Programmable ripple counter with oscillator; 3-state Rev. 4 — 9 July 2018 Product data sheet

1 General description

The 74HC6323A; 74HCT6323A is an oscillator designed for quartz crystal combined with a programmable 3-state counter, a 3-state output buffer and an overriding asynchronous master reset (\overline{MR}). With the two select inputs S1 and S2 the counter can be switched in the divide-by-1, 2, 4 or 8 mode. If left floating the clock is divided by 8. The oscillator is designed to operate either in the fundamental or third overtone mode depending on the crystal and external components applied. On-chip capacitors minimize external component count for third overtone crystal applications. The oscillator may be replaced by an external clock signal at input X1. In this event the other oscillator pin (X2) must be floating. The counter advances on the negative-going transition of X1. A LOW level on \overline{MR} resets the counter, stops the oscillator and sets the output buffer in the 3-state condition. \overline{MR} can be left floating since an internal pull-up resistor will make the \overline{MR} inactive.

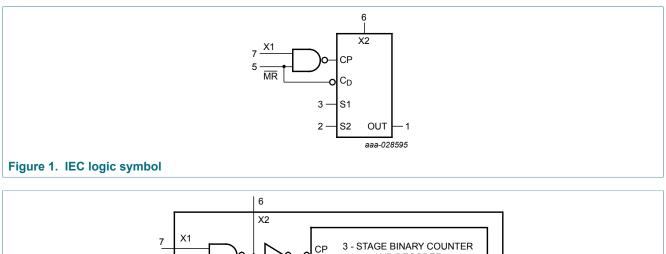
The X1 input has CMOS input switching levels and may be driven by a TTL output using a pull-up resistor connected to V_{CC} . Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC} .

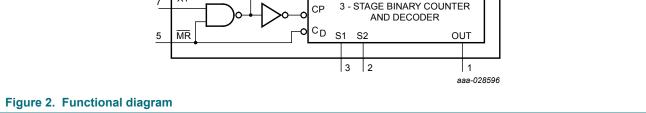
2 Features and benefits

- Programmable 3-stage ripple counter
- Suitable for over-tone crystal application up to 50 MHz (V_{CC} = 5 V \pm 10%)
- 3-state output buffer
- Two internal capacitors
- · Recommended operating range for use with third overtone crystals 3 to 6 V
- Oscillator stop function (MR)
- Input levels:
 - For 74HC6323: CMOS level
 - For 74HCT6323: TTL level
- ESD protection:
 - HBM JESD22-A114-A exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C

ne<mark>x</mark>peria

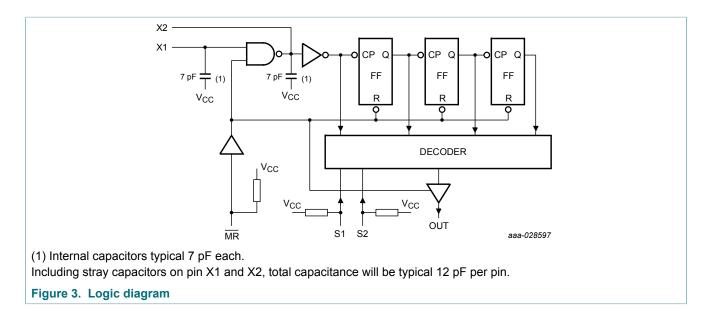
Programmable ripple counter with oscillator; 3-state

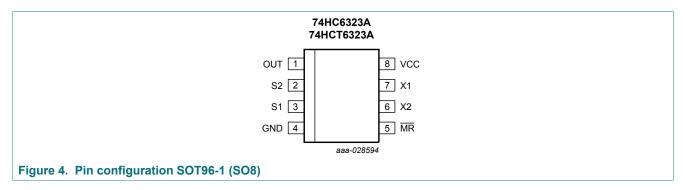

3 Applications


- Control counters
- Timers
- Frequency dividers
- Time-delay circuits
- CIO (Compact Integrated Oscillator)
- Third-overtone crystal operation

4 Ordering information

Type number	Package							
	Temperature range	Name	Description	Version				
74HC6323AD		plastic small outline package; 8 leads;	SOT96-1					
74HCT6323AD			body width 3.9 mm					


5 Functional diagram


74HC6323A; 74HCT6323A

Programmable ripple counter with oscillator; 3-state

6 **Pinning information**

6.1 Pinning

6.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
OUT	1	counter output
S1, S2	3, 2	mode select inputs for divide by 1, 2, 4 or 8
GND	4	ground (0 V)
MR	5	master reset input (active LOW)
X2	6	oscillator pin
X1	7	clock input /oscillator pin
V _{CC}	8	supply voltage

74HC_HCT6323A Product data sheet

Programmable ripple counter with oscillator; 3-state

7 Functional description

Table 3.		
Inputs		Outputs
S1 S2		OUT
0	0	fi
0	1	f _i /2
1	0	f _i /4
1	1	f _i /8

8 Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Мах	Unit
V _{CC}	supply voltage		-0.5	+7	V
I _{IK}	input clamping current	$V_{\rm I}$ < -0.5 V or $V_{\rm I}$ > $V_{\rm CC}$ + 0.5 V	-	±20	mA
I _{ОК}	output clamping current	$V_{\rm O}$ < -0.5 V or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5 V	-	±20	mA
I _O	output current	OUT output; -0.5 V < V_0 < V_{CC} + 0.5 V	-	±35	mA
I _{CC}	supply current	OUT output	-	70	mA
I _{GND}	ground current	OUT output	-70	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	T _{amb} = -40 °C to +125 °C ^[1]	-	500	mW

[1] P_{tot} derates linearly with 8 mW/K above 70 °C.

