=1 \mathrm{k} \Omega$, unless otherwise specified;
For test circuit see Figure 10.

Symbol	Parameter	Conditions		$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$		Unit
				Min	Typ[1]	Max	Min	Max	
74HC1G66									
t_{pd}	propagation delay	$\begin{aligned} & \mathrm{Y} \text { to } \mathrm{Z} \text { or } \mathrm{Z} \text { to } \mathrm{Y} ; \mathrm{R}_{\mathrm{L}}=\infty \Omega \text {; } \\ & \text { see Figure } 8 \end{aligned}$	[2]						
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$		-	8	75	-	90	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		-	3	15	-	18	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$		-	2	13	-	15	ns
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$		-	1	10	-	12	ns
$t_{\text {en }}$	enable time	E to Y or Z ; see Figure 9	[2]						
		$\mathrm{V}_{C C}=2.0 \mathrm{~V}$		-	50	125	-	150	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		-	16	25	-	30	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		-	11	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$		-	13	21	-	26	ns
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$		-	9	16	-	20	ns

Table 9. Dynamic characteristics ...continued
Voltages are referenced to GND (ground $=0 \mathrm{~V}$); $C_{L}=50 \mathrm{pF} ; R_{L}=1 \mathrm{k} \Omega$, unless otherwise specified;
For test circuit see Figure 10.

Symbol	Parameter	Conditions		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40{ }^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$		Unit
				Min	Typ[1]	Max	Min	Max	
$\mathrm{t}_{\text {dis }}$	disable time	E to Y or Z ; see $\underline{\text { Figure } 9}$	[2]						
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$		-	27	190	-	225	ns
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$		-	16	38	-	45	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		-	11	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$		-	14	33	-	38	ns
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$		-	12	16	-	20	ns
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	$\mathrm{V}_{1}=\mathrm{GND}$ to V_{CC}	[3]	-	9	-	-	-	pF
74HCT1G66									
t_{pd}	propagation delay	Y to Z or Z to $Y ; R_{L}=\infty \Omega$; see Figure 8	[2]						
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$		-	3	15	-	18	ns
$\mathrm{t}_{\text {en }}$	enable time	E to Y or Z ; see Figure 9	[2]						
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$		-	15	30	-	36	ns
		$\mathrm{V}_{C C}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		-	12	-	-	-	ns
$\mathrm{t}_{\text {dis }}$	disable time	E to Y or Z ; see Figure 9	[2]						
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		-	13	44	-	53	ns
		$\mathrm{V}_{C C}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		-	12	-	-	-	ns
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$	[3]	-	9	-	-	-	pF

[1] All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
[2] $t_{p d}$ is the same as $t_{\text {PLH }}$ and $t_{\text {PHL }}$. $t_{\text {en }}$ is the same as $t_{P Z L}$ and $t_{P Z H}$. $t_{\text {dis }}$ is the same as $t_{P L Z}$ and $t_{P H Z}$.
[3] $C_{P D}$ is used to determine the dynamic power dissipation $P_{D}(\mu W)$.
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\Sigma\left(\left(C_{L} \times C_{S W}\right) \times V_{C C}{ }^{2} \times f_{0}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF;
$\mathrm{C}_{\mathrm{SW}}=$ maximum switch capacitance in pF (see Table 7);
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in Volt;
$\Sigma\left(\left(C_{L} \times C_{S W}\right) \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of outputs.

11.1 Waveforms and test circuit

Measurement points are given in Table 10.
Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.
Fig 8. Input (Y or Z) to output (Z or Y) propagation delays

Measurement points are given in Table 10.
Logic levels: V_{OL} and $\mathrm{V}_{\text {OH }}$ are typical output voltage levels that occur with the output load.
Fig 9. Enable and disable times

Table 10. Measurement points

Type	Input	Output		
	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{X}}$	$\mathbf{V}_{\mathbf{Y}}$
74HC1G66	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{OL}}+10 \%$	$\mathrm{~V}_{\mathrm{OH}}-10 \%$
74 HCT 1 G 66	1.3 V	1.3 V	$\mathrm{~V}_{\mathrm{OL}}+10 \%$	$\mathrm{~V}_{\mathrm{OH}}-10 \%$

Test data is given in Table 11.
Definitions for test circuit:
$R_{T}=$ Termination resistance should be equal to output impedance Z_{o} of the pulse generator.
$C_{L}=$ Load capacitance including jig and probe capacitance.
$R_{L}=$ Load resistance.
S1 = Test selection switch.
Fig 10. Test circuit for measuring switching times

Table 11. Test data

Type	Input		Load		S1 position		
	V_{1}	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}{ }^{[1]}$	C_{L}	\mathbf{R}_{L}	$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PHZ }}$	$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PLZ }}$
74HC1G66	GND to $\mathrm{V}_{\text {Cc }}$	6 ns	$50 \mathrm{pF}, 15 \mathrm{pF}$	$1 \mathrm{k} \Omega, \infty \Omega$	open	GND	$V_{\text {CC }}$
74HCT1G66	GND to 3 V	6 ns	$50 \mathrm{pF}, 15 \mathrm{pF}$	$1 \mathrm{k} \Omega, \infty \Omega$	open	GND	V_{CC}

[1] There is no constraint on t_{r}, t_{f} with a 50% duty factor when measuring $f_{\text {max }}$.

