74HC40103
 8-bit synchronous binary down counter

Rev. 5 - 21 April 2016
Product data sheet

1. General description

The 74 HC 40103 is an 8-bit synchronous down counter. It has control inputs for enabling or disabling the clock (CP), for clearing the counter to its maximum count and for presetting the counter either synchronously or asynchronously. In normal operation, the counter is decremented by one count on each positive-going transition of the clock (CP). Counting is inhibited when the terminal enable input (TE) is HIGH. The terminal count output (TC) goes LOW when the count reaches zero if TE is LOW, and remains LOW for one full clock period. When the synchronous preset enable input $(\overline{\mathrm{PE}})$ is LOW, data at the jam input (P 0 to P 7) is clocked into the counter on the next positive-going clock transition regardless of the state of $\overline{T E}$. When the asynchronous preset enable input $(\overline{\mathrm{PL}})$ is LOW, data at the jam input (P 0 to P 7) is asynchronously forced into the counter regardless of the state of $\overline{P E}, \overline{T E}$, or $C P$. The jam inputs (P 0 to P 7) represent a single 8 -bit binary word.
 maximum count (decimal 255) regardless of the state of any other input. If all control inputs except $\overline{\text { TE }}$ are HIGH at the time of zero count, the counters will jump to the maximum count, giving a counting sequence of 256 clock pulses long. Device may be cascaded using the TE input and the TC output, in either a synchronous or ripple mode. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{Cc}.

2. Features and benefits

- Cascadable

- Synchronous or asynchronous preset
- Low-power dissipation
- Complies with JEDEC standard no. 7A
- CMOS input levels
- ESD protection:
- HBM JESD22-A114F exceeds 2000 V
- MM JESD22-A115-A exceeds 200 V
- Multiple package options
- Specified from $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ and from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

3. Applications

- Divide-by-n counters
- Programmable timers
- Interrupt timers
- Cycle/program counters.

4. Ordering information

Table 1. Ordering information

Type number	Package	Version		
	Temperature range	Name	Description	VOT109-1
74 HC 40103 D	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT

5. Functional diagram

Fig 1. Functional diagram

Fig 2. Logic symbol

Fig 3. IEC logic symbol

Fig 4. Timing diagram

Fig 5. Logic diagram

6. Pinning information

6.1 Pinning

Fig 6. Pin configuration

6.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
CP	1	clock input (LOW-to-HIGH, edge-triggered)
$\overline{\text { MR }}$	2	asynchronous master reset input (active LOW)
$\overline{\text { TE }}$	3	terminal enable input (active LOW)
P0	4	jam input 0
P1	5	jam input 1
P2	6	jam input 2
P3	7	jam input 3
GND	8	ground (0 V)
$\overline{\text { PL }}$	9	asynchronous preset enable input (active LOW)
P4	10	jam input 4
P5	11	jam input 5
P5	12	jam input 6
P7	13	jam input 7
$\overline{\text { TC }}$	14	terminal count output (active LOW)
$\overline{\text { PE }}$	15	synchronous preset enable input (active LOW)
VCC	16	positive supply voltage

7. Functional description

7.1 Function table

Table 3. Function table ${ }^{[1]}$

Control inputs				Preset mode	Action [2]
MR	PL	PE	TE		
L	X	X	X	asynchronous	clear to maximum count
H	L	X	X	asynchronous	preset asynchronously
	H	L	X	synchronous	preset on next LOW-to HIGH clock transition
		H	L	synchronous	count down
			H	synchronous	inhibit counter

[1] $\mathrm{H}=\mathrm{HIGH}$ voltage level; L = LOW voltage level; X = don't care.
[2] Clock connected to CP.
Synchronous operation: changes occur on the LOW-to-HIGH CP transition.
Jam inputs: MSD = P7, LSD = P0.

