74HC175-Q100; 74HCT175-Q100

Quad D-type flip-flop with reset; positive-edge trigger

Rev. 2 — 4 February 2021 Product data sheet

1. General description

The 74HC175-Q100; 74HCT175-Q100 are quad positive edge-triggered D-type flip-flops with individual data inputs (Dn) and both Qn and $\overline{Q}n$ outputs. The common clock (CP) and master reset (\overline{MR}) inputs load and reset all flip-flops simultaneously. The D-input that meets the set-up and hold time requirements on the LOW-to-HIGH clock transition is stored in the flip-flop and appears at the Q output. A LOW on \overline{MR} causes the flip-flops and outputs to be reset LOW.

The device is useful for applications where both the true and complement outputs are required and the clock and master reset are common to all storage elements.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

2. Features and benefits

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Input levels:
 - For 74HC175-Q100: CMOS level
 - For 74HCT175-Q100: TTL level
- Four edge-triggered D-type flip-flops
- Asynchronous master reset
- Complies with JEDEC standard no. 7A
- ESD protection:
 - MIL-STD-883, method 3015 exceeds 2000 V
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)

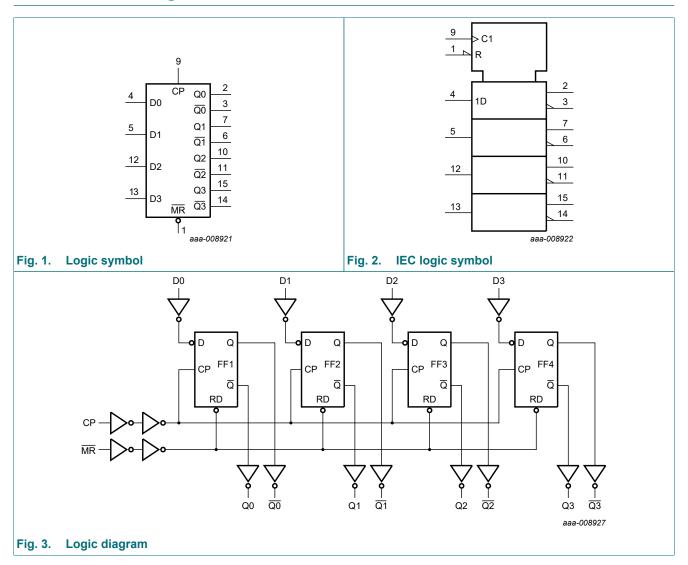
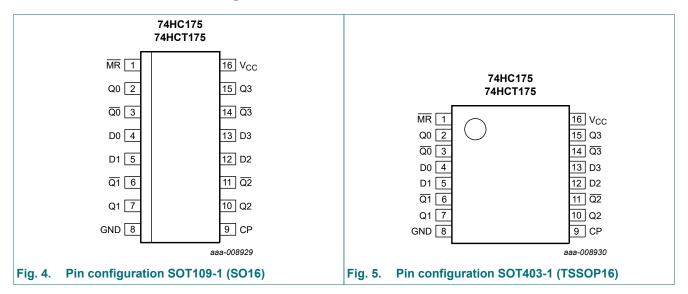

3. Ordering information

Table 1. Ordering information

Type number	Package								
	Temperature range Name Description Ve								
74HC175D-Q100	-40 °C to +125 °C	SO16	plastic small outline package; 16 leads;	SOT109-1					
74HCT175D-Q100			body width 3.9 mm						
74HC175PW-Q100	-40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads;	SOT403-1					
74HCT175PW-Q100			body width 4.4 mm						



4. Functional diagram

5. Pinning information

5.1. Pinning

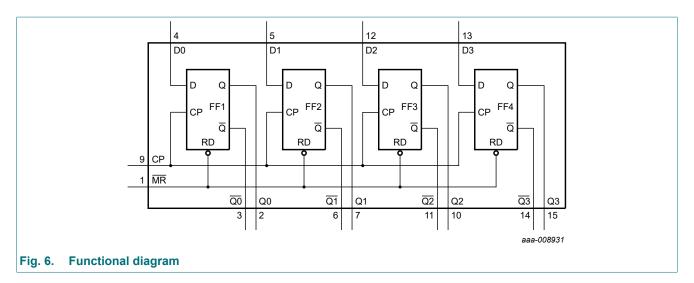
5.2. Pin description

Table 2. Pin description

Symbol	Pin	Description
MR	1	asynchronous master reset input (active LOW)
Q0 to Q3	2, 7, 10, 15	flip-flop output
Q0 to Q3	3, 6, 11, 14	complementary flip-flop output
D0 to D3	4, 5, 12, 13	data input
GND	8	ground (0 V)
СР	9	clock input (LOW-to-HIGH edge-triggered)
V _{CC}	16	positive supply voltage

