Hex buffer/line driver; 3-state; inverting Rev. 3 — 13 March 2024

**Product data sheet** 

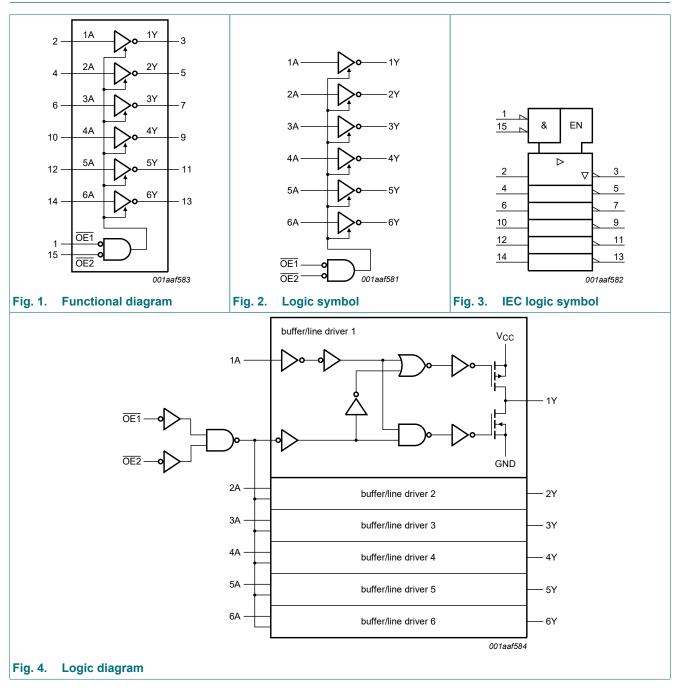
### 1. General description

The 74HC366-Q100; 74HCT366-Q100 is a hex inverting buffer/line driver with 3-state outputs controlled by the output enable inputs ( $\overline{OEn}$ ). A HIGH on  $\overline{OEn}$  causes the outputs to assume a high impedance OFF-state. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V<sub>CC</sub>.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

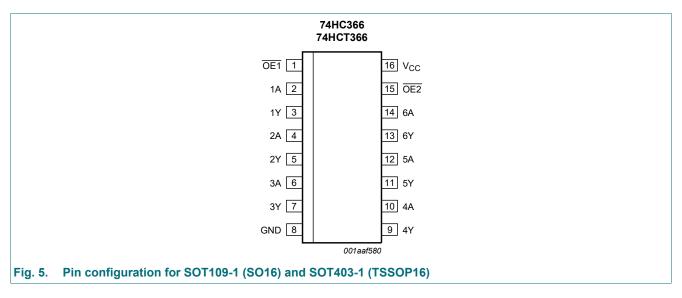
### 2. Features and benefits

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
   Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Wide supply voltage range from 2.0 V to 6.0 V
- CMOS low power dissipation
- High noise immunity
- Latch-up performance exceeds 100 mA per JESD 78 Class II Level B
- Complies with JEDEC standards:
  - JESD8C (2.7 V to 3.6 V)
  - JESD7A (2.0 V to 6.0 V)
- Inverting outputs
- Input levels:
  - For 74HC366-Q100: CMOS level
  - For 74HCT366-Q100: TTL level
- ESD protection:
  - HBM: ANSI/ESDA/JEDEC JS-001 class 2 exceeds 2000 V
  - CDM: ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1000 V


### 3. Ordering information

#### Table 1. Ordering information

| Type number     | Package           |         |                                            |                 |
|-----------------|-------------------|---------|--------------------------------------------|-----------------|
|                 | Temperature range | Name    | Description                                | Version         |
| 74HC366D-Q100   | -40 °C to +125 °C | SO16    | plastic small outline package; 16 leads;   | <u>SOT109-1</u> |
| 74HCT366D-Q100  |                   |         | body width 3.9 mm                          |                 |
| 74HC366PW-Q100  | -40 °C to +125 °C | TSSOP16 | plastic thin shrink small outline package; | <u>SOT403-1</u> |
| 74HCT366PW-Q100 |                   |         | 16 leads; body width 4.4 mm                |                 |


# ne<mark>x</mark>peria

# 4. Functional diagram



### 5. Pinning information





### 5.2. Pin description

#### Table 2. Pin description

| Symbol                 | Pin                 | Description                      |
|------------------------|---------------------|----------------------------------|
| OE1, OE2               | 1, 15               | output enable input (active LOW) |
| 1A, 2A, 3A, 4A, 5A, 6A | 2, 4, 6, 10, 12, 14 | data input                       |
| 1Y, 2Y, 3Y, 4Y, 5Y, 6Y | 3, 5, 7, 9, 11, 13  | data output                      |
| GND                    | 8                   | ground (0 V)                     |
| V <sub>CC</sub>        | 16                  | supply voltage                   |

### 6. Functional description

#### Table 3. Function table

H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

| Control |     | Input | Output |
|---------|-----|-------|--------|
| OE1     | OE2 | nA    | nY     |
| L       | L   | L     | Н      |
| L       | L   | Н     | L      |
| Х       | Н   | Х     | Z      |
| Н       | Х   | X     | Z      |

### 7. Limiting values

#### Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

| Symbol           | Parameter               | Conditions                                                 | Min  | Мах  | Unit |
|------------------|-------------------------|------------------------------------------------------------|------|------|------|
| V <sub>CC</sub>  | supply voltage          |                                                            | -0.5 | +7   | V    |
| I <sub>IK</sub>  | input clamping current  | $V_{I} < -0.5 V \text{ or } V_{I} > V_{CC} + 0.5 V$        | -    | ±20  | mA   |
| I <sub>OK</sub>  | output clamping current | $V_{\rm O}$ < -0.5 V or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5 V | -    | ±20  | mA   |
| lo               | output current          | $V_{O} = -0.5 \text{ V to} (V_{CC} + 0.5 \text{ V})$       | -    | ±35  | mA   |
| I <sub>CC</sub>  | supply current          |                                                            | -    | 70   | mA   |
| I <sub>GND</sub> | ground current          |                                                            | -    | -70  | mA   |
| T <sub>stg</sub> | storage temperature     |                                                            | -65  | +150 | °C   |
| P <sub>tot</sub> | total power dissipation | [1]                                                        | -    | 500  | mW   |

For SOT109-1 (SO16) package: P<sub>tot</sub> derates linearly with 12.4 mW/K above 110 °C.
 For SOT403-1 (TSSOP16) package: P<sub>tot</sub> derates linearly with 8.5 mW/K above 91 °C.