8. Limiting values

Table 4. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7	V
I_{IK}	input clamping current	$\mathrm{V}_{\mathrm{I}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{I}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$\underline{[1]}$	-	± 20
I_{OK}	output clamping current	$\mathrm{V}_{\mathrm{O}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$\underline{[1]}$	-	± 20
I_{O}	output current	$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	mA		
I_{CC}	supply current		-	± 25	mA
$\mathrm{I}_{\mathrm{GND}}$	ground current		-	+50	mA
$\mathrm{~T}_{\text {Stg }}$	storage temperature		-50	-	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation	SO16 package	$\underline{[2]}$	-	500

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] For SO16 package: above $70^{\circ} \mathrm{C}, \mathrm{P}_{\text {tot }}$ derates linearly with $8 \mathrm{~mW} / \mathrm{K}$.
[3] For TSSOP16 package: above $60^{\circ} \mathrm{C}, \mathrm{P}_{\text {tot }}$ derates linearly with $5.5 \mathrm{~mW} / \mathrm{K}$.

9. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_{CC}	supply voltage		2.0	5.0	6.0	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage		0	-	V_{CC}	V
V_{O}	output voltage		0	-	V_{CC}	V
$/ \Delta \mathrm{V}$	input transition rise and fall rates	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	-	625	ns
	$\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	1.67	139	ns	
	$\mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	83	ns	
	ambient temperature		-40	-	+125	${ }^{\circ} \mathrm{C}$

10. Static characteristics

Table 6. Static characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$						
$\mathrm{V}_{1 \mathrm{H}}$	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	1.5	1.2	-	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.15	2.4	-	V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	4.2	3.2	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	0.8	0.5	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	2.1	1.35	V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	2.8	1.8	V
V_{OH}	HIGH-level output voltage	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}				
		$\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	1.9	2.0	-	V
		$\mathrm{l}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	4.4	4.5	-	V
		$\mathrm{l}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	5.9	6.0	-	V
		$\mathrm{l}_{\mathrm{O}}=-4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}$	3.98	4.32	-	V
		$\mathrm{l}_{\mathrm{O}}=-5.2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	5.48	5.81	-	V
V_{OL}	LOW-level output voltage	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}				
		$\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	0	0.1	V
		$\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	0	0.1	V
		$\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	0	0.1	V
		$\mathrm{I}_{\mathrm{O}}=4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	0.15	0.26	V
		$\mathrm{l}_{\mathrm{O}}=5.2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	0.16	0.26	V
11	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	± 0.1	$\mu \mathrm{A}$
Icc	supply current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	8.0	$\mu \mathrm{A}$
C_{1}	input capacitance		-	3.5	-	pF

Table 6. Static characteristics ...continued At recommended operating conditions; voltages are referenced to GND (ground $=0 \mathrm{~V}$).

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	1.5	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.15	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	4.2	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	-	0.5	V
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	-	-	1.35	V
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	-	-	1.8	V
V_{OH}	HIGH-level output voltage	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}				
		$\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	1.9	-	-	V
		$\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	4.4	-	-	V
		$\mathrm{l}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	5.9	-	-	V
		$\mathrm{I}_{\mathrm{O}}=-4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.84	-	-	V
		$\mathrm{l}_{0}=-5.2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	5.34	-	-	V
$\mathrm{V}_{\text {OL }}$	LOW-level output voltage	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$				
		$\mathrm{l}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	-	0.1	V
		$\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-	0.1	V
		$\mathrm{l}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	0.1	V
		$\mathrm{I}_{\mathrm{O}}=4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-	0.33	V
		$\mathrm{l}_{\mathrm{O}}=5.2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	0.33	V
I	input leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	± 1.0	$\mu \mathrm{A}$
I_{Cc}	supply current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{GND} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	80	$\mu \mathrm{A}$
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	1.5	-	-	V
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	3.15	-	-	V
		$\mathrm{V}_{\mathrm{cc}}=6.0 \mathrm{~V}$	4.2	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{C C}=2.0 \mathrm{~V}$	-	-	0.5	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-	1.35	V
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	-	-	1.8	V
V_{OH}	HIGH-level output voltage	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$				
		$\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	1.9	-	-	V
		$\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	4.4	-	-	V
		$\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	5.9	-	-	V
		$\mathrm{I}_{\mathrm{O}}=-4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.7	-	-	V
		$\mathrm{l}_{\mathrm{O}}=-5.2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	5.2	-	-	V

