74HC125-Q100; 74HCT125-Q100

Quad buffer/line driver; 3-state Rev. 3 — 4 February 2021

Product data sheet

1. General description

The 74HC125-Q100; 74HCT125-Q100 is a quad buffer/line driver with 3-state outputs controlled by the output enable inputs (\overline{nOE}). A HIGH on \overline{nOE} causes the outputs to assume a high impedance OFF-state. Inputs include clamp diodes which enable the use of current limiting resistors to interface inputs to voltages in excess of V_{CC}.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

2. Features and benefits

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Wide supply voltage range from 2.0 to 6.0 V
- CMOS low power dissipation
- High noise immunity
- Latch-up performance exceeds 100 mA per JESD 78 Class II Level B
- Complies with JEDEC standards:
 - JESD8C (2.7 V to 3.6 V)
 - JESD7A (2.0 V to 6.0 V)
- Input levels:
 - The 74HC125-Q100: CMOS levels
 - The 74HCT125-Q100: TTL levels
- ESD protection:
 - MIL-STD-883, method 3015 exceeds 2000 V
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)

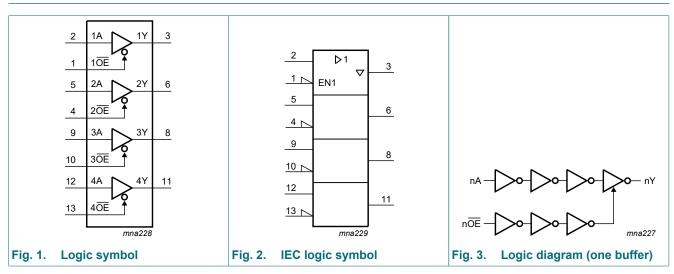
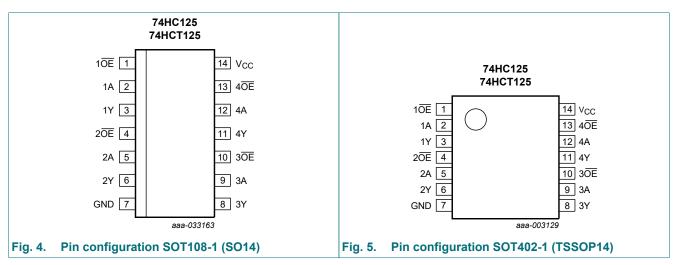

3. Ordering information

Table 1. Ordering information


Type number	Package						
	Temperature range	Name	Description	Version			
74HC125D-Q100	-40 °C to +125 °C	SO14	lastic small outline package; 14 leads; SOT1				
74HCT125D-Q100			body width 3.9 mm				
74HC125PW-Q100	-40 °C to +125 °C	TSSOP14	plastic thin shrink small outline package; 14 leads;	SOT402-1			
74HCT125PW-Q100			body width 4.4 mm				

ne<mark>x</mark>peria

4. Functional diagram

5. Pinning information

5.1. Pinning

5.2. Pin description

1	Table	2.	Pin	description
ſ				

Symbol	Pin	Description
10E, 20E, 30E, 40E	1, 4, 10, 13	output enable input (active LOW)
1A, 2A, 3A, 4A	2, 5, 9, 12	data input
1Y, 2Y, 3Y, 4Y	3, 6, 8, 11	data output
GND	7	ground (0 V)
V _{cc}	14	supply voltage

74HC_HCT125_Q100

6. Functional description

Table 3. Function table

H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

	Input	Output
nŌE	nA	nY
L	L	L
	Н	Н
Н	X	Z

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Мах	Unit
V _{CC}	supply voltage		-0.5	+7	V
I _{IK}	input clamping current	$V_{\rm I} < -0.5 \text{ V or } V_{\rm I} > V_{\rm CC} + 0.5 \text{ V}$ [1]	-	±20	mA
I _{OK}	output clamping current	$V_{\rm O} < -0.5 \text{ V or } V_{\rm O} > V_{\rm CC} + 0.5 \text{ V}$ [1]	-	±20	mA
I _O	output current	$V_{O} = -0.5 \text{ V to} (V_{CC} + 0.5 \text{ V})$	-	±35	mA
I _{CC}	supply current		-	+70	mA
I _{GND}	ground current		-	-70	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	[2]	-	500	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] For SOT108-1 (SO14) package: P_{tot} derates linearly with 10.1 mW/K above 100 °C.