### 8. Recommended operating conditions

#### Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V)

| Symbol           | Parameter                           | Conditions              | 74  | 74HC366-Q100 |                 |     | 74HCT366-Q100 |                 |      |
|------------------|-------------------------------------|-------------------------|-----|--------------|-----------------|-----|---------------|-----------------|------|
|                  |                                     |                         | Min | Тур          | Max             | Min | Тур           | Max             |      |
| V <sub>CC</sub>  | supply voltage                      |                         | 2.0 | 5.0          | 6.0             | 4.5 | 5.0           | 5.5             | V    |
| VI               | input voltage                       |                         | 0   | -            | V <sub>CC</sub> | 0   | -             | V <sub>CC</sub> | V    |
| Vo               | output voltage                      |                         | 0   | -            | V <sub>CC</sub> | 0   | -             | V <sub>CC</sub> | V    |
| T <sub>amb</sub> | ambient temperature                 |                         | -40 | +25          | +125            | -40 | +25           | +125            | °C   |
| Δt/ΔV            | input transition rise and fall rate | V <sub>CC</sub> = 2.0 V | -   | -            | 625             | -   | -             | -               | ns/V |
|                  |                                     | V <sub>CC</sub> = 4.5 V | -   | 1.67         | 139             | -   | 1.67          | 139             | ns/V |
|                  |                                     | V <sub>CC</sub> = 6.0 V | -   | -            | 83              | -   | -             | -               | ns/V |

# 9. Static characteristics

#### Table 6. Static characteristics 74HC366-Q100

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol               | Parameter                 | Conditions                                                                                 | Min      | Тур  | Max  | Unit |
|----------------------|---------------------------|--------------------------------------------------------------------------------------------|----------|------|------|------|
| T <sub>amb</sub> = 2 | 5 °C                      |                                                                                            | <b>I</b> |      |      |      |
| V <sub>IH</sub>      | HIGH-level input voltage  | V <sub>CC</sub> = 2.0 V                                                                    | 1.5      | 1.2  | -    | V    |
|                      |                           | V <sub>CC</sub> = 4.5 V                                                                    | 3.15     | 2.4  | -    | V    |
|                      |                           | V <sub>CC</sub> = 6.0 V                                                                    | 4.2      | 3.2  | -    | V    |
| V <sub>IL</sub>      | LOW-level input voltage   | V <sub>CC</sub> = 2.0 V                                                                    | -        | 0.8  | 0.5  | V    |
|                      |                           | V <sub>CC</sub> = 4.5 V                                                                    | -        | 2.1  | 1.35 | V    |
|                      |                           | V <sub>CC</sub> = 6.0 V                                                                    | -        | 2.8  | 1.8  | V    |
| V <sub>OH</sub>      | HIGH-level output voltage | V <sub>I</sub> = V <sub>IH</sub> or V <sub>IL</sub>                                        | -        | -    | -    |      |
|                      |                           | I <sub>O</sub> = -20 μA; V <sub>CC</sub> = 2.0 V                                           | 1.9      | 2.0  | -    | V    |
|                      |                           | I <sub>O</sub> = -20 μA; V <sub>CC</sub> = 4.5 V                                           | 4.4      | 4.5  | -    | V    |
|                      |                           | I <sub>O</sub> = -20 μA; V <sub>CC</sub> = 6.0 V                                           | 5.9      | 6.0  | -    | V    |
|                      |                           | I <sub>O</sub> = -6.0 mA; V <sub>CC</sub> = 4.5 V                                          | 3.98     | 4.32 | -    | V    |
|                      |                           | I <sub>O</sub> = -7.8 mA; V <sub>CC</sub> = 6.0 V                                          | 5.48     | 5.81 | -    | V    |
| V <sub>OL</sub>      | LOW-level output voltage  | V <sub>I</sub> = V <sub>IH</sub> or V <sub>IL</sub>                                        |          |      |      |      |
|                      |                           | I <sub>O</sub> = 20 μA; V <sub>CC</sub> = 2.0 V                                            | -        | 0    | 0.1  | V    |
|                      |                           | I <sub>O</sub> = 20 μA; V <sub>CC</sub> = 4.5 V                                            | -        | 0    | 0.1  | V    |
|                      |                           | I <sub>O</sub> = 20 μA; V <sub>CC</sub> = 6.0 V                                            | -        | 0    | 0.1  | V    |
|                      |                           | I <sub>O</sub> = 6.0 mA; V <sub>CC</sub> = 4.5 V                                           | -        | 0.15 | 0.26 | V    |
|                      |                           | I <sub>O</sub> = 7.8 mA; V <sub>CC</sub> = 6.0 V                                           | -        | 0.16 | 0.26 | V    |
| l <sub>l</sub>       | input leakage current     | $V_{I} = V_{CC}$ or GND; $V_{CC} = 6.0 V$                                                  | -        | -    | ±0.1 | μA   |
| I <sub>OZ</sub>      | OFF-state output current  | $V_{I} = V_{IH} \text{ or } V_{IL}; V_{O} = V_{CC} \text{ or GND}; V_{CC} = 6.0 \text{ V}$ | -        | -    | ±0.5 | μA   |
| I <sub>CC</sub>      | supply current            | $V_{I} = V_{CC}$ or GND; $I_{O} = 0$ A; $V_{CC} = 6.0$ V                                   | -        | -    | 8.0  | μA   |
| CI                   | input capacitance         |                                                                                            | -        | 3.5  | -    | pF   |