6. Functional description

Table 3. Function table


H = HIGH voltage level; h = HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition;

L = LOW voltage level; I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition;

 $X = don't \ care; \uparrow = LOW-to-HIGH \ clock \ transition.$

Operating modes	Inputs		Outputs		
	MR CP Dn		Dn	Qn	Qn
reset (clear)	L	Х	Х	L	Н
load "1"	Н	1	h	Н	L
load "0"	Н	1	I	L	Н

3 / 16

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7	V
I _{IK}	input clamping current	$V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}$	-	±20	mA
I _{OK}	output clamping current	V_{O} < -0.5 V or V_{O} > V_{CC} + 0.5 V	-	±20	mA
Io	output current	-0.5 V < V _O < V _{CC} + 0.5 V	-	±25	mA
I _{CC}	supply current		-	50	mA
I _{GND}	ground current		-50	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	T_{amb} = -40 °C to +125 °C	-	500	mW

^[1] For SOT109-1 (SO16) package: P_{tot} derates linearly with 12.4 mW/K above 110 °C. For SOT403-1 (TSSOP16) package: P_{tot} derates linearly with 8.5 mW/K above 91 °C.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions	74H	74HC175-Q100		74H	CT175-C	100	Unit
			Min	Тур	Max	Min	Тур	Max	
V _{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V _{CC}	0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	-	+125	-40	-	+125	°C
Δt/ΔV	input transition rise and fall rate	V _{CC} = 2.0 V	-	-	625	-	-	-	ns/V
		V _{CC} = 4.5 V	-	1.67	139	-	1.67	139	ns/V
		V _{CC} = 6.0 V	-	-	83	-	-	-	ns/V

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		-40 °C to	o +85 °C	-40 °C to	+125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HC17	5-Q100			<u>'</u>	<u>'</u>					
V _{IH}	HIGH-level	V _{CC} = 2.0 V	1.5	1.2	-	1.5	-	1.5	-	V
	input voltage	V _{CC} = 4.5 V	3.15	2.4	-	3.15	-	3.15	-	V
		V _{CC} = 6.0 V	4.2	3.2	-	4.2	-	4.2	-	V
V _{IL}	LOW-level	V _{CC} = 2.0 V	-	0.8	0.5	-	0.5	-	0.5	V
	input voltage	V _{CC} = 4.5 V	-	2.1	1.35	-	1.35	-	1.35	V
		V _{CC} = 6.0 V	-	2.8	1.8	-	1.8	-	1.8	V
V _{OH}	HIGH-level	V _I = V _{IH} or V _{IL}								
	output voltage	I _O = -20 μA; V _{CC} = 2.0 V	1.9	2.0	-	1.9	-	1.9	-	V
		I _O = -20 μA; V _{CC} = 4.5 V	4.4	4.5	-	4.4	-	4.4	-	V
		I _O = -20 μA; V _{CC} = 6.0 V	5.9	6.0	-	5.9	-	5.9	-	V
		I _O = -4.0 mA; V _{CC} = 4.5 V	3.98	4.32	-	3.84	-	3.7	-	V
		I _O = -5.2 mA; V _{CC} = 6.0 V	5.48	5.81	-	5.34	-	5.2	-	V
V _{OL}	LOW-level	V _I = V _{IH} or V _{IL}								
	output voltage	I _O = 20 μA; V _{CC} = 2.0 V	-	0	0.1	-	0.1	-	0.1	V
		I _O = 20 μA; V _{CC} = 4.5 V	-	0	0.1	-	0.1	-	0.1	V
		I _O = 20 μA; V _{CC} = 6.0 V	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.26	-	0.33	-	0.4	V
		I _O = 5.2 mA; V _{CC} = 6.0 V	-	0.16	0.26	-	0.33	-	0.4	V
l _l	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±0.1	-	±1	-	±1	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0 \text{ V}$	-	-	8.0	-	80	-	160	μΑ
C _I	input capacitance		-	3.5	-	-	-	-	-	pF