Table 6. Static characteristics ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\text {OL }}$	LOW-level output voltage	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$				
		$\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	-	0.1	V
		$\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-	0.1	V
		$\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	0.1	V
		$\mathrm{I}_{\mathrm{O}}=4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-	0.4	V
		$\mathrm{l}_{\mathrm{O}}=5.2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	0.4	V
1	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	± 1.0	$\mu \mathrm{A}$
ICC	supply current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{GND} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	160	$\mu \mathrm{A}$

11. Dynamic characteristics

Table 7. Dynamic characteristics
GND $=0 \mathrm{~V} ; t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$; see Figure 13 .

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$						
t_{pd}	propagation delay	CP to $\overline{\mathrm{TC}}$; see Figure 7 [1]				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	96	300	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	35	60	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	28	51	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	30	-	ns
		$\overline{\mathrm{TE}}$ to $\overline{\mathrm{TC}}$; see Figure 8				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	50	175	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	18	35	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	14	30	ns
		$\overline{\mathrm{PL}}$ to $\overline{\mathrm{TC}}$; see Figure 9				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	102	315	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	37	63	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	30	53	ns
$\mathrm{t}_{\text {PHL }}$	HIGH to LOW propagation delay	$\overline{\mathrm{MR}}$ to $\overline{\mathrm{TC}}$; see Figure 9				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	83	275	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	30	55	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	24	47	ns
t_{t}	transition time	see Figure 8				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	19	75	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	7	15	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	6	13	ns

Table 7. Dynamic characteristics ...continued $G N D=0 \mathrm{~V} ; t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$; see Figure 13.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
tw	pulse width	CP HIGH or LOW; see Figure 7				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	165	22	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	33	8	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	28	6	-	ns
		$\overline{\mathrm{MR}}$ LOW; see Figure 9				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	125	39	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	25	14	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	21	11	-	ns
		$\overline{\text { PL }}$ LOW; see Figure 9				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	125	33	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	25	12	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	21	10	-	ns
$\mathrm{t}_{\text {rec }}$	recovery time	$\overline{\mathrm{MR}}$ to CP, $\overline{\mathrm{PL}}$ to CP; see Figure 10				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	50	14	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	10	5	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	9	4	-	ns
$\mathrm{t}_{\text {su }}$	set-up time	$\overline{\mathrm{PE}}$ to CP; see Figure 11				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	75	22	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	15	8	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	13	6	-	ns
		$\overline{\mathrm{TE}}$ to CP; see Figure 12				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	150	44	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	30	16	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	26	13	-	ns
		Pn to CP; see Figure 11				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	75	22	-	ns
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	15	8	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	13	6	-	ns
$t_{\text {h }}$	hold time	$\overline{\mathrm{PE}}$ to CP; see Figure 11				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	0	-14	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	0	-5	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	0	-4	-	ns
		$\overline{\mathrm{TE}}$ to CP; see Figure 12				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	0	-30	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	0	-11	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	0	-9	-	ns
		Pn to CP; see Figure 11				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	0	-17	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	0	-6	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	0	-5	-	ns