9 Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions	7	4HC6323	A	74	4HCT632	3A	Unit
			Min	Тур	Max	Min	Тур	Мах	
V _{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V _{CC}	0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	-	+125	-40	-	+125	°C
Δt/ΔV	input transition rise and fall rate	V _{CC} = 2.0 V	-	-	625	-	-	-	ns/V
		V _{CC} = 4.5 V	-	1.67	139	-	1.67	139	ns/V
		V _{CC} = 6.0 V	-	-	83	-	-	-	ns/V

10 Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	rameter Conditions		25 °C		-		
			Min	Тур	Max			
74HC63	23A							
V _{IH}	HIGH-level input	MR, X1, S1, S2 input						
	Voltage V _{CC} = 2.0 V	1.5	1.2	-				
		V _{CC} = 4.5 V	3.15	2.4	-			
		V _{CC} = 6.0 V	4.2	3.2	-			
V _{IL}	23A HIGH-level input voltage MR, X1, S1, S2 input $V_{CC} = 2.0 V$ $V_{CC} = 4.5 V$ $V_{CC} = 6.0 V$ $V_{CC} = 6.0 V$ LOW-level input voltage MR, X1, S1, S2 input $V_{CC} = 2.0 V$ $V_{CC} = 2.0 V$ $V_{CC} = 4.5 V$ $V_{CC} = 4.5 V$ $V_{CC} = 6.0 V$ $V_{CC} = 6.0 V$ HIGH-level output voltage X2 output $V_{CC} = 6.0 V$; X1 = GND; MR = V_{CC} ; $I_O = -2.6 I$ $V_{CC} = 4.5 V$; X1 = GND; MR = V_{CC} ; $I_O = -2.6 I$ $V_{CC} = 4.5 V$; X1 = GND; MR = V_{CC} ; $I_O = -2.6 I$ $V_{CC} = 4.5 V$; X1 = GND; MR = V_{CC} ; $I_O = -2.6 I$ $V_{CC} = 4.5 V$; X1 = GND; MR = V_{CC} ; $I_O = -2.6 I$ $V_{CC} = 4.5 V$; X1 = GND; MR = V_{CC} ; $I_O = -2.6 I$ $V_{CC} = 4.5 V$; X1 = GND; MR = V_{CC} ; $I_O = -2.6 I$ $V_{CC} = 4.5 V$; X1 = GND; MR = V_{CC} ; $I_O = -2.0 I$ $V_{CC} = 4.5 V$; X1 = V_{CC} ; MR = GND; $I_O = -2.0 I$ $V_{CC} = 4.5 V$; X1 = V_{CC} ; MR = GND; $I_O = -20 I$ $V_{CC} = 2.0 V$; X1 = V_{CC} ; MR = GND; $I_O = -20 I$ $V_{CC} = 4.5 V$; X1 = V_{CC} ; MR = GND; $I_O = -20 I$	MR, X1, S1, S2 input						
	voltage	V _{CC} = 2.0 V	-	0.8	0.5			
		V _{CC} = 4.5 V	-	2.1	1.35			
		V _{CC} = 6.0 V	-	2.8	1.8			
V _{OH}		X2 output						
	voltage	V_{CC} = 4.5 V; X1 = GND; \overline{MR} = V_{CC} ; I ₀ = -2.6 mA	3.98	-	-	:		
		V_{CC} = 6.0 V; X1 = GND; \overline{MR} = V_{CC} ; I ₀ = -3.3 mA	5.48	-	-	Į		
		V_{CC} = 4.5 V; X1 = V_{CC} ; \overline{MR} = GND; I _O = -2.6 mA	3.98	-	-	:		
		V_{CC} = 6.0 V; X1 = V_{CC} ; \overline{MR} = GND; I _O = -3.3 mA	5.48	-	-	į		
		V_{CC} = 2.0 V; X1 = GND; \overline{MR} = V_{CC} ; I_0 = -20 μ A	1.9	2.0	-			
		V_{CC} = 4.5 V; X1 = GND; \overline{MR} = V_{CC} ; I_0 = -20 μ A	4.4	4.5	-			
		V_{CC} = 6.0 V; X1 = GND; \overline{MR} = V_{CC} ; I ₀ = -20 µA	5.9	6.0	-			
		V_{CC} = 2.0 V; X1 = V_{CC} ; \overline{MR} = GND; I _O = -20 µA	1.9	2.0	-			
		V_{CC} = 4.5 V; X1 = V_{CC} ; \overline{MR} = GND; I _O = -20 µA	4.4	4.5	-			
		V_{CC} = 6.0 V; X1 = V_{CC} ; \overline{MR} = GND; I _O = -20 µA	5.9	6.0	-			