11.2 Additional dynamic characteristics

Table 12. Additional dynamic characteristics for 74HC1G66 and 74HCT1G66
$G N D=0 \mathrm{~V} ; t_{r}=t_{f}=6.0 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$; unless otherwise specified. All typical values are measured at $T_{\text {amb }}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
THD	total harmonic distortion	$\mathrm{f}_{\mathrm{i}}=1 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$; see Figure 11				\%
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=4.0 \mathrm{~V}$ (p-p)	-	0.04	-	\%
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=8.0 \mathrm{~V}$ (p-p)	-	0.02	-	\%
		$\mathrm{f}_{\mathrm{i}}=10 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$; see Figure 11				
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=4.0 \mathrm{~V}$ (p-p)	-	0.12	-	\%
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=8.0 \mathrm{~V}$ (p-p)	-	0.06	-	\%

Table 12. Additional dynamic characteristics for 74HC1G66 and 74HCT1G66 ...continued $G N D=0 \mathrm{~V} ; t_{r}=t_{f}=6.0 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$; unless otherwise specified. All typical values are measured at $T_{\text {amb }}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{f}_{(-3 \mathrm{~dB})}$	-3 dB frequency response	$\mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$; see Figure 12 and $\underline{13}$				
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	180	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$	-	200	-	MHz
$\alpha_{\text {iso }}$	isolation (OFF-state)	$\mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz}$; see Figure 14 and $\underline{15}$				
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-50	-	dB
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$	-	-50	-	dB

11.3 Test circuits and graphs

Fig 11. Test circuit for measuring total harmonic distortion

With $f_{i}=1 \mathrm{MHz}$ adjust the switch input voltage for a 0 dBm level at the switch output, ($0 \mathrm{dBm}=1 \mathrm{~mW}$ into 50Ω). Then Increase the input frequency until the dB meter reads -3 dB
Fig 12. Test circuit for measuring the -3 dB frequency response

Test conditions: $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$; GND $=0 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=50 \Omega$; $\mathrm{R}_{\text {SOURCE }}=1 \mathrm{k} \Omega$.
Fig 13. Typical -3 dB frequency response

Adjust the switch input voltage for a 0 dBm level, $(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $600 \Omega)$
Fig 14. Test circuit for measuring isolation (OFF-state)

Test conditions: $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{R}_{\text {SOURCE }}=1 \mathrm{k} \Omega$.
Fig 15. Typical isolation (OFF-state) as a function of frequency

12. Package outline

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} $\mathbf{m a x}$.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(\mathbf{1})}$	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(1)}$	$\boldsymbol{\theta}$
mm	1.1	0.1	1.0	0.15	0.30	0.25	2.25	1.35	0.65	1.3	2.25	0.425	0.46					
	0.8	0.15	0.15	0.08	1.85	1.15	0.3	0.1	0.1	0.60	7°							
0.15	0°																	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT353-1		MO-203	SC-88A		$\begin{aligned} & \hline 00-09-01 \\ & 03-02-19 \\ & \hline \end{aligned}$

Fig 16. Package outline SOT353-1 (TSSOP5)
74HC_HCT1G66_4

detail X
DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A}	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{b p}$	\mathbf{c}	\mathbf{D}	\mathbf{E}	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}
mm	1.1	0.100	0.40	0.26	3.1	1.7	0.95	3.0 2.5	0.6 0.2	0.33 0.23	0.2	0.2	0.1

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOT753			SC-74A		-	

Fig 17. Package outline SOT753 (SC-74A)

13. Abbreviations

Table 13. Abbreviations

Acronym	Description
CMOS	Complementary Metal-Oxide Semiconductor
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic
DUT	Device Under Test

14. Revision history

Table 14. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC_HCT1G66_4	20081219	Product data sheet	-	74HC_HCT1G66_3
Modifications:	\bullet	The format of this data sheet has been redesigned to comply with the new identity		
	guidelines of NXP Semiconductors.			

15. Legal information

15.1 Data sheet status

Document status $[1][2]$	Product status $[3]$	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term 'short data sheet' is explained in section "Definitions".
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

15.2 Definitions

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet - A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

15.3 Disclaimers

General - Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes - Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.
Suitability for use - Nexperia products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or
malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.
Applications - Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.
Terms and conditions of sale - Nexperia products are sold
subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by Nexperia. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.
No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

17. Contents

1 General description............................ 1
2 Features . 1
3 Ordering information. 1
4 Marking. 2
5 Functional diagram . 2
6 Pinning information. 2
6.1 Pinning . 2
6.2 Pin description . 2

7 Functional description 3
8 Limiting values. 3
9 Recommended operating conditions. 3
10 Static characteristics. 4
10.1 Test circuits . 5
10.2 ON resistance. 6
10.3 ON resistance test circuit and graphs. 7

11 Dynamic characteristics 7
11.1 Waveforms and test circuit 9
11.2 Additional dynamic characteristics 10
11.3 Test circuits and graphs 11

12 Package outline . 14
13 Abbreviations.................................... . . . 16
14 Revision history. 16
15 Legal information. 17
15.1 Data sheet status . 17
15.2 Definitions . 17
15.3 Disclaimers . 17
15.4 Trademarks. 17

16 Contact information. 17
17 Contents . 18

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Nexperia manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAS4599DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 DG2502DB-T2-GE1

TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN\#PBF 74LV4066DB,118
FSA2275AUMX