Symbol	Parameter	Conditions		25 °C		-40 °C t	o +85 °C	-40 °C to	+125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HCT1	75-Q100									
V _{IH}	HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	1.6	-	2.0	-	2.0	-	V
V _{IL}	LOW-level input voltage	1.00		1.2	0.8	-	0.8	-	0.8	V
V _{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 V$								
	output voltage	Ι _Ο = -20 μΑ	4.4	4.5	-	4.4	-	4.4	-	V
		I _O = -4.0 mA	3.98	4.32	-	3.84	-	3.7	-	V
OL	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$								
		I _O = 20 μA; V _{CC} = 4.5 V	-	0	0.1	-	0.1	-	0.1	V
		I _O = 5.2 mA; V _{CC} = 5.5 V	-	0.15	0.26	-	0.33	-	0.4	V
I _I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	±0.1	-	±1	-	±1	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5 \text{ V}$	-	-	8.0	-	80	-	160	μΑ
ΔI _{CC}	additional supply current	per input pin; $V_I = V_{CC}$ - 2.1 V; other inputs at V_{CC} or GND; V_{CC} = 4.5 V to 5.5 V								
		Dn input	-	40	144	-	180	-	196	μΑ
		CP input	-	60	216	-	270	-	294	μΑ
		MR input	-	100	360	-	450	-	490	μΑ
Cı	input capacitance		-	3.5	-	-	-	-	-	pF

10. Dynamic characteristics

Table 7. Dynamic characteristics

GND (ground = 0 V); C_L = 50 pF unless otherwise specified; for test circuit, see Fig. 10

Symbol	Parameter	Conditions		25 °C		-40 °C to	+85 °C	-40 °C to	+125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HC17	5-Q100									
F	propagation	CP to Qn, Qn; see Fig. 7 [1]								
	delay	V _{CC} = 2.0 V	-	55	175	-	220	-	265	ns
		V _{CC} = 4.5 V	-	20	35	-	44	-	53	ns
		$V_{CC} = 5 \text{ V}; C_L = 15 \text{ pF}$	-	17	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	16	30	-	37	-	45	ns
t _{PHL}	HIGH	MR to Qn, Qn; see Fig. 8								
	to LOW propagation	V _{CC} = 2.0 V	-	50	150	-	190	-	225	ns
	delay	V _{CC} = 4.5 V	-	18	30	-	38	-	45	ns
		V _{CC} = 5 V; C _L = 15 pF	-	15	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	14	26	-	33	-	38	ns

Symbol	Parameter	Conditions		25 °C		-40 °C t	o +85 °C	-40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
t _t	transition	Qn output; see Fig. 7 [2]								
	time	V _{CC} = 2.0 V	-	19	75	-	95	-	110	ns
		V _{CC} = 4.5 V	-	7	15	-	19	-	22	ns
		V _{CC} = 6.0 V	-	6	13	-	16	-	19	ns
t _W	pulse width	CP input HIGH or LOW; see Fig. 7								
		V _{CC} = 2.0 V	80	22	-	100	-	120	-	ns
		V _{CC} = 4.5 V	16	8	-	20	-	24	-	ns
		V _{CC} = 6.0 V	14	6	-	17	-	20	-	ns
		MR input LOW; see Fig. 8								
		V _{CC} = 2.0 V	80	19	-	100	-	120	-	ns
		V _{CC} = 4.5 V	16	7	-	20	-	24	-	ns
		V _{CC} = 6.0 V	14	6	-	17	-	20	-	ns
t _{rec}	recovery	MR to CP; see Fig. 8								
	time	V _{CC} = 2.0 V	5	-33	-	5	-	5	-	ns
		V _{CC} = 4.5 V	5	-12	-	5	-	5	-	ns
		V _{CC} = 6.0 V	5	-10	-	5	-	5	-	ns
t _{su}	set-up time	Dn to CP; see Fig. 9								
		V _{CC} = 2.0 V	80	3	-	100	-	120	-	ns
		V _{CC} = 4.5 V	16	1	-	20	-	24	-	ns
		V _{CC} = 6.0 V	14	1	-	17	-	20	-	ns
t _h	hold time	Dn to CP; see Fig. 9								
		V _{CC} = 2.0 V	25	2	-	30	-	40	-	ns
		V _{CC} = 4.5 V	5	0	-	6	-	8	-	ns
		V _{CC} = 6.0 V	4	0	-	5	-	7	-	ns
f _{max}	maximum	CP input; see Fig. 7								
	frequency	V _{CC} = 2.0 V	6	25	-	4.8	-	4	-	MHz
		V _{CC} = 4.5 V	30	75	-	24	-	20	-	MHz
		V _{CC} = 5 V; C _L = 15 pF	-	83	-	-	-	-	-	MHz
		V _{CC} = 6.0 V	35	89	-	28	-	24	-	MHz
C _{PD}	power dissipation capacitance	per package; $V_I = GND$ to V_{CC} [3]	-	32	-	-	-	-	-	pF