$\begin{tabular}{ c c c c } \hline Program & \hline$			mak				
Symbol	Parameter Conditions			25 °C		-	
			Min	Тур	Max		
V _{OH}		OUT output; $V_I = V_{IH}$ or V_{IL}					
	voltage	V _{CC} = 2.0 V; I _O = -20 µA	1.9	2.0	-		
		V _{CC} = 4.5 V; I _O = -20 µA	4.4	4.5	-		
		V _{CC} = 6.0 V; I _O = -20 µA	5.9	6.0	-		
V V _{OL} L		V _{CC} = 4.5 V; I _O = -6 mA	3.98	-	-		
		V _{CC} = 6.0 V; I _O = -7.8 mA	5.48	-	-		
V _{OL}		X2 output					
V	voltage	V_{CC} = 4.5 V; X1 = V_{CC} ; \overline{MR} = V_{CC} ; I_0 = 2.6 mA	-	-	0.26		
		V_{CC} = 6.0 V; X1 = V_{CC} ; \overline{MR} = V_{CC} ; I_0 = 3.3 mA	-	-	0.26		
		V_{CC} = 2.0 V; X1 = V_{CC} ; \overline{MR} = V_{CC} ; I_0 = 20 μ A	-	0.0	0.1		
			V_{CC} = 4.5 V; X1 = V_{CC} ; \overline{MR} = V_{CC} ; I_0 = 20 μ A	-	0.0	0.1	
		V_{CC} = 6.0 V; X1 = V_{CC} ; \overline{MR} = V_{CC} ; I_{O} = 20 μ A	-	0.0	0.1		
V _{OL}		OUT output; $V_I = V_{IH}$ or V_{IL}					
	voltage	V _{CC} = 2.0 V; I _O = 20 μA	-	0.0	0.1		
		V _{CC} = 4.5 V; I _O = 20 μA	-	0.0	0.1		
		V _{CC} = 6.0 V; I _O = 20 μA	-	0.0	0.1		
		V _{CC} = 4.5 V; I _O = 6 mA	-	-	0.26		
		V _{CC} = 6.0 V; I _O = 7.8 mA	-	-	0.26		
lı	input leakage current	X1 input; V_{CC} = 6.0 V; \overline{MR} = V_{CC} ; S1 = V_{CC} ; S2 = V_{CC}	-	-	±0.1		
I _{pu}	pull-up current	\overline{MR} , S1 and S2 inputs; V_{CC} = 6.0 V; V_{I} = GND; see Figure 13 and Figure 14.	-5	-30	-100		
I _{CC}	supply current	V_{CC} = 6.0 V; V_{I} = V_{CC} or GND; I_{O} = 0 A	-	-	8		
CI	input capacitance	MR, S1 and S2 inputs	-	3.5	-		

					Program	nal
Symbol	Parameter	Conditions		25 °C		
			Min	Тур	Max	
74HCT6	323A					
V _{IH}	HIGH-level input	$\overline{\text{MR}},$ S1 and S2 inputs; V _{CC} = 4.5 V to 5.5 V	2.0	-	-	
	323A HIGH-level input voltage LOW-level input voltage	X1 input				
		V_{CC} = 4.5 V	3.15	-	-	
74HCT632: VIH H VIL L VOH H VOH H VOH L VOH L		V_{CC} = 5.5 V	3.85	-	-	
V _{IL}		$\overline{\text{MR}},$ S1 and S2 inputs; V _{CC} = 4.5 V to 5.5 V	-	-	0.8	
	T6323AHIGH-level input voltageMR, S1 and S2 inputs; $V_{CC} = 4.5 V$ to $5.5 V$ $V_{CC} = 4.5 V$ $V_{CC} = 5.5 V$ LOW-level input voltageMR, S1 and S2 inputs; $V_{CC} = 4.5 V$ to $5.5 V$ $X1$ input $V_{CC} = 5.5 V$ MR, S1 and S2 inputs; $V_{CC} = 4.5 V$ to $5.5 V$ HIGH-level output voltageMR, S1 and S2 inputs; $V_{CC} = 4.5 V$ $V_{CC} = 5.5 V$ MRHIGH-level output voltageX2 output; $V_{CC} = 4.5 V$ $V_{CC} = 5.5 V$ X1 = GND; $MR = V_{CC}$; $I_0 = -2.6 mA$ X1 = GND; $MR = V_{CC}$; $I_0 = -2.6 mA$ X1 = GND; $MR = V_{CC}$; $I_0 = -2.6 mA$ X1 = GND; $MR = V_{CC}$; $I_0 = -2.0 \mu A$ $X1 = V_{CC}$; $MR = GND$; $I_0 = -2.0 \mu A$ OUT output; $V_{CC} = 4.5 V$; $V_1 = V_{1H}$ or V_{1L} $I_0 = -20 \mu A$ $I_0 = -20 \mu A$ $I_0 = 20 \mu A$ OUT output; $V_{CC} = 4.5 V$; $Y_1 = V_{IH}$ or V_{1L} $I_0 = 20 \mu A$ $I_0 = 20 \mu A$ $I_0 = 20 \mu A$ $I_0 = 6 mA$	X1 input				
		V_{CC} = 4.5 V	-	-	1.35	
		V _{CC} = 5.5 V	-	-	1.65	
V _{OH}		X2 output; V_{CC} = 4.5 V				
N	voltage	X1 = GND; \overline{MR} = V _{CC} ; I _O = -2.6 mA	3.98	-	-	
		X1 = V _{CC} ; MR = GND; I _O = -2.6 mA	3.98	-	-	
		X1 = GND; \overline{MR} = V _{CC} ; I _O = -20 μ A	4.4	4.5	-	
		X1 = V _{CC} ; <u>MR</u> = GND; I _O = -20 μA	4.4	4.5	-	
		OUT output; V_{CC} = 4.5 V; V_I = V_{IH} or V_{IL}				
		Ι _O = -20 μΑ	4.4	4.5	-	
		I _O = -6 mA	3.98	-	-	
V _{OL}	-	X2 output; V_{CC} = 4.5 V; X1 = V_{CC} ; \overline{MR} = V_{CC}				
	voltage	I _O = 2.6 mA	-	-	0.26	
		I _O = 20 μA	-	0.0	0.1	
		OUT output; V_{CC} = 4.5 V; V_{I} = V_{IH} or V_{IL}				
		I _O = 20 μA	-	0.0	0.1	
		I _O = 6 mA	-	-	0.26	
I		X1 input; V_{CC} = 5.5 V; \overline{MR} = V_{CC} ; S1 = V_{CC} ; S2 = V_{CC}	-	-	±0.1	
I _{pu}	pull-up current		-5	-25	-100	

				I	Program	nab
Symbol	Parameter	Conditions		25 °C		-
			Min	Тур	Мах	
I _{CC}	supply current	V_{CC} = 5.5 V; V_{I} = V_{CC} or GND; I_{O} = 0 A	-	-	8	
ΔI _{CC}	additional supply current	$\overline{MR},$ S1 and S2 inputs; V_{CC} = 5.5 V; V _I = V_{CC} or GND; other inputs at V _{CC} or GND; I _O = 0 A	-	40	144	
CI	input capacitance	MR, S1 and S2 inputs	-	3.5	-	

Programmable ripple counter with oscillator; 3-state

11 Dynamic characteristics

Table 7. Dynamic characteristics

 $GND = 0 V; C_L = 50 pF$ unless otherwise specified; for test circuit see Figure 8.