Table 7. Dynamic characteristics ...continued
$G N D=0 \mathrm{~V} ; t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$; see Figure 13.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{f}_{\text {max }}$	maximum frequency	see Figure 7				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	3.0	10	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	15	29	-	MHz
		$\mathrm{V}_{\mathrm{Cc}}=6.0 \mathrm{~V}$	18	35	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	32	-	MHz
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	$\mathrm{V}_{1}=\mathrm{GND}$ to V_{CC}	-	24	-	pF
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
$\mathrm{t}_{\text {pd }}$	propagation delay	CP to $\overline{\mathrm{TC}}$; see Figure 7				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	-	375	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-	75	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	64	ns
		$\overline{\mathrm{TE}}$ to $\overline{\mathrm{TC}}$; see Figure 8				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	-	220	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-	44	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	37	ns
		$\overline{\mathrm{PL}}$ to $\overline{\mathrm{TC}}$; see Figure 9				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	-	395	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-	79	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	40	ns
$\mathrm{t}_{\text {PHL }}$	HIGH to LOW propagation delay	$\overline{\mathrm{MR}}$ to $\overline{\mathrm{TC}}$; see Figure 9				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	-	345	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-	69	ns
		$\mathrm{V}_{\text {cc }}=6.0 \mathrm{~V}$	-	-	59	ns
t_{t}	transition time	see Figure 8 [2]				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	-	95	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-	19	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	16	ns
t_{w}	pulse width	CP HIGH or LOW; see Figure 7				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	205	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	41	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	35	-	-	ns
		$\overline{\mathrm{MR}}$ LOW; see Figure 9				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	155	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	31	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	26	-	-	ns
		$\overline{\text { PL }}$ LOW; see Figure 9				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	155	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	31	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	26	-	-	ns

Table 7. Dynamic characteristics ...continued $G N D=0 \mathrm{~V} ; t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$; see Figure 13.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{t}_{\text {rec }}$	recovery time	$\overline{\mathrm{MR}}$ to CP, $\overline{\mathrm{PL}}$ to CP; see Figure 10				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	65	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	13	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	11	-	-	ns
$\mathrm{t}_{\text {su }}$	set-up time	$\overline{\mathrm{PE}}$ to CP; see Figure 11				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	95	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	19	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	16	-	-	ns
		$\overline{\mathrm{TE}}$ to CP; see Figure 12				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	190	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	38	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	33	-	-	ns
		Pn to CP; see Figure 11				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	95	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	19	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	16	-	-	ns
$t_{\text {h }}$	hold time	$\overline{\mathrm{PE}}$ to CP; see Figure 11				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	0	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	0	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	0	-	-	ns
		$\overline{\mathrm{TE}}$ to CP; see Figure 12				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	0	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	0	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	0	-	-	ns
		Pn to CP; see Figure 11				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	0	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	0	-	-	ns
		$\mathrm{V}_{\mathrm{cc}}=6.0 \mathrm{~V}$	0	-	-	ns
$\mathrm{f}_{\text {max }}$	maximum frequency	see Figure 7				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	2.4	-	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	12	-	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	14	-	-	MHz

Table 7. Dynamic characteristics ...continued $G N D=0 \mathrm{~V} ; t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$; see Figure 13.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to +125 ${ }^{\circ} \mathrm{C}$						
t_{pd}	propagation delay	CP to $\overline{\mathrm{TC}}$; see Figure 7 [1]				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	-	450	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-	90	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	77	ns
		$\overline{\mathrm{TE}}$ to $\overline{\mathrm{TC}}$; see Figure 8				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	-	265	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-	53	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	45	ns
		$\overline{\mathrm{PL}}$ to $\overline{\mathrm{TC}}$; see Figure 9				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	-	475	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-	95	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	81	ns
$\mathrm{t}_{\text {PHL }}$	HIGH to LOW propagation delay	$\overline{\mathrm{MR}}$ to $\overline{\mathrm{TC}}$; see Figure 9				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	-	415	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-	83	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	71	ns
t_{t}	transition time	see Figure 8				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	-	110	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-	22	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	19	ns
t_{w}	pulse width	CP HIGH or LOW; see Figure 7				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	250	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	50	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	43	-	-	ns
		$\overline{\mathrm{MR}}$ LOW; see Figure 9				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	190	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	38	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	32	-	-	ns
		$\overline{\mathrm{PL}} \mathrm{LOW}$; see Figure 9				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	190	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	38	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	32	-	-	ns
$\mathrm{t}_{\text {ec }}$	recovery time	$\overline{\mathrm{MR}}$ to CP, $\overline{\mathrm{PL}}$ to CP; see Figure 10				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	75	-	-	ns
		$\mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}$	15	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	13	-	-	ns