### Hex buffer/line driver; 3-state; inverting

| Symbol                | Parameter                 | Conditions                                                                                 | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Тур | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Unit |
|-----------------------|---------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| T <sub>amb</sub> = -4 | 40 °C to +85 °C           |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| VIH                   | HIGH-level input voltage  | V <sub>CC</sub> = 2.0 V                                                                    | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V    |
|                       |                           | V <sub>CC</sub> = 4.5 V                                                                    | 3.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V    |
|                       |                           | V <sub>CC</sub> = 6.0 V                                                                    | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V    |
| V <sub>IL</sub>       | LOW-level input voltage   | V <sub>CC</sub> = 2.0 V                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -   | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V    |
|                       |                           | V <sub>CC</sub> = 4.5 V                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -   | 1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V    |
|                       |                           | V <sub>CC</sub> = 6.0 V                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -   | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V    |
| V <sub>OH</sub>       | HIGH-level output voltage | V <sub>I</sub> = V <sub>IH</sub> or V <sub>IL</sub>                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                       |                           | I <sub>O</sub> = -20 μA; V <sub>CC</sub> = 2.0 V                                           | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V    |
|                       |                           | I <sub>O</sub> = -20 μA; V <sub>CC</sub> = 4.5 V                                           | 3.15       -       -         4.2       -       -         -       -       0.5         -       -       1.35         -       -       1.35         -       -       1.35         -       -       1.35         -       -       1.35         -       -       1.35         -       -       1.8         1.9       -       -         1.9       -       -         4.4       -       -         5.9       -       -         3.84       -       -         5.34       -       -         -       0.1       -         -       0.1       -         -       0.1       -         -       0.33       -         -       -       0.33         -       -       1.0         /       -       -         3.15       -       -         1.5       -       -         3.15       -       -         -       1.35       -         -       1.35       -      < | V   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                       |                           | I <sub>O</sub> = -20 μA; V <sub>CC</sub> = 6.0 V                                           | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V    |
|                       |                           | I <sub>O</sub> = -6.0 mA; V <sub>CC</sub> = 4.5 V                                          | 3.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V    |
|                       |                           | I <sub>O</sub> = -7.8 mA; V <sub>CC</sub> = 6.0 V                                          | 5.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V    |
| V <sub>OL</sub>       | LOW-level output voltage  | V <sub>I</sub> = V <sub>IH</sub> or V <sub>IL</sub>                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                       |                           | I <sub>O</sub> = 20 μA; V <sub>CC</sub> = 2.0 V                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -   | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V    |
|                       |                           | I <sub>O</sub> = 20 μA; V <sub>CC</sub> = 4.5 V                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -   | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V    |
|                       |                           | I <sub>O</sub> = 20 μA; V <sub>CC</sub> = 6.0 V                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -   | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V    |
|                       |                           | I <sub>O</sub> = 6.0 mA; V <sub>CC</sub> = 4.5 V                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -   | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V    |
|                       |                           | I <sub>O</sub> = 7.8 mA; V <sub>CC</sub> = 6.0 V                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -   | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V    |
| lı –                  | input leakage current     | $V_I = V_{CC}$ or GND; $V_{CC} = 6.0$ V;                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -   | ±1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | μA   |
| l <sub>oz</sub>       | OFF-state output current  | $V_{I} = V_{IH}$ or $V_{IL}$ ; $V_{O} = V_{CC}$ or GND; $V_{CC} = 6.0$ V                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -   | ±5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | μA   |
| Icc                   | supply current            | V <sub>I</sub> = V <sub>CC</sub> or GND; I <sub>O</sub> = 0 A; V <sub>CC</sub> = 6.0 V     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -   | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | μA   |
| $T_{amb} = -4$        | 40 °C to +125 °C          |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| VIH                   | HIGH-level input voltage  | V <sub>CC</sub> = 2.0 V                                                                    | 1.5 \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                       |                           | V <sub>CC</sub> = 4.5 V                                                                    | 3.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V    |
|                       |                           | V <sub>CC</sub> = 6.0 V                                                                    | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V    |
| VIL                   | LOW-level input voltage   | V <sub>CC</sub> = 2.0 V                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -   | -           -           0.5           1.35           1.35           1.3           -           -           -           -           -           -           -           -           -           -           -           0.1           0.1           0.1           0.33           ±1.0           ±5.0           80                    0.33           ±1.0           0.33           1.35           1.35           1.35           1.35           1.35           1.35           1.35           1.35           1.35           1.35           1.35           1.35           1.35           1.35           1.35           1.35           1.35           1.35           1.35           1.35           1.35      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V    |
|                       |                           | V <sub>CC</sub> = 4.5 V                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -   | 1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V    |
|                       |                           | V <sub>CC</sub> = 6.0 V                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _   | $\begin{array}{c ccc}  & 0.1 \\  & 0.33 \\  & 0.33 \\  & \pm 1.0 \\  & \pm 5.0 \\  & 80 \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  &$ | V    |
| V <sub>OH</sub>       | HIGH-level output voltage |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 0.11                  |                           | $I_{\rm O} = -20 \ \mu \text{A}; \ V_{\rm CC} = 2.0 \ \text{V}$                            | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V    |
|                       |                           | $I_0 = -20 \ \mu\text{A}; \ V_{CC} = 4.5 \ \text{V}$                                       | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V    |
|                       |                           | $I_{O} = -20 \ \mu\text{A}; \ V_{CC} = 6.0 \ \text{V}$                                     | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V    |
|                       |                           | $I_{\rm O}$ = -6.0 mA; V <sub>CC</sub> = 4.5 V                                             | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V    |
|                       |                           | $I_{\rm O}$ = -7.8 mA; $V_{\rm CC}$ = 6.0 V                                                | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V    |
| V <sub>OL</sub>       | LOW-level output voltage  | $V_{I} = V_{IH} \text{ or } V_{IL}$                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 02                    |                           | $I_{O} = 20 \ \mu A; V_{CC} = 2.0 \ V$                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -   | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V    |
|                       |                           | $I_{O} = 20 \ \mu A; V_{CC} = 4.5 \ V$                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -   | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V    |
|                       |                           | $I_{\rm O} = 20 \ \mu \text{A}; \ V_{\rm CC} = 6.0 \ \text{V}$                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V    |
|                       |                           | $I_0 = 6.0 \text{ mA; } V_{CC} = 4.5 \text{ V}$                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V    |
|                       |                           | $I_0 = 7.8 \text{ mA; } V_{CC} = 6.0 \text{ V}$                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V    |
| I <sub>I</sub>        | input leakage current     | $V_{I} = V_{CC}$ or GND; $V_{CC} = 6.0$ V                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | μA   |
| l <sub>oz</sub>       | OFF-state output current  | $V_{I} = V_{IH} \text{ or } V_{IL}; V_{O} = V_{CC} \text{ or GND}; V_{CC} = 6.0 \text{ V}$ | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -   | ±10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| I <sub>CC</sub>       | supply current            | $V_{\rm I} = V_{\rm CC}$ or GND; $I_{\rm O} = 0$ A; $V_{\rm CC} = 6.0$ V                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | μA   |