Symbol	Parameter	Conditions		25 °C			°C to 5 °C		°C to 5 °C	Unit
				Тур	Мах	Min	Мах	Min	Max	
74HC63	23A	·			1					
t _{pd}	propagation delay	X1 to OUT divide by 1; [1] S1 = GND; S2 = GND; see <u>Figure 5</u>								
		V _{CC} = 2.0 V	-	61	185	-	230	-	275	ns
		V _{CC} = 4.5 V	-	22	37	-	46	-	55	ns
		V _{CC} = 5.0 V; C _L = 15 pF	-	17	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	19	31	-	39	-	47	ns
		X1 to OUT divide by 2; S1 = GND; S2 = V _{CC} ; see <u>Figure 5</u>								
		V _{CC} = 2.0 V	-	74	235	-	290	-	350	ns
		V _{CC} = 4.5 V	-	27	47	-	58	-	70	ns
		V _{CC} = 6.0 V	-	23	40	-	49	-	60	ns
		X1 to OUT divide by 4; S1 = V _{CC} ; S2 = GND; see <u>Figure 5</u>								
		V _{CC} = 2.0 V	-	91	285	-	355	-	425	ns
		V _{CC} = 4.5 V	-	33	57	-	71	-	85	ns
		V _{CC} = 6.0 V	-	28	48	-	60	-	72	ns
		X1 to OUT divide by 8; S1 = V_{CC} ; S2 = V_{CC} ; see <u>Figure 5</u>								
		V _{CC} = 2.0 V	-	105	335	-	415	-	500	ns
		V _{CC} = 4.5 V	-	38	67	-	83	-	100	ns
		V _{CC} = 6.0 V	-	32	57	-	71	-	85	ns
t _{PZL}	OFF-state	MR to OUT; see Figure 6								
	to LOW propagation	V _{CC} = 2.0 V	-	36	150	-	185	-	225	ns
	delay	V _{CC} = 4.5 V	-	13	30	-	37	-	45	ns
		V _{CC} = 6.0 V	-	11	26	-	31	-	38	ns
t _{PZH}	OFF-state	MR to OUT; see Figure 6 [2]								
	to HIGH propagation	V _{CC} = 2.0 V	-	61	200	-	250	-	300	ns
	delay	V _{CC} = 4.5 V	-	22	40	-	50	-	60	ns
		V _{CC} = 6.0 V	-	19	34	-	43	-	51	ns
t _{dis}	disable time	MR to OUT; see Figure 6 [3]								
		V _{CC} = 2.0 V	-	75	150	-	185	-	225	ns
		V _{CC} = 4.5 V	-	15	30	-	37	-	45	ns
		V _{CC} = 6.0 V	-	13	26	-	31	-	38	ns

74HC6323A; 74HCT6323A

Programmable ripple counter with oscillator; 3-state

Symbol	Parameter	Conditions		25 °C			°C to 5 °C	-40 °C to +125 °C		Unit
			Min	Тур	Мах	Min	Мах	Min	Мах	
tt	transition	OUT; see <u>Figure 5</u> ^[4]								
	time	V _{CC} = 2.0 V	-	14	60	-	75	-	90	ns
		V _{CC} = 4.5 V	-	5	12	-	15	-	19	ns
		V _{CC} = 6.0 V	-	4	10	-	13	-	15	ns
t _W	pulse width	X1 HIGH or LOW; see Figure 5								
		V _{CC} = 2.0 V	50	17	-	60	-	75	-	ns
		V _{CC} = 4.5 V	10	6	-	12	-	15	-	ns
		V _{CC} = 6.0 V	9	5	-	10	-	13	-	ns
		MR LOW; see <u>Figure 7</u>								
		V _{CC} = 2.0 V	80	22	-	100	-	120	-	ns
		V _{CC} = 4.5 V	16	8	-	20	-	24	-	ns
		V _{CC} = 6.0 V	14	7	-	17	-	20	-	ns
t _{rec}	recovery time	MR to X1; see Figure 7								
		V _{CC} = 2.0 V	100	19	-	125	-	150	-	ns
		V _{CC} = 4.5 V	20	7	-	25	-	30	-	ns
		V _{CC} = 6.0 V	17	6	-	21	-	26	-	ns
f _{max}	maximum	X1; see Figure 5								
	frequency	V _{CC} = 2.0 V	10	17	-	8	-	6.6	-	MHz
		V _{CC} = 4.5 V	50	85	-	40	-	33	-	MHz
		V _{CC} = 5.0 V; C _L = 15 pF	-	90	-	-	-	-	-	MHz
		V _{CC} = 6.0 V	59	100	-	47	-	39	-	MHz
C _{PD}	power dissipation capacitance	An external clock is applied to X1 [5] with: $t_r = t_f \le 6$ ns, $V_I = GND$ to V_{CC} , MR = HIGH								
		divide by 1; S1 = GND; S2 = GND	-	54	-	-	-	-	-	pF
		divide by 2; S1 = GND; S2 = V_{CC}	-	42	-	-	-	-	-	pF
		divide by 4; S1 = V _{CC} ; S2 = GND	-	36	-	-	-	-	-	pF
		divide by 8; S1 = V_{CC} ; S2 = V_{CC}	-	33	-	-	-	-	-	pF