For SOT402-1 (TSSOP14) package: Ptot derates linearly with 7.3 mW/K above 81 °C.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions	74	HC125-Q	100	74H	ICT125-0	Q100	Unit
			Min	Тур	Max	Min	Тур	Max	
V _{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V _{CC}	0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C
Δt/ΔV	input transition rise and fall rate	V _{CC} = 2.0 V	-	-	625	-	-	-	ns/V
		V _{CC} = 4.5 V	-	1.67	139	-	1.67	139	ns/V
		V _{CC} = 6.0 V	-	-	83	-	-	-	ns/V

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		-40 °C t	o +85 °C	-40 °C to	o +125 °C	Unit
			Min	Тур	Max	Min	Мах	Min	Max	1
74HC12	5-Q100						1	1		
VIH	HIGH-level	V _{CC} = 2.0 V	1.5	1.2	-	1.5	-	1.5	-	V
	input voltage	V _{CC} = 4.5 V	3.15	2.4	-	3.15	-	3.15	-	V
		V _{CC} = 6.0 V	4.2	3.2	-	4.2	-	4.2	-	V
V _{IL}	LOW-level input	V _{CC} = 2.0 V	-	0.8	0.5	-	0.5	-	0.5	V
	voltage	V _{CC} = 4.5 V	-	2.1	1.35	-	1.35	-	1.35	V
		V _{CC} = 6.0 V	-	2.8	1.8	-	1.8	-	1.8	V
V _{OH}	HIGH-level	V _I = V _{IH} or V _{IL}								
	output voltage	I _O = -20 μA; V _{CC} = 2.0 V	1.9	2.0	-	1.9	-	1.9	-	V
		I _O = -20 μA; V _{CC} = 4.5 V	4.4	4.5	-	4.4	-	4.4	-	V
		I _O = -20 μA; V _{CC} = 6.0 V	5.9	6.0	-	5.9	-	5.9	-	V
		I _O = -6.0 mA; V _{CC} = 4.5 V	3.98	4.32	-	3.84	-	3.7	-	V
		I _O = -7.8 mA; V _{CC} = 6.0 V	5.48	5.81	-	5.34	-	5.2	-	V
V _{OL}	LOW-level	V _I = V _{IH} or V _{IL}								
	output voltage	I _O = 20 μA; V _{CC} = 2.0 V	-	0	0.1	-	0.1	-	0.1	V
		I _O = 20 μΑ; V _{CC} = 4.5 V	-	0	0.1	-	0.1	-	0.1	V
		I _O = 20 μA; V _{CC} = 6.0 V	-	0	0.1	-	0.1	-	0.1	V
		I _O = 6.0 mA; V _{CC} = 4.5 V	-	0.15	0.26	-	0.33	-	0.4	V
		I _O = 7.8 mA; V _{CC} = 6.0 V	-	0.16	0.26	-	0.33	-	0.4	V
l _l	input leakage current	V _I = V _{CC} or GND; V _{CC} = 6.0 V	-	-	±0.1	-	±1.0	-	±1.0	μA
I _{OZ}	OFF-state output current		-	-	±0.5	-	±5.0	-	±10.0	μA
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0$ V	-	-	8.0	-	80	-	160	μA
CI	input capacitance		-	3.5	-	-	-	-	-	pF

Symbol	Parameter	Conditions		25 °C		-40 °C to	o +85 °C	-40 °C to	o +125 ℃	Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HCT1	25-Q100	<u>'</u>							1	
V _{IH}	HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	1.6	-	2.0	-	2.0	-	V
VIL	LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V	-	1.2	0.8	-	0.8	-	0.8	V
V _{OH}	HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$								
	output voltage $I_0 = -20 \ \mu A$		4.4	4.5	-	4.4	-	4.4	-	V
		I _O = -6 mA	3.98	4.32	-	3.84	-	3.7	-	V
V _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$								
	output voltage	I _O = 20 μA	-	0	0.1	-	0.1	-	0.1	V
		I _O = 6.0 mA	-	0.16	0.26	-	0.33	-	0.4	V
I _I	input leakage current	V _I = V _{CC} or GND; V _{CC} = 5.5 V	-	-	±0.1	-	±1.0	-	±1.0	μA
I _{OZ}	OFF-state output current	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 5.5 \text{ V};$ $V_{O} = V_{CC} \text{ or GND}$	-	-	±0.5	-	±5.0	-	±10	μA
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5$ V	-	-	8.0	-	80	-	160	μA
ΔI _{CC}	additional supply current	per input pin; $V_I = V_{CC} - 2.1 \text{ V}; I_O = 0 \text{ A};$ other inputs at V_{CC} or GND; $V_{CC} = 4.5 \text{ V}$ to 5.5 V	-	100	360	-	450	-	490	μA
CI	input capacitance		-	3.5	-	-	-	-	-	pF

10. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); C_L = 50 pF unless otherwise specified; for test circuit see Fig. 8.