74HC\_HCT366\_Q100

#### Table 7. Static characteristics 74HCT366-Q100

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol                | Parameter                 | Conditions                                                                            | Min  | Тур  | Max  | Unit |
|-----------------------|---------------------------|---------------------------------------------------------------------------------------|------|------|------|------|
| T <sub>amb</sub> = 2  | 5 °C                      | ·                                                                                     |      |      |      |      |
| VIH                   | HIGH-level input voltage  | V <sub>CC</sub> = 4.5 V to 5.5 V                                                      | 2.0  | 1.6  | -    | V    |
| V <sub>IL</sub>       | LOW-level input voltage   | V <sub>CC</sub> = 4.5 V to 5.5 V                                                      | -    | 1.2  | 0.8  | V    |
| V <sub>OH</sub>       | HIGH-level output         | $V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$                           |      |      |      |      |
|                       | voltage                   | I <sub>O</sub> = -20 μA                                                               | 4.4  | 4.5  | -    | V    |
|                       |                           | I <sub>O</sub> = -6.0 mA                                                              | 3.98 | 4.32 | -    | V    |
| V <sub>OL</sub>       | LOW-level output voltage  | $V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$                           |      |      |      |      |
|                       |                           | I <sub>O</sub> = 20 μA                                                                | -    | 0    | 0.1  | V    |
|                       |                           | I <sub>O</sub> = 6.0 mA                                                               | -    | 0.16 | 0.26 | V    |
| I <sub>I</sub>        | input leakage current     | $V_{I} = V_{CC}$ or GND; $V_{CC} = 5.5 V$                                             | -    | -    | ±0.1 | μA   |
| l <sub>oz</sub>       | OFF-state output current  | $V_{I} = V_{IH}$ or $V_{IL}$ ; $V_{O} = V_{CC}$ or GND; $V_{CC} = 5.5 V$              | -    | -    | ±0.5 | μA   |
| I <sub>CC</sub>       | supply current            | $V_{I} = V_{CC}$ or GND; $I_{O} = 0$ A; $V_{CC} = 5.5$ V                              | -    | -    | 8.0  | μA   |
| ΔI <sub>CC</sub>      | additional supply current | $V_I = V_{CC} - 2.1 \text{ V}$ ; other inputs at $V_{CC}$ or GND; $I_O = 0 \text{ A}$ |      |      |      |      |
|                       |                           | pins nA                                                                               | -    | 100  | 360  | μA   |
|                       |                           | pin OE1                                                                               | -    | 100  | 360  | μA   |
|                       |                           | pin OE2                                                                               | -    | 90   | 320  | μA   |
| CI                    | input capacitance         |                                                                                       | -    | 3.5  | -    | pF   |
| T <sub>amb</sub> = -4 | 40 °C to +85 °C           |                                                                                       |      |      |      |      |
| V <sub>IH</sub>       | HIGH-level input voltage  | V <sub>CC</sub> = 4.5 V to 5.5 V                                                      | 2.0  | -    | -    | V    |
| V <sub>IL</sub>       | LOW-level input voltage   | V <sub>CC</sub> = 4.5 V to 5.5 V                                                      | -    | -    | 0.8  | V    |
| V <sub>OH</sub>       | HIGH-level output voltage | $V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$                           |      |      |      |      |
|                       |                           | I <sub>O</sub> = -20 μA                                                               | 4.4  | -    | -    | V    |
|                       |                           | I <sub>O</sub> = -6.0 mA                                                              | 3.84 | -    | -    | V    |
| V <sub>OL</sub>       | LOW-level output voltage  | $V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$                           |      |      |      |      |
|                       |                           | I <sub>O</sub> = 20 μA                                                                | -    | -    | 0.1  | V    |
|                       |                           | I <sub>O</sub> = 6.0 mA                                                               | -    | -    | 0.33 | V    |
| I <sub>I</sub>        | input leakage current     | $V_{I} = V_{CC}$ or GND; $V_{CC} = 5.5 V$                                             | -    | -    | ±1.0 | μA   |
| I <sub>OZ</sub>       | OFF-state output current  | $V_{I} = V_{IH}$ or $V_{IL}$ ; $V_{O} = V_{CC}$ or GND; $V_{CC} = 5.5 V$              |      |      | ±5.0 | μA   |
| I <sub>CC</sub>       | supply current            | $V_{I} = V_{CC}$ or GND; $I_{O} = 0$ A; $V_{CC} = 5.5$ V                              | -    | -    | 80   | μA   |
| ΔI <sub>CC</sub>      | additional supply current | $V_I = V_{CC} - 2.1 V$ ; other inputs at $V_{CC}$ or GND; $I_O = 0 A$                 |      |      |      |      |
|                       |                           | pins nA                                                                               | -    | -    | 450  | μA   |
|                       |                           | pin OE1                                                                               | -    | -    | 450  | μA   |
|                       |                           | pin OE2                                                                               | -    | -    | 400  | μA   |