Symbol	Parameter	Conditions		25 °C		-40 °C t	o +85 °C	-40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HCT1	75-Q100									
t _{pd}	propagation	CP to Qn, Qn; see Fig. 7 [1]								
	delay	V _{CC} = 4.5 V	-	19	33	-	41	-	50	ns
		V _{CC} = 5 V; C _L = 15 pF	-	16	-	-	-	-	-	ns
t _{PHL}	HIGH	MR to Qn; see Fig. 8								
	to LOW propagation	V _{CC} = 4.5 V	-	22	38	-	48	-	57	ns
	delay	V _{CC} = 5 V; C _L = 15 pF	-	19	-	-	-	-	-	ns
		MR to Qn; see Fig. 8								
		V _{CC} = 4.5 V	-	19	35	-	44	-	53	ns
		V _{CC} = 5 V; C _L = 15 pF	-	16	-	-	-	-	-	ns
t _t	transition	Qn output; see Fig. 7 [2]								
	time	V _{CC} = 4.5 V	-	7	15	-	19	-	22	ns
t _W	pulse width	CP input HIGH or LOW; see Fig. 7								
		V _{CC} = 4.5 V	20	12	-	25	-	30	-	ns
		MR input LOW; see Fig. 8								
		V _{CC} = 4.5 V	20	11	-	25	-	30	-	ns
t _{rec}	recovery	MR to CP; see Fig. 8								
	time	V _{CC} = 4.5 V	5	-10	-	5	-	5	-	ns
t _{su}	set-up time	Dn to CP; see Fig. 9								
		V _{CC} = 4.5 V	16	5	-	20	-	24	-	ns
t _h	hold time	Dn to CP; see Fig. 9								
		V _{CC} = 4.5 V	5	0	-	5	-	5	-	ns
f _{max}	maximum	CP input; see Fig. 7								
	frequency	V _{CC} = 4.5 V	25	49	-	20	-	17	-	MHz
		V _{CC} = 5 V; C _L = 15 pF	-	54	-	-	-	-	-	MHz
C _{PD}	power dissipation capacitance	per package; [3] V _I = GND to V _{CC} - 1.5 V	-	34	-	-	-	-	-	pF

t_{pd} is the same as t_{PHL} and t_{PLH}.
 t_t is the same as t_{THL} and t_{TLH}.
 C_{PD} is used to determine the dynamic power dissipation (P_D in μW).
 P_D = C_{PD} x V_{CC}² x f_i + Σ (C_L x V_{CC}² x f_o) where:
 f_i = input frequency in MHz;

f_o = output frequency in MHz;

 Σ (C_L x V_{CC} 2 x f_o) = sum of outputs;

C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V.

10.1. Waveforms and test circuit

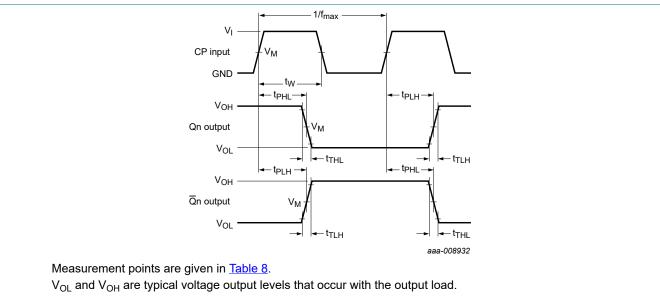


Fig. 7. Input to output propagation delay, output transition time, clock input pulse width and maximum frequency