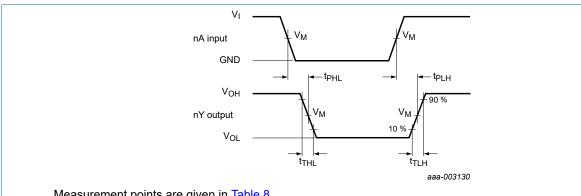
Symbol	Parameter	Conditions			25 °C		-40 °C t	o +85 °C	-40 °C to	o +125 ℃	Unit
			N	lin	Тур	Max	Min	Max	Min	Max	
74HC12	5-Q100	I							-	1	
t _{pd}	propagation delay	nA to nY; see <u>Fig. 6</u>	[1]								
		V _{CC} = 2.0 V		-	30	100	-	125	-	150	ns
		V _{CC} = 4.5 V		-	11	20	-	25	-	30	ns
		V _{CC} = 5 V; C _L = 15 pF		-	9	-	-	-	-	-	ns
		V _{CC} = 6.0 V		-	9	17	-	21	-	26	ns
t _{en}	enable time	nOE to nY; see Fig. 7	[2]								
		V _{CC} = 2.0 V		-	41	125	-	155	-	190	ns
		V _{CC} = 4.5 V		-	15	25	-	31	-	38	ns
		V _{CC} = 6.0 V		-	12	21	-	26	-	32	ns
t _{dis}	disable time	n OE to nY; see <u>Fig. 7</u>	[3]								
		V _{CC} = 2.0 V		-	41	125	-	155	-	190	ns
		V _{CC} = 4.5 V		-	15	25	-	31	-	38	ns
		V _{CC} = 6.0 V		-	12	21	-	26	-	32	ns
t _t	transition time	nY; see <u>Fig. 6</u>	[4]								
		V _{CC} = 2.0 V		-	14	60	-	75	-	90	ns
		V _{CC} = 4.5 V		-	5	12	-	15	-	18	ns
		V _{CC} = 6.0 V		-	4	10	-	13	-	15	ns
C _{PD}	power dissipation capacitance	C_L = 50 pF; f = 1 MHz; V _I = GND to V _{CC}	[5]	-	22	-	-	-	-	-	pF
74HCT1	25-Q100										
t _{pd}	propagation delay	nA to nY; see <u>Fig. 6</u>	[1]								
		V _{CC} = 4.5 V		-	15	25	-	31	-	38	ns
		V _{CC} = 5 V; C _L = 15 pF		-	12	-	-	-	-	-	ns
t _{en}	enable time	nOE to nY; see Fig. 7	[2]								
		V _{CC} = 4.5 V		-	15	28	-	35	-	42	ns
t _{dis}	disable time	nOE to nY; see Fig. 7	[3]								
		V _{CC} = 4.5 V		-	15	25	-	31	-	38	ns
tt	transition time	nY; see <u>Fig. 6</u>	[4]	-	5	12	-	15	-	18	ns
C _{PD}	power dissipation capacitance	C _L = 50 pF; f = 1 MHz; V _I = GND to V _{CC} - 1.5 V	[5]	-	24	-	-	-	-	-	pF

 t_{pd} is the same as t_{PLH} and t_{PHL} . [1]

[2] t_{en}^{r} is the same as t_{PZH} and t_{PZL} .

[3] t_{dis} is the same as t_{PLZ} and t_{PHZ} .