Table 7. Dynamic characteristics ...continued
$G N D=0 \mathrm{~V} ; t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$; see Figure 13.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{t}_{\text {su }}$	set-up time	$\overline{\mathrm{PE}}$ to CP; see Figure 11				
		$\mathrm{V}_{\mathrm{Cc}}=2.0 \mathrm{~V}$	110	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	22	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	19	-	-	ns
		$\overline{\mathrm{TE}}$ to CP; see Figure 12				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	225	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	45	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	38	-	-	ns
		Pn to CP; see Figure 11				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	110	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	22	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	19	-	-	ns
th	hold time	$\overline{\mathrm{PE}}$ to CP; see Figure 11				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	0	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	0	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	0	-	-	ns
		$\overline{\mathrm{TE}}$ to CP; see Figure 12				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	0	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	0	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	0	-	-	ns
		Pn to CP; see Figure 11				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	0	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	0	-	-	ns
		$\mathrm{V}_{\text {CC }}=6.0 \mathrm{~V}$	0	-	-	ns
$\mathrm{f}_{\text {max }}$	maximum frequency	see Figure 7				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	2.0	-	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	10	-	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	12	-	-	MHz

[1] t_{pd} is the same as $\mathrm{t}_{\mathrm{PHL}}$, t_{PL}.
[2] t_{t} is the same as $t_{T H L}, t_{T L H}$.
[3] $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$).
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i} \times N+\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V ;
$\mathrm{N}=$ number of inputs switching;
$\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of outputs.

12. Waveforms

$$
V_{M}=0.5 \times V_{1}
$$

Fig 7. Waveforms showing the clock input (CP) to TC propagation delays, the clock pulse width, the output transition times and the maximum clock pulse frequency

$\mathrm{V}_{\mathrm{M}}=0.5 \times \mathrm{V}_{\mathrm{I}}$
Fig 8. Waveforms showing the $\overline{\mathrm{TE}}$ to $\overline{\mathrm{TC}}$ propagation delays

$\mathrm{V}_{\mathrm{M}}=0.5 \times \mathrm{V}_{\mathrm{I}}$
Fig 10. Waveforms showing removal time for $\overline{M R}$ and PL

The shaded areas indicate when the input is permitted to change for predictable output performance.
$\mathrm{V}_{\mathrm{M}}=0.5 \times \mathrm{V}_{\mathrm{I}}$
Fig 11. Waveforms showing hold and set-up times for Pn, PE to CP

$V_{M}=0.5 \times V_{I}$

Fig 12. Waveforms showing hold and set-up times for MR or PE to CP

Test data is given in Table 8
Definitions for test circuit:
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to output impedance Z_{o} of the pulse generator.
$C_{L}=$ Load capacitance including jig and probe capacitance.
Fig 13. Test circuit for measuring switching times

Table 8. Test data

Supply	Input	Load	
$\mathbf{V}_{\mathbf{C C}}$	$\mathbf{V}_{\mathbf{I}}$	$\mathbf{t}_{\mathbf{r}}, \mathbf{t}_{\mathbf{f}}$	\mathbf{C}_{L}
2.0 V	$\mathrm{~V}_{\mathrm{CC}}$	6 ns	50 pF
4.5 V	$\mathrm{~V}_{\mathrm{CC}}$	6 ns	50 pF
6.0 V	$\mathrm{~V}_{\mathrm{CC}}$	6 ns	50 pF
5.0 V	$\mathrm{~V}_{\mathrm{CC}}$	6 ns	15 pF

13. Application information

Fig 14. Programmable timer

Fig 15. Divide-by-N counter

14. Package outline

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

| UNIT | \mathbf{A} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| max. | | $\mathbf{A}_{\mathbf{1}} \quad \mathbf{A}_{\mathbf{2}}$

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOT109-1	$076 E 07$	MS-012			$03-02-19$	

Fig 16. Package outline SOT109-1 (SO16)