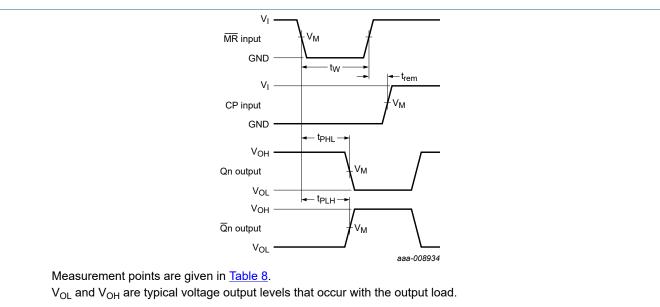
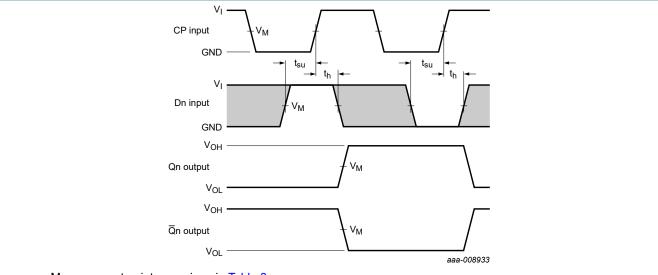
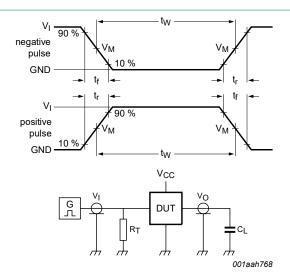



Fig. 8. Master reset to output propagation delays, master reset pulse width and master reset to clock recovery time

9/16

Measurement points are given in <u>Table 8</u>.


 $\ensuremath{V_{\text{OL}}}$ and $\ensuremath{V_{\text{OH}}}$ are typical voltage output levels that occur with the output load.

The shaded areas indicate when the input is permitted to change for predictable output performance.

Fig. 9. Data set-up and hold times for data input

Table 8. Measurement points

Туре	Input	Output	
	V _I	V _M	V _M
74HC175-Q100	V _{CC}	0.5V _{CC}	0.5V _{CC}
74HCT175-Q100	3 V	1.3 V	1.3 V

Test data is given in Table 9.

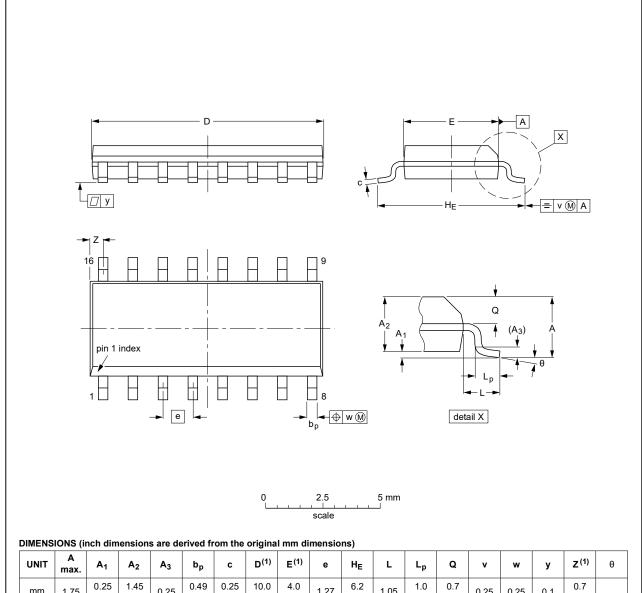
Definitions for test circuit:

 R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator.

 C_L = Load capacitance including jig and probe capacitance.

 R_L = Load resistance.