[4]

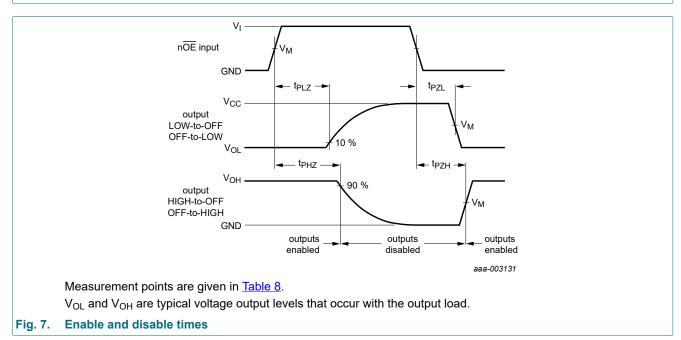

 t_t is the same as t_{THL} and t_{TLH} . C_{PD} is used to determine the dynamic power dissipation (P_D in μ W). $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \sum (C_L \times V_{CC}^2 \times f_o)$ where: [5] f_i = input frequency in MHz;

 f_o = output frequency in MHz;

C_L = output load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching; $\sum (C_L \times V_{CC}^2 \times f_0)$ = sum of outputs.



10.1. Waveforms and test circuit

Measurement points are given in <u>Table 8</u>.

 V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Fig. 6. Propagation delay input (nA) to output (nY)

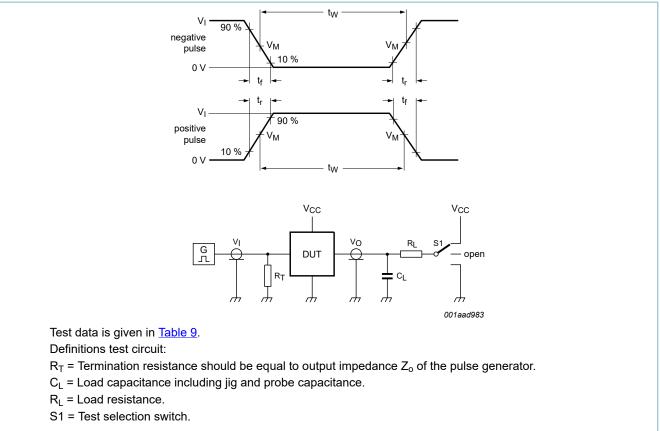


Table 8. Measurement points

Туре	Input	Output
	V _M	V _M
74HC125-Q100	0.5V _{CC}	0.5V _{CC}
74HCT125-Q100	1.3 V	1.3 V

74HC125-Q100; 74HCT125-Q100

Quad buffer/line driver; 3-state

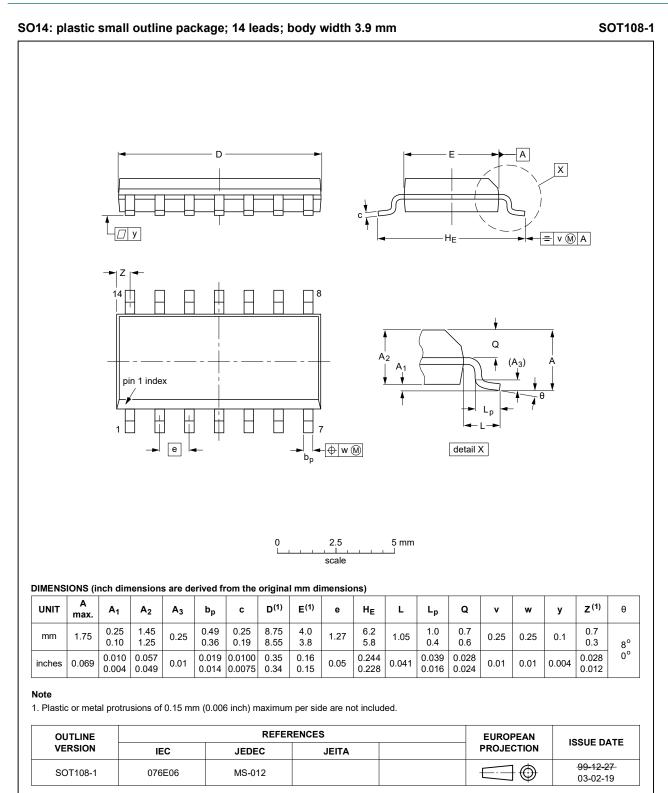


Fig. 8. Test circuit for measuring switching times

Table 9. Test data

Туре	Input		Load		S1 position			
	VI	t _r , t _f	CL	RL	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}	
74HC125-Q100	V _{CC}	6 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}	
74HCT125-Q100	3 V	6 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}	

11. Package outline

Fig. 9. Package outline SOT108-1 (SO14)