Programmable ripple counter with oscillator; 3-state

Symbol Parameter		Conditions		25 °C		-40 °C to +85 °C		-40 °C to +125 °C		Unit	
			Min	Тур	Мах	Min	Мах	Min	Мах		
74HCT6	323A	·									
t _{pd}	propagation delay	X1 to OUT divide by 1; S1 = GND; S2 = GND; see <u>Figure 5</u>	[1]								
		V _{CC} = 45 V		-	24	40	-	50	-	60	ns
		V _{CC} = 5.0 V; C _L = 15 pF		-	17	-	-	-	-	-	ns
		X1 to OUT divide by 2; S1 = GND; S2 = V_{CC} ; see Figure 5									
		V _{CC} = 4.5 V		-	29	50	-	62	-	75	ns
		X1 to OUT divide by 4; S1 = V_{CC} ; S2 = GND; see <u>Figure 5</u>									
		V _{CC} = 4.5 V		-	35	60	-	75	-	90	ns
		X1 to OUT divide by 8; S1 = V_{CC} ; S2 = V_{CC} ; see <u>Figure 5</u>									
		V _{CC} = 4.5 V		-	40	70	-	87	-	105	ns
t _{PZL} OFF-state		MR to OUT; see Figure 6									
	to LOW propagation delay	V _{CC} = 4.5 V		-	16	30	-	37	-	45	ns
t _{PZH}	OFF-state	MR to OUT; see Figure 6	[2]								
	to HIGH propagation delay	V _{CC} = 4.5 V		-	22	38	-	47	-	57	ns
t _{dis}	disable time	MR to OUT; see Figure 6	[3]								
		V _{CC} = 4.5 V		-	21	35	-	43	-	52	ns
t _t	transition	OUT; see <u>Figure 5</u>	[4]								-
	time	V _{CC} = 4.5 V		-	5	12	-	15	-	19	ns
t _w	pulse width	X1 HIGH or LOW; see Figure 5									
		V _{CC} = 4.5 V		10	6	-	12	-	15	-	ns
		MR LOW; see Figure 7									
		V _{CC} = 4.5 V		16	8	-	20	-	24	-	ns
t _{rec}	recovery	MR to X1; see Figure 7									
	time	V _{CC} = 4.5 V		24	12	-	30	-	36	-	ns
f _{max}	maximum	X1; see <u>Figure 5</u>									
	frequency	V _{CC} = 4.5 V		50	85	-	40	-	33	-	MHz
		V _{CC} = 5.0 V; C _L = 15 pF		-	90	-	-	-	-	-	MHz

74HC6323A; 74HCT6323A

Programmable ripple counter with oscillator; 3-state

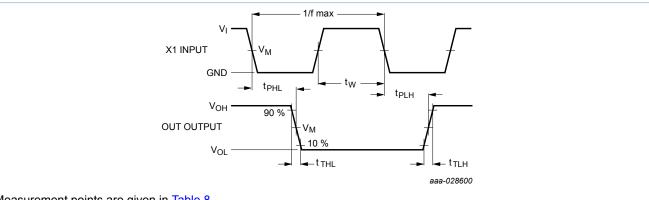
Symbol Parameter		Conditions		25 °C		-40 °C to +85 °C		-40 °C to +125 °C		Unit
			Min	Тур	Мах	Min	Мах	Min	Max	
dissipation wi		An external clock is applied to X1 $^{[5]}$ with: t_r = t_f \leq 6 ns, V_i = GND to $V_{CC},$ \overline{MR} = HIGH								
		divide by 1; S1 = GND; S2 = GND	-	54	-	-	-	-	-	pF
		divide by 2; S1 = GND; S2 = V_{CC}	-	42	-	-	-	-	-	pF
	divide by 4; S1 = V_{CC} ; S2 = GND	-	36	-	-	-	-	-	pF	
		divide by 8; S1 = V_{CC} ; S2 = V_{CC}	-	33	-	-	-	-	-	pF

[3] t_{dis} is the same as t_{PLZ} and $t_{\text{PHZ}}.$

[4] t_{t} is the same as t_{THL} and $t_{\text{TLH}}.$

- [5] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W):
- $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} + (C_{L} \times V_{CC}^{2} \times f_{o}) + (I_{pull-up} \times V_{CC}) \text{ where:}$

 f_i = input frequency in MHz;


 f_0 = output frequency in MHz;

C_L = output load capacitance in pF; V_{CC} = supply voltage in V;

 $I_{pull-up}$ = pull-up currents in μA .

 $I_{pull-up}$ is the summation of -I (μA) of S1 and S2 inputs at the LOW state.

11.1 Waveforms and test circuit

Measurement points are given in Table 8

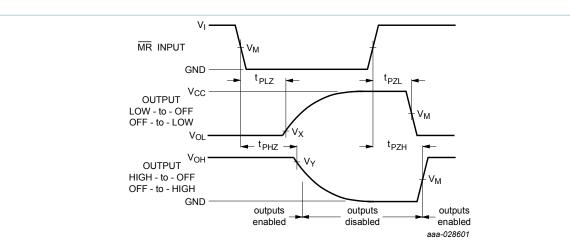

 V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

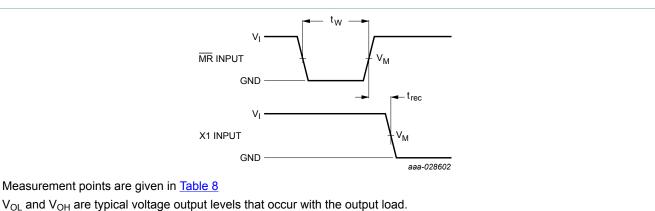
Figure 5. The clock (X1) to output (OUT) propagation delays, the clock pulse width, the output transition times and the maximum clock frequency.