Fig. 10. Test circuit for measuring switching times


Table 9. Test data

Туре	Input		Load			
	V _I	t _r , t _f	C _L	R _L		
74HC175-Q100	V _{CC}	6 ns	15 pF, 50 pF	1 kΩ	t _{PLH} , t _{PHL}	
74HCT175-Q100	3 V	6 ns	15 pF, 50 pF	1 kΩ	t _{PLH} , t _{PHL}	

11. Package outline

SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	10.0 9.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01		0.0100 0.0075	0.39 0.38	0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016	0.028 0.020	0.01	0.01	0.004	0.028 0.012	0°

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT109-1	076E07	MS-012				99-12-27 03-02-19	

Fig. 11. Package outline SOT109-1 (SO16)

TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm

SOT403-1

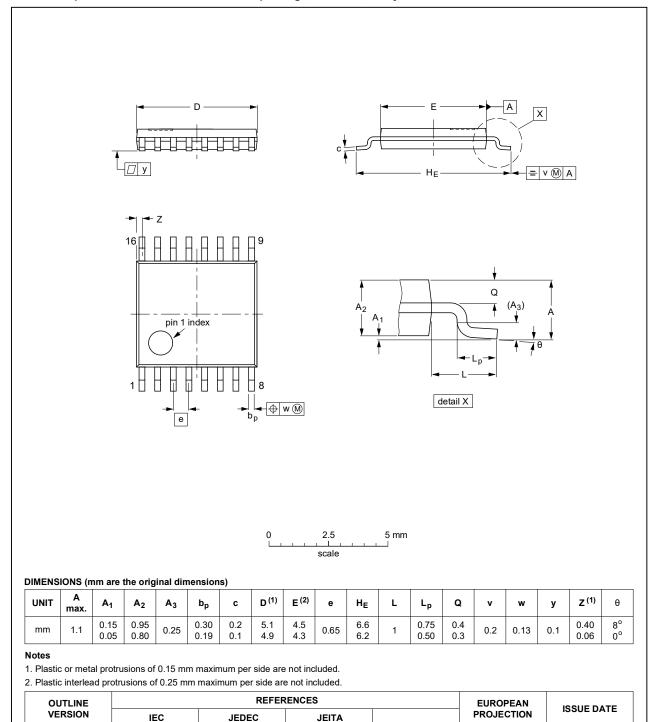


Fig. 12. Package outline SOT403-1 (TSSOP16)

SOT403-1

99-12-27

03-02-18

 \bigcirc

MO-153

12. Abbreviations

Table 10. Abbreviations

Acronym	Description
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MIL	Military
MM	Machine Model
TTL	Transistor-Transistor Logic

13. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC_HCT175_Q100 v.2	20210204	Product data sheet	-	74HC_HCT175_Q100 v.1
Modifications:	The format of the Nexperia.Legal texts have section 7: Derivatives.			
74HC_HCT175_Q100 v.1	20140519	Product data sheet	-	-

14. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or

equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Contents

1. General description	1
2. Features and benefits	1
3. Ordering information	1
4. Functional diagram	2
5. Pinning information	3
5.1. Pinning	3
5.2. Pin description	3
6. Functional description	3
7. Limiting values	4
8. Recommended operating conditions	4
9. Static characteristics	5
10. Dynamic characteristics	6
10.1. Waveforms and test circuit	g
11. Package outline	12
12. Abbreviations	14
13. Revision history	14
14. Legal information	

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 4 February 2021

[©] Nexperia B.V. 2021. All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Flip-Flops category:

Click to view products by Nexperia manufacturer:

Other Similar products are found below:

NLV14027BDG NLX1G74MUTCG 703557B 5962-90606022A 5962-9060602FA NLV14013BDR2G M38510/30104BDA

M38510/07106BFA NTE4598B 74LVC74APW-Q100J 74LCX16374MTDX 74LVT74D,118 74VHCT9273FT(BJ) MM74HC374WM

MM74HC74AMX 74LVX74MTCX CD40174BF3A HMC723LC3CTR 5962-8681501RA MM74HCT273WM SN74LVC74APW

SN74LVC74AD SN74HC273DWR MC74HC11ADG M74HC175B1R M74HC174RM13TR 74ALVTH16374ZQLR 74ALVTH32374ZKER

74VHC9273FT(BJ) 74VHCV374FT(BJ) 74VHCV574FT(BJ) SNJ54ALS574BJ SN74LVC74ADR SN74HC574PWR SN74HC374AN

SN74AS574DWR SN74ALS175NSR SN74HC175D SN74AC74D 74AHC1G79GV.125 74AHC74D.112 74HC112D.652 74HC574D.652

74HCT173D.652 74HCT374D.652 74AHC574D.118 74HC107D.652 74HCT273D.652 HEF4013BT.653 MC74HCT273ADTR2G