| Symbol                | Parameter                 | Conditions                                                                            | Min | Тур | Max   | Unit |
|-----------------------|---------------------------|---------------------------------------------------------------------------------------|-----|-----|-------|------|
| T <sub>amb</sub> = -4 | 0 °C to +125 °C           |                                                                                       | -   |     |       |      |
| V <sub>IH</sub>       | HIGH-level input voltage  | V <sub>CC</sub> = 4.5 V to 5.5 V                                                      | 2.0 | -   | -     | V    |
| V <sub>IL</sub>       | LOW-level input voltage   | V <sub>CC</sub> = 4.5 V to 5.5 V                                                      | -   | -   | 0.8   | V    |
| V <sub>OH</sub>       | HIGH-level output voltage | $V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$                           |     |     |       |      |
|                       |                           | I <sub>O</sub> = -20 μA                                                               | 4.4 | -   | -     | V    |
|                       |                           | I <sub>O</sub> = -6.0 mA                                                              | 3.7 | -   | -     | V    |
| V <sub>OL</sub>       | LOW-level output voltage  | $V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$                           |     |     |       |      |
|                       |                           | I <sub>O</sub> = 20 μA                                                                | -   | -   | 0.1   | V    |
|                       |                           | I <sub>O</sub> = 6.0 mA                                                               | -   | -   | 0.4   | V    |
| I <sub>I</sub>        | input leakage current     | $V_{I} = V_{CC}$ or GND; $V_{CC} = 5.5 V$                                             | -   | -   | ±1.0  | μA   |
| I <sub>OZ</sub>       | OFF-state output current  | $V_{I} = V_{IH}$ or $V_{IL}$ ; $V_{O} = V_{CC}$ or GND; $V_{CC} = 5.5 V$              | -   | -   | ±10.0 | μA   |
| I <sub>CC</sub>       | supply current            | $V_{I} = V_{CC}$ or GND; $I_{O} = 0$ A; $V_{CC} = 5.5$ V                              | -   | -   | 160   | μA   |
| ΔI <sub>CC</sub>      | additional supply current | $V_I = V_{CC} - 2.1 \text{ V}$ ; other inputs at $V_{CC}$ or GND; $I_O = 0 \text{ A}$ |     |     |       |      |
|                       |                           | pins nA                                                                               | -   | -   | 490   | μA   |
|                       |                           | pin OE1                                                                               | -   | -   | 490   | μA   |
|                       |                           | pin OE2                                                                               | -   | -   | 441   | μA   |

# **10.** Dynamic characteristics

#### Table 8. Dynamic characteristics 74HC366-Q100

Voltages are referenced to GND (ground = 0 V);  $C_L$  = 50 pF unless otherwise specified; see test circuit Fig. 8.

| Symbol               | Parameter                     | Conditions                                    |     | Min | Тур | Max                                                                                                                                                                                                                                        | Unit |
|----------------------|-------------------------------|-----------------------------------------------|-----|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| T <sub>amb</sub> = 2 | 5 °C                          |                                               | l   |     |     | 1                                                                                                                                                                                                                                          |      |
| t <sub>pd</sub>      | propagation delay             | nA to nY; see <u>Fig. 6</u>                   | [1] |     |     |                                                                                                                                                                                                                                            |      |
|                      |                               | V <sub>CC</sub> = 2.0 V                       |     | -   | 33  | 100       20       -       17       150       30       26       150       30       26       150       30       26       150       30       26       150       30       26       150       30       26       150       30       26       10 | ns   |
|                      |                               | V <sub>CC</sub> = 4.5 V                       |     | -   | 12  |                                                                                                                                                                                                                                            | ns   |
|                      |                               | V <sub>CC</sub> = 5 V; C <sub>L</sub> = 15 pF |     | -   | 10  | -                                                                                                                                                                                                                                          | ns   |
|                      |                               | V <sub>CC</sub> = 6.0 V                       |     | -   | 10  | 17                                                                                                                                                                                                                                         | ns   |
| t <sub>en</sub>      | enable time                   | OEn to nY; see Fig. 7                         | [2] |     |     |                                                                                                                                                                                                                                            |      |
|                      |                               | V <sub>CC</sub> = 2.0 V                       |     | -   | 44  | 150                                                                                                                                                                                                                                        | ns   |
|                      |                               | V <sub>CC</sub> = 4.5 V                       |     | -   | 16  | 30                                                                                                                                                                                                                                         | ns   |
|                      |                               | V <sub>CC</sub> = 6.0 V                       |     | -   | 13  | 26                                                                                                                                                                                                                                         | ns   |
| t <sub>dis</sub>     | disable time                  | OEn to nY; see Fig. 7                         | [3] |     |     | 3 20                                                                                                                                                                                                                                       |      |
|                      |                               | V <sub>CC</sub> = 2.0 V                       |     | -   | 55  | 150                                                                                                                                                                                                                                        | ns   |
|                      |                               | V <sub>CC</sub> = 4.5 V                       |     | -   | 20  | 30                                                                                                                                                                                                                                         | ns   |
|                      |                               | V <sub>CC</sub> = 6.0 V                       |     | -   | 16  | 26                                                                                                                                                                                                                                         | ns   |
| t <sub>t</sub>       | transition time               | see <u>Fig. 6</u>                             | [4] |     |     |                                                                                                                                                                                                                                            |      |
|                      |                               | V <sub>CC</sub> = 2.0 V                       |     | -   | 14  | 60                                                                                                                                                                                                                                         | ns   |
|                      |                               | V <sub>CC</sub> = 4.5 V                       |     | -   | 5   | 12                                                                                                                                                                                                                                         | ns   |
|                      |                               | V <sub>CC</sub> = 6.0 V                       |     | -   | 4   | 10                                                                                                                                                                                                                                         | ns   |
| C <sub>PD</sub>      | power dissipation capacitance | per buffer; $V_I$ = GND to $V_{CC}$           | [5] | -   | 30  | -                                                                                                                                                                                                                                          | pF   |