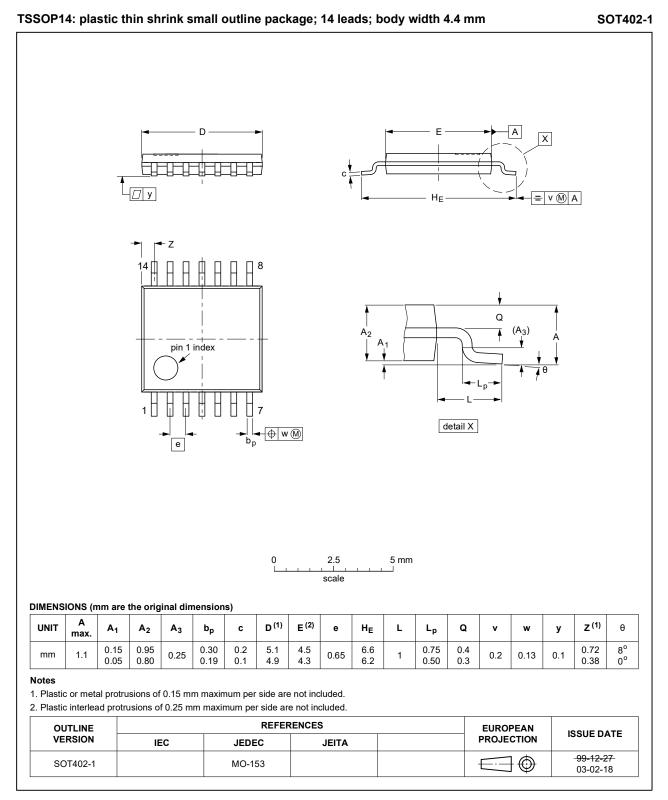


Fig. 10. Package outline SOT402-1 (TSSOP14)

12. Abbreviations

Acronym	Description
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MIL	Military
MM	Machine Model
TTL	Transistor-Transistor Logic

13. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes	
74HC_HCT125_Q100 v.3	20210204	Product data sheet	-	74HC_HCT125_Q100 v.2	
Modifications:	 The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia. Legal texts have been adapted to the new company name where appropriate. <u>Section 2</u> updated. <u>Section 7</u>: Derating values for P_{tot} total power dissipation updated. 				
74HC_HCT125_Q100 v.2	20150119	Product data sheet	-	74HC_HCT125_Q100 v.1	
Modifications:	• <u>Table 7</u> : Power dissipation capacitance condition for 74HCT125-Q100 is corrected.				
74HC_HCT125_Q100 v.1	20130226	Product data sheet	-	-	

14. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

 Please consult the most recently issued document before initiating or completing a design.

- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at <u>https://www.nexperia.com</u>.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or

Quad buffer/line driver; 3-state

equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nexperia.com/profile/terms</u>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Contents

1. General description	1
2. Features and benefits	1
3. Ordering information	1
4. Functional diagram	2
5. Pinning information	2
5.1. Pinning	2
5.2. Pin description	2
6. Functional description	3
7. Limiting values	3
8. Recommended operating conditions	3
9. Static characteristics	4
10. Dynamic characteristics	6
10.1. Waveforms and test circuit	7
11. Package outline	9
12. Abbreviations	11
13. Revision history	11
14. Legal information	12

© Nexperia B.V. 2021. All rights reserved

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 4 February 2021

74HC_HCT125_Q100

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by Nexperia manufacturer:

Other Similar products are found below :

LXV200-024SW 74AUP2G34FW3-7 HEF4043BP NLU1GT126CMUTCG PI74FCT3244L MC74HCT365ADTR2G Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB NL17SZ07P5T5G NLU1GT126AMUTCG 74AUP1G17FW5-7 74LVC2G17FW4-7 CD4502BE 5962-8982101PA 5962-9052201PA 74LVC1G125FW4-7 NL17SH17P5T5G 74HCT126T14-13 NL17SH125P5T5G NLV37WZ07USG RHRXH162244K1 74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC2G126RA3-7 NLX2G17CMUTCG 74LVCE1G125FZ4-7 Le87501NQC 74AUP1G126FW5-7 TC74HC4050AP(F) 74LVCE1G07FZ4-7 NLX3G16DMUTCG NLX2G06AMUTCG NLU2G17AMUTCG LE87100NQC LE87100NQCT LE87285NQC LE87285NQCT LE87290YQC LE87290YQCT LE87511NQC LE87511NQCT LE87557NQC LE87557NQCT LE87614MQC LE87614MQCT LE87286NQCT