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} $\mathbf{m a x}$.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(\mathbf{1})}$	$\mathbf{E}^{(\mathbf{2})}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(\mathbf{1})}$	$\boldsymbol{\theta}$
mm	1.1	0.15	0.95	0.25	0.30	0.2	5.1	4.5	0.65	6.6	1	0.75	0.4	0.2	0.13	0.1	0.40	8°
	0.05	0.80			0.1	4.9	4.3	0.65	6.2	1	0.50	0.3			0°			

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT403-1		MO-153		\cdots ¢	$\begin{array}{r} -9-12-27 \\ 03-02-18 \end{array}$

Fig 17. Package outline SOT403-1 (TSSOP16)

15. Abbreviations

Table 9. Abbreviations

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model

16. Revision history

Table 10. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC40103 v. 5	20160421	Product data sheet	-	74HC40103 v. 4
Modifications:	- Type number 74HC40103DB (SOT338-1) removed.			
74HC40103 v. 4	20160127	Product data sheet		74HC40103 v. 3
Modifications:	- Type number 74HC40103N (SOT38-4) removed.			
74HC40103 v. 3	20041112	Product data sheet	-	74HC_HCT40103_CNV v. 2
Modifications:	- The format of this data sheet has been redesigned to comply with the current presentation and information standard of Philips Semiconductors. - Removed type number 74HCT40103. - Inserted family specification.			
74HC_HCT40103_CNV v. 2	19970918	Product specification	-	74HC_HCT40103 v. 1
74HC_HCT40103 v. 1	19901201	Product specification	-	-

17. Legal information

17.1 Data sheet status

Document status $\underline{[1][2]}$	Product status $[3]$	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term 'short data sheet' is explained in section "Definitions",
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

17.2 Definitions

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet - A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.
Product specification - The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

17.3 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.
Right to make changes - Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof

Suitability for use - Nexperia products are not designed authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia
accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.
Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.
Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia
products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.
No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control - This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products - Unless this data sheet expressly states that this specific Nexperia product is automotive qualified the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.
In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.
Translations - A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

17.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

18. Contact information

For more information, please visit: http://www.nexperia.com
For sales office addresses, please send an email to: salesaddresses@nexperia.com

19. Contents

1 General description 1
2 Features and benefits 1
3 Applications 1
4 Ordering information. 2
5 Functional diagram 2
6 Pinning information 5
6.1 Pinning 5
6.2 Pin description 5
7 Functional description 6
7.1 Function table 6
8 Limiting values 6
9 Recommended operating conditions. 7
10 Static characteristics 7
11 Dynamic characteristics 9
12 Waveforms 15
13 Application information. 17
14 Package outline 18
15 Abbreviations 20
16 Revision history 20
17 Legal information. 21
17.1 Data sheet status 21
17.2 Definitions. 21
17.3 Disclaimers 21
17.4 Trademarks 22
18 Contact information 22
19 Contents 23

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Counter ICs category:
Click to view products by Nexperia manufacturer:
Other Similar products are found below :
CD4018BE CD4033BE CD4060BE NLV14040BDR2G NLV14017BDG 74VHC163FT 74HCT4040BQ-Q100X 74VHC161FT(BJ) 74VHC163FT(BJ) 74HC393D.652 74HCT4040D.653 74HC191D.652 74HC160D,652 74HC390DB,118 74HC163PW. 112 74HC191PW. 112 74HC393DB. 118 74HC4024D. 652 74HCT193DB. 112 74HCT390DB. 112 74HC193PW.112 74HC390D. 652 74HC4017PW. 112 74HC4020DB. 112 74HC4020PW. 112 74HC4040DB. 112 74HC4040PW. 112 74HC4060DB. 112 74HC4520D. 112 74HCT393DB. 112 74HCT6323AD. 112 74LV393D. 112 74LV393PW. 112 74LV4060D. 112 74LV4060DB. 112 74LV4060PW. 112 74LVC161D. 112 74LVC161PW. 112 XD74LS90 XD74LS93 CD4017BE XD74LS161 XD74LS192 XD74LS193 CD4060BE XD4553 XD74LS163 XD74LS190 XD40192 CD4040BE