12 / 22

74HC6323A; 74HCT6323A

Programmable ripple counter with oscillator; 3-state

Measurement points are given in <u>Table 8</u> V_{OL} and V_{OH} are typical voltage output levels that occur with the output load. Figure 6. The input <u>MR</u> to output OUT, 3-state enable and disable times



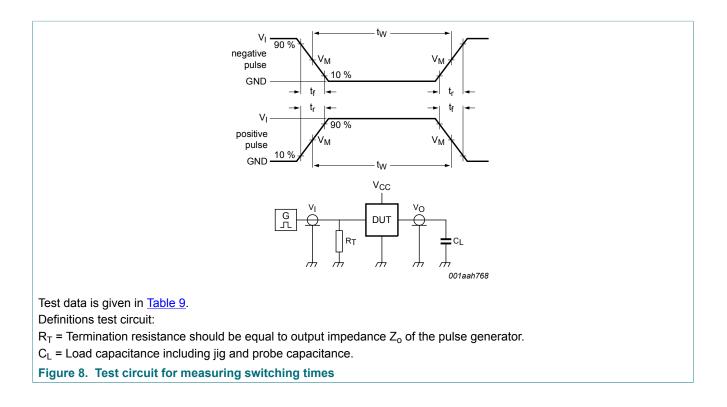

Figure 7. The MR minimum pulse width and MR to X1 recovery time.

Table 8. Measurement points

Туре	Input		Output				
	VI	V _M	V _M	V _X	V _Y		
74HC6323A	GND to V _{CC}	0.5 x V _{CC}	0.5 x V _{CC}	0.1 x V _{CC}	0.9 x V _{CC}		
74HCT6323A	GND to 3 V	1.3 V	1.3 V	0.1 x V _{CC}	0.9 x V _{CC}		

74HC6323A; 74HCT6323A

Programmable ripple counter with oscillator; 3-state

Table 9. Test data

Туре	Input	Load	
	VI	t _r , t _f	CL
74HC6323A	GND to V _{CC}	6 ns	15 pF, 50 pF
74HCT6323A	GND to 3 V	6 ns	15 pF, 50 pF

12 Application information

12.1 Typical Crystal Oscillator

In Figure 9, R2 is the power limiting resistor. For starting and maintaining oscillation a minimum transconductance is necessary, so R2 should not be too large. A practical value for R2 is 2.2 k Ω .

The oscillator has been designed to operate over a wide frequency spectrum, for quartz crystals operating in the fundamental mode and in the overtone mode. The circuit is a Pierce type oscillator and requires a minimum of external components. There are two on-chip capacitors, X1 and X2, of approximately 7 pF. Together with the stray and input capacitance the value becomes 12 pF for 8-pin SO packages. These values are convenient and make it possible to run the oscillator in the third overtone without external capacitors applied. If a certain frequency is chosen, the IC parameters, as forward transconductance, and the crystal parameters such as the motional resistances R1 (fundamental), R3 (third overtone) and R5 (fifth overtone), are of paramount importance. Also the values of the external components as R_s (series resistance) and the crystal load capacitances play an important role. Especially in overtone mode oscillations, R_b (bias resistance) and the load capacitance values are very important.

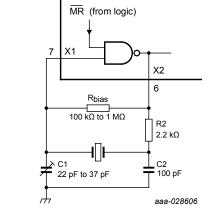
© Nexperia B.V. 2018. All rights reserved

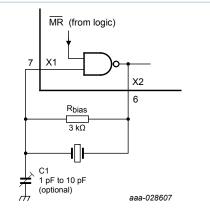
Programmable ripple counter with oscillator; 3-state

12.2 Considerations for Fundamental Oscillator:

In the fundamental oscillator mode, the R_b has only the function of biasing the inverter stage, so that it operates as an amplifier with a phase shift of approximately 180°. The value must be high, i.e. 100 k Ω up to 10 M Ω . The load capacitors C1 and C2, must have a value that is suitable for the crystal being used. The crystal is designed for a certain frequency having a specific load capacitance. C1 can be used to trim the oscillation frequency. The series resistance reduces the total loop gain. One function of it is therefore to reduce the power dissipation in the crystal. R_s also suppresses overtone oscillations and introduces a phase shift over a broad frequency range. This is of less concern provided R_s is not too high a value.

Note: A combination of a small load capacitor value and a small series resistance, may cause a third overtone oscillation.


12.3 Considerations for Third-overtone Oscillator:


In the overtone configuration, series resistance is no longer applied. This is essential otherwise the gain for third overtone can be too small for oscillation. A simple solution to suppress the fundamental oscillation, is to spoil the crystal fundamental activity. By dramatically reducing the value of the bias resistor of the inverting stage, and applying small load capacitors, it is possible to have an insufficient phase in the total loop for fundamental oscillation. However the phase for third overtone is good. It can be explained by the $R_b \times C_l$ time constant. During oscillation the crystal with the load capacitors cause a phase shift of 180°. Because R_b is parallel with the crystal (no R_s), R_b spoils the phase for fundamental. $R_b \times C_l$ must be of a value, that it is not spoiling the phase for third overtone too much. Because third overtone is a 3 times higher frequency than the fundamental, the $R_b \times C_l$ cannot 'maintain' the higher third overtone frequency, which results in a less spoiled overtone phase.