#### Hex buffer/line driver; 3-state; inverting

| Symbol                | Parameter         | Conditions                   |     | Min | Тур | Мах | Unit |
|-----------------------|-------------------|------------------------------|-----|-----|-----|-----|------|
| T <sub>amb</sub> = -4 | 40 °C to +85 °C   |                              |     |     |     |     | -    |
| pd                    | propagation delay | nA to nY; see <u>Fig. 6</u>  | [1] |     |     |     |      |
|                       |                   | V <sub>CC</sub> = 2.0 V      |     | -   | -   | 125 | ns   |
|                       |                   | V <sub>CC</sub> = 4.5 V      |     | -   | -   | 25  | ns   |
|                       |                   | V <sub>CC</sub> = 6.0 V      |     | -   | -   | 21  | ns   |
| en                    | enable time       | OEn to nY; see Fig. 7        | [2] |     |     |     |      |
|                       |                   | V <sub>CC</sub> = 2.0 V      |     | -   | -   | 190 | ns   |
|                       |                   | V <sub>CC</sub> = 4.5 V      |     | -   | -   | 38  | ns   |
|                       |                   | V <sub>CC</sub> = 6.0 V      |     | -   | -   | 33  | ns   |
| dis                   | disable time      | OEn to nY; see <u>Fig. 7</u> | [3] |     |     |     |      |
|                       |                   | V <sub>CC</sub> = 2.0 V      |     | -   | -   | 190 | ns   |
|                       |                   | V <sub>CC</sub> = 4.5 V      |     | -   | -   | 38  | ns   |
|                       |                   | V <sub>CC</sub> = 6.0 V      |     | -   | -   | 33  | ns   |
| t                     | transition time   | see <u>Fig. 6</u>            | [4] |     |     |     |      |
|                       |                   | V <sub>CC</sub> = 2.0 V      |     | -   | -   | 75  | ns   |
|                       |                   | V <sub>CC</sub> = 4.5 V      |     | -   | -   | 15  | ns   |
|                       |                   | V <sub>CC</sub> = 6.0 V      |     | -   | -   | 13  | ns   |
| T <sub>amb</sub> = -4 | 40 °C to +125 °C  |                              |     |     |     |     |      |
| pd                    | propagation delay | nA to nY; see <u>Fig. 6</u>  | [1] |     |     |     |      |
|                       |                   | V <sub>CC</sub> = 2.0 V      |     | -   | -   | 150 | ns   |
|                       |                   | $V_{CC} = 4.5 V$             |     | -   | -   | 30  | ns   |
|                       |                   | V <sub>CC</sub> = 6.0 V      |     | -   | -   | 26  | ns   |
| en                    | enable time       | OEn to nY; see <u>Fig. 7</u> | [2] |     |     |     |      |
|                       |                   | V <sub>CC</sub> = 2.0 V      |     | -   | -   | 225 | ns   |
|                       |                   | $V_{CC}$ = 4.5 V             |     | -   | -   | 45  | ns   |
|                       |                   | V <sub>CC</sub> = 6.0 V      |     | -   | -   | 38  | ns   |
| dis                   | disable time      | OEn to nY; see <u>Fig. 7</u> | [3] |     |     |     |      |
|                       |                   | V <sub>CC</sub> = 2.0 V      |     | -   | -   | 225 | ns   |
|                       |                   | V <sub>CC</sub> = 4.5 V      |     | -   | -   | 45  | ns   |
|                       |                   | V <sub>CC</sub> = 6.0 V      |     | -   | -   | 38  | ns   |
| t                     | transition time   | see <u>Fig. 6</u>            | [4] |     |     |     |      |
|                       |                   | V <sub>CC</sub> = 2.0 V      |     | -   | -   | 90  | ns   |
|                       |                   | V <sub>CC</sub> = 4.5 V      |     | -   | -   | 18  | ns   |
|                       |                   | V <sub>CC</sub> = 6.0 V      |     | -   | -   | 15  | ns   |

 $[1] \quad t_{pd} \text{ is the same as } t_{PHL} \text{ and } t_{PLH}.$ 

[2]  $\dot{t}_{en}$  is the same as  $t_{PZH}$  and  $t_{PZL}$ .

[3]  $t_{dis}$  is the same as  $t_{PHZ}$  and  $t_{PLZ}$ .

[4]  $t_t$  is the same as  $t_{THL}$  and  $t_{LLH}$ . [5]  $C_{PD}$  is used to determine the dynamic power dissipation ( $P_D$  in  $\mu$ W).  $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$  where:  $f_i$  = input frequency in MHz; f<sub>o</sub> = output frequency in MHz;

 $C_L$  = output load capacitance in pF;

V<sub>CC</sub> = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs.}$ 

### Hex buffer/line driver; 3-state; inverting

#### Table 9. Dynamic characteristics 74HCT366-Q100

Voltages are referenced to GND (ground = 0 V);  $C_1$  = 50 pF unless otherwise specified; see test circuit Fig. 8.