C2.

74HC6323A; 74HCT6323A

Programmable ripple counter with oscillator; 3-state

Above 5 MHz replace R2 by a capacitor of half the value of

C_L at which a crystal is specified (or adjusted) equals for this application C1 x C2/(C1 + C2)

Figure 9. Typical setup for a crystal oscillator operating in the fundamental mode (1 MHz to 25 MHz)

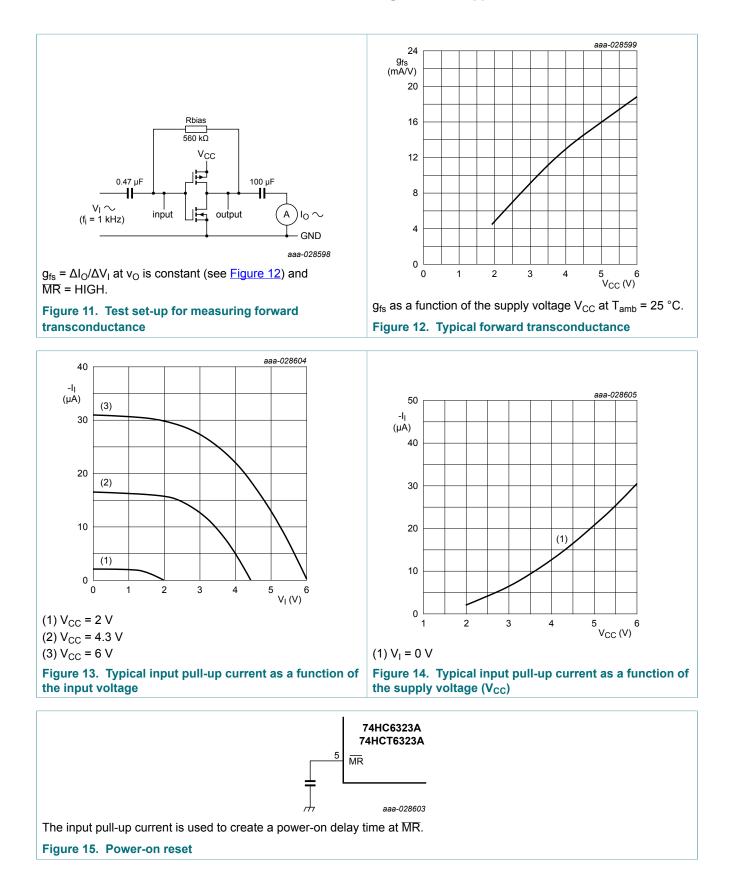

Applicable for third overtone crystals (lower damping resistance at the third harmonic frequency) at typical 50 MHz. For lower frequencies extra load capacitors must be supplied, or increase bias resistor.

Figure 10. Typical set-up for a crystal oscillator operating in the third overtone mode without the use of an inductor

Fundamental m	ode			Third overtone mode				
f (MHz)	R2 (kΩ)	C1 (pF)	C2 (pF)		f (MHz)	R _{bias} (kΩ)	C1 (pF)	
1	4.7	47 to 68						
10	2.2	47 te	47 to 68		50	3.0	4.7	
25	1	33	33					

74HC6323A; 74HCT6323A

Programmable ripple counter with oscillator; 3-state

⁷⁴HC_HCT6323A
Product data sheet

Programmable ripple counter with oscillator; 3-state

13 Package outline

			Julin		vaye,	8 lead	15, DU		uii 5.	5								бот9
				• 7 y					c		•	- E				MA		
				z 🔫														
			8				5											
										1		$\overline{\ }$	Q		ł			
				 pin 1 in			-+-			$A_2 \\ A_1 \\ A_1$	\leftarrow	=		(A ₃) ↓	Å			
					uex					<u> </u>					1			
			Ł	• •						<u>v v</u> ∳					θ			
			1	/ 						<u>, ,</u>			- L ►		θ			
			1	∳ ₽			4 4 €	→ w (M)		<u> </u>		detail	- L ►		∀			
			1	/ 			4 bp	→ w (M)		<u> </u>		detail	- L ►		Ψ θ			
			1	/ 				→ w (M)	2.5	<u> </u>	5 mm		- L ►		<u>−</u> ♥			
IMENS	IONS (i	nch din	_				0		2.5 scale	, interview of the second seco	 5 mm		- L ►		↓ Θ			
	IONS (ii A max.	nch dim	_			rom the	0		2.5 scale	ns)	5 mm		- L ►		θ	У	Z ⁽¹⁾	θ
	Α	A ₁ 0.25	nension: A ₂ 1.45	s are de	erived fit	rom the c	0 <u>origina</u> <u>D(1)</u> 5.0	I mm di E ⁽²⁾ 4.0	2.5 scale		 	 Lр 1.0	- L -	v 0.25	w 0.25	y 0.1	0.7	
UNIT	A max.	A ₁	A 2 1.45 1.25 0.057	s are de	erived fi bp 0.49 0.36 0.019	rom the	0 origina D (1) 5.0 4.8 0.20	I mm di E ⁽²⁾	2.5 scale imensic	H _E 6.2	L	Lp	Q 0.7 0.6 0.028					θ 8° 0°
UNIT mm inches lotes . Plastic	A max. 1.75 0.069	A ₁ 0.25 0.10 0.010 0.004 al protru	A 2 1.45 1.25 0.057 0.049	s are de A ₃ 0.25 0.01	erived fr bp 0.49 0.019 0.014 m (0.000	rom the c 0.25 0.19 0.0100	0 origina D ⁽¹⁾ 5.0 4.8 0.20 0.19 maximum	I mm di E ⁽²⁾ 4.0 3.8 0.16 0.15 n per sid	2.5 scale mension e 1.27 0.05	H _E 6.2 5.8 0.244 0.228 ot includ	L 1.05 0.041 led.	Lp 1.0 0.4 0.039	Q 0.7 0.6 0.028	0.25	0.25	0.1	0.7 0.3 0.028	8°
UNIT mm inches lotes . Plastic	A max. 1.75 0.069	A ₁ 0.25 0.10 0.010 0.004 al protru	A 2 1.45 1.25 0.057 0.049	s are de A ₃ 0.25 0.01	erived fr bp 0.49 0.019 0.014 m (0.000	rom the c 0.25 0.19 0.0100 0.0075	0 origina D ⁽¹⁾ 5.0 4.8 0.20 0.19 maximum	I mm di E ⁽²⁾ 4.0 3.8 0.16 0.15 n per sid	2.5 scale imensic e 1.27 0.05 de are n	H _E 6.2 5.8 0.244 0.228 ot includ	L 1.05 0.041 led.	Lp 1.0 0.4 0.039	Q 0.7 0.6 0.028	0.25	0.25	0.1	0.7 0.3 0.028 0.012	8° 0°
UNIT mm inches lotes . Plastic . Plastic	A max. 1.75 0.069	A ₁ 0.25 0.10 0.010 0.004 al protru	A 2 1.45 1.25 0.057 0.049 sions of	s are de A ₃ 0.25 0.01	erived fr bp 0.49 0.019 0.014 m (0.000	rom the c 0.25 0.19 0.0100 0.0075	0 origina D ⁽¹⁾ 5.0 4.8 0.20 0.19 maximum REFE I	I mm di E(2) 4.0 3.8 0.16 0.15 n per side	2.5 scale imensic e 1.27 0.05 de are n	H _E 6.2 5.8 0.244 0.228 ot includ	L 1.05 0.041 led.	Lp 1.0 0.4 0.039	Q 0.7 0.6 0.028 0.024	0.25	0.25 0.01 PEAN	0.1	0.7 0.3 0.028	8° 0°