| Symbol                | Parameter                     | Conditions                                                                |     | Min | Тур | Max | Unit |
|-----------------------|-------------------------------|---------------------------------------------------------------------------|-----|-----|-----|-----|------|
| T <sub>amb</sub> = 2  | 5 °C                          |                                                                           |     |     | 1   | 1   |      |
| t <sub>pd</sub>       | propagation delay             | nA to nY; see <u>Fig. 6</u>                                               | [1] |     |     |     |      |
|                       |                               | V <sub>CC</sub> = 4.5 V                                                   |     | -   | 13  | 24  | ns   |
|                       |                               | V <sub>CC</sub> = 5 V; C <sub>L</sub> = 15 pF                             |     | -   | 11  | -   | ns   |
| t <sub>en</sub>       | enable time                   | OEn to nY; V <sub>CC</sub> = 4.5 V; see <u>Fig. 7</u>                     | [2] | -   | 16  | 35  | ns   |
| t <sub>dis</sub>      | disable time                  | OEn to nY; V <sub>CC</sub> = 4.5 V; see <u>Fig. 7</u>                     | [3] | -   | 20  | 35  | ns   |
| t <sub>t</sub>        | transition time               | V <sub>CC</sub> = 4.5 V; see <u>Fig. 6</u>                                | [4] | -   | 5   | 12  | ns   |
| C <sub>PD</sub>       | power dissipation capacitance | per buffer; $V_I$ = GND to ( $V_{CC}$ - 1.5 V)                            | [5] | -   | 30  | -   | pF   |
| T <sub>amb</sub> = -4 | 40 °C to +85 °C               |                                                                           |     |     |     |     |      |
| t <sub>pd</sub>       | propagation delay             | nA to nY; $V_{CC}$ = 4.5 V; see <u>Fig. 6</u>                             | [1] | -   | -   | 30  | ns   |
| t <sub>en</sub>       | enable time                   | $\overline{\text{OEn}}$ to nY; V <sub>CC</sub> = 4.5 V; see <u>Fig. 7</u> | [2] | -   | -   | 44  | ns   |
| t <sub>dis</sub>      | disable time                  | OEn to nY; V <sub>CC</sub> = 4.5 V; see <u>Fig. 7</u>                     | [3] | -   | -   | 44  | ns   |
| t <sub>t</sub>        | transition time               | V <sub>CC</sub> = 4.5 V; see <u>Fig. 6</u>                                | [4] | -   | -   | 15  | ns   |
| T <sub>amb</sub> = -4 | 40 °C to +125 °C              | ·                                                                         |     |     |     |     |      |
| t <sub>pd</sub>       | propagation delay             | nA to nY; $V_{CC}$ = 4.5 V; see <u>Fig. 6</u>                             | [1] | -   | -   | 36  | ns   |
| t <sub>en</sub>       | enable time                   | OEn to nY; V <sub>CC</sub> = 4.5 V; see <u>Fig. 7</u>                     | [2] | -   | -   | 53  | ns   |
| t <sub>dis</sub>      | disable time                  | OEn to nY; V <sub>CC</sub> = 4.5 V; see <u>Fig. 7</u>                     | [3] | -   | -   | 53  | ns   |
| t <sub>t</sub>        | transition time               | V <sub>CC</sub> = 4.5 V; see <u>Fig. 6</u>                                | [4] | -   | -   | 18  | ns   |

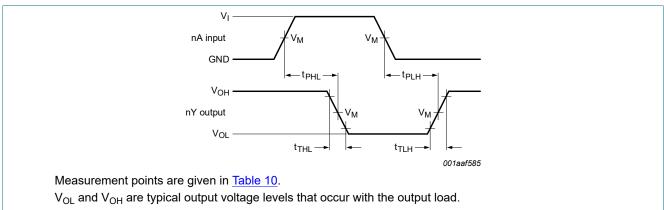
[1]  $t_{pd}$  is the same as  $t_{PHL}$  and  $t_{PLH}$ .

[2]  $t_{en}$  is the same as  $t_{PZH}$  and  $t_{PZL}$ .

[3]  $t_{\text{dis}}$  is the same as  $t_{\text{PHZ}}$  and  $t_{\text{PLZ}}.$ 

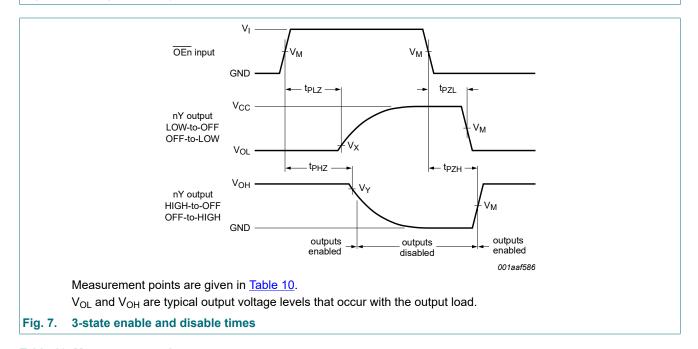
[3] t<sub>dis</sub> is the same as t<sub>PHZ</sub> and t<sub>PLZ</sub>.
[4] t<sub>t</sub> is the same as t<sub>THL</sub> and t<sub>TLH</sub>.
[5] C<sub>PD</sub> is used to determine the dynamic power dissipation (P<sub>D</sub> in μW). P<sub>D</sub> = C<sub>PD</sub> x V<sub>CC</sub><sup>2</sup> x f<sub>i</sub> x N + Σ(C<sub>L</sub> x V<sub>CC</sub><sup>2</sup> x f<sub>o</sub>) where: f<sub>i</sub> = input frequency in MHz;

 $f_o$  = output frequency in MHz;


 $C_L$  = output load capacitance in pF;

V<sub>CC</sub> = supply voltage in V;

N = number of inputs switching;