74HC_HCT6323A Product data sheet © Nexperia B.V. 2018. All rights reserved.

Programmable ripple counter with oscillator; 3-state

14 Abbreviations

Table 11. Abbreviations							
Acronym	Description						
CMOS	Complementary Metal-Oxide Semiconductor						
DUT	Device Under Test						
ESD	ElectroStatic Discharge						
НВМ	Human Body Model						
MM	Machine Model						
TTL	Transistor-Transistor Logic						

15 Revision history

Table 12. Revision history				
Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC_HCT6323A v.4	20180709	Product data sheet	-	74HC_HCT6323A v.3
Modifications:	Nexperia.	s data sheet has been re been adapted to the nev		with the identity guidelines of here appropriate.
74HC_HCT6323A v.3	19930901	Product specification	-	74HC_HCT6323A v.2
74HC_HCT6323A v.2	19901201	Product specification	-	74HC_HCT6323A v.1

Programmable ripple counter with oscillator; 3-state

16 Legal information

16.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

Please consult the most recently issued document before initiating or completing a design. [1]

The term 'short data sheet' is explained in section "Definitions".

[2] [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification - The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia. In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia

Right to make changes - Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - Nexperia products are not designed, authorized or warranted to be suitable for use in life support. life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Programmable ripple counter with oscillator; 3-state

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer

design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

74HC6323A; 74HCT6323A

Programmable ripple counter with oscillator; 3-state

Contents

1	General description	1
2	Features and benefits	1
3	Applications	2
4	Ordering information	2
5	Functional diagram	
6	Pinning information	
6.1	Pinning	
6.2	Pin description	
7	Functional description	4
8	Limiting values	4
9	Recommended operating conditions	4
10	Static characteristics	
11	Dynamic characteristics	9
11.1	Waveforms and test circuit	12
12	Application information	14
12.1	Typical Crystal Oscillator	14
12.2	Considerations for Fundamental Oscillator:	15
12.3	Considerations for Third-overtone Oscillator: .	15
13	Package outline	18
14	Abbreviations	19
15	Revision history	19
16	Legal information	20

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© Nexperia B.V. 2018.

All rights reserved.

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com

Date of release: 9 July 2018 Document identifier: 74HC_HCT6323A

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Counter ICs category:

Click to view products by Nexperia manufacturer:

Other Similar products are found below :

 CD4018BE
 CD4060BE
 NLV14040BDR2G
 NLV14017BDG
 74VHC163FT
 74HCT4040BQ-Q100X
 74VHC161FT(BJ)

 74VHC163FT(BJ)
 74HC393D.652
 74HCT4040D.653
 74HC191D.652
 74HC160D,652
 74HC390DB,118
 74HC163PW.112

 74HC191PW.112
 74HC393DB.118
 74HC4024D.652
 74HCT193DB.112
 74HC193PW.112
 74HC390D.652

 74HC4017PW.112
 74HC4020DB.112
 74HC4020PW.112
 74HC4040DB.112
 74HC4060DB.112
 74HC4520D.112

 74HCT393DB.112
 74HCT6323AD.112
 74LV393DW.112
 74LV4060DB.112
 74LV4060DB.112
 74LV4060PW.112

 74LVC161D.112
 74LVC161PW.112
 XD74LS90
 XD74LS93
 CD4017BE
 XD74LS161
 XD74LS193
 CD4060BE
 XD4553

 XD74LS163
 XD74LS190
 XD40192
 CD4040BE
 XD40192
 XD4040BE
 XD40192
 XD4040BE