 $\Sigma(C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs.}$ 

74HC\_HCT366\_Q100



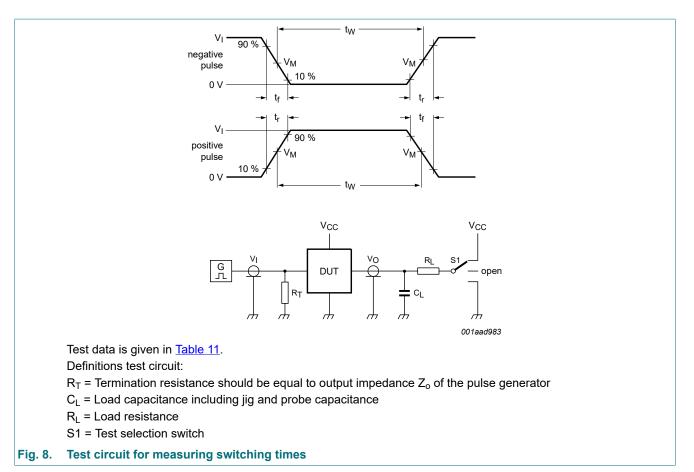
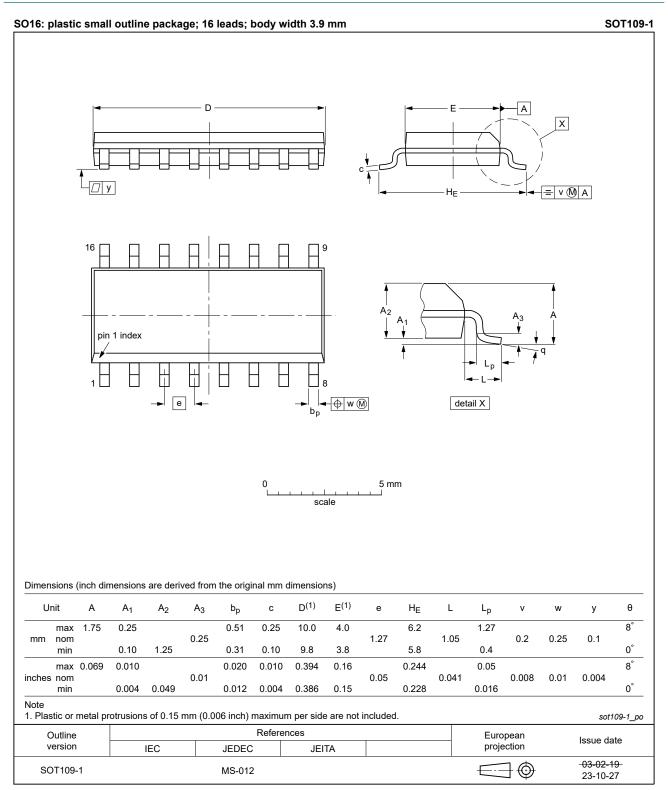

### 10.1. Waveforms and test circuit

Fig. 6. Propagation delay data input (nA) to output (nY) and output transition time

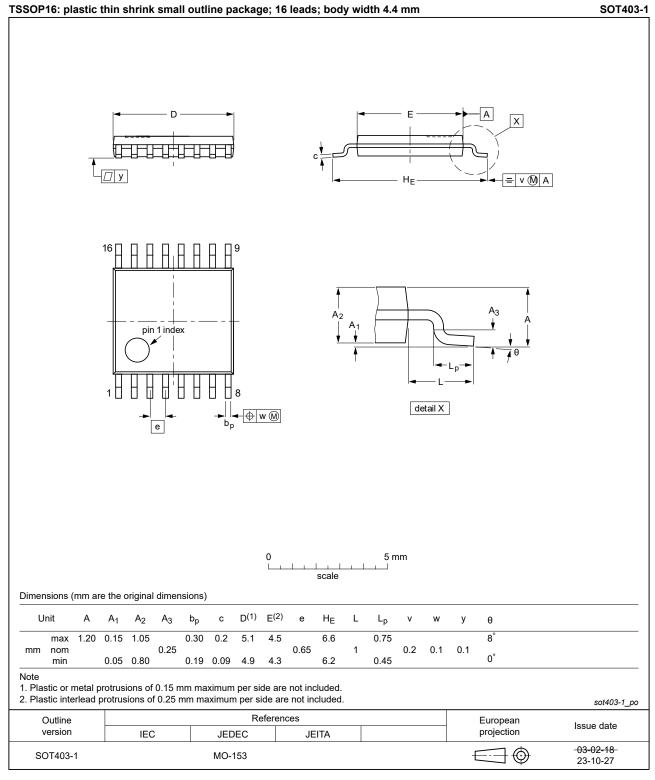


#### **Table 10. Measurement points** Input Output Туре VM VM ٧x VY 74HC366-Q100 0.1 x V<sub>CC</sub> 0.9 x V<sub>CC</sub> $0.5V_{CC}$ 0.5V<sub>CC</sub> 74HCT366-Q100 1.3 V 1.3 V 0.1 x V<sub>CC</sub> 0.9 x V<sub>CC</sub>


### Hex buffer/line driver; 3-state; inverting



#### Table 11. Test data


| Туре          | Input           |                                 | Load         |      | S1 position                         |                                     |                                     |
|---------------|-----------------|---------------------------------|--------------|------|-------------------------------------|-------------------------------------|-------------------------------------|
|               | VI              | t <sub>r</sub> , t <sub>f</sub> | CL           | RL   | t <sub>PHL</sub> , t <sub>PLH</sub> | t <sub>PZH</sub> , t <sub>PHZ</sub> | t <sub>PZL</sub> , t <sub>PLZ</sub> |
| 74HC366-Q100  | V <sub>CC</sub> | 6 ns                            | 15 pF, 50 pF | 1 kΩ | open                                | GND                                 | V <sub>CC</sub>                     |
| 74HCT366-Q100 | 3 V             | 6 ns                            | 15 pF, 50 pF | 1 kΩ | open                                | GND                                 | V <sub>CC</sub>                     |

## **11. Package outline**



#### Fig. 9. Package outline SOT109-1 (SO16)

#### Hex buffer/line driver; 3-state; inverting





### 12. Abbreviations

#### Table 12. Abbreviations

| Acronym | Description          |
|---------|----------------------|
| CDM     | Charged Device Model |

74HC\_HCT366\_Q100

### Hex buffer/line driver; 3-state; inverting

| Acronym | Description                             |
|---------|-----------------------------------------|
| CMOS    | Complementary Metal Oxide Semiconductor |
| DUT     | Device Under Test                       |
| ESD     | ElectroStatic Discharge                 |
| НВМ     | Human Body Model                        |

# 13. Revision history

| Table 13. Revision history | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |               |                      |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|----------------------|
| Document ID                | Release date                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Data sheet status  | Change notice | Supersedes           |
| 74HC_HCT366_Q100 v.3       | 20240313                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Product data sheet | -             | 74HC_HCT366_Q100 v.2 |
| Modifications:             | <ul> <li><u>Section 2</u>: ESD specification updated according to the latest JEDEC standard.</li> <li><u>Fig. 9</u> and <u>Fig. 10</u>: Aligned SO and TSSOP package outline drawings to JEDEC MS-012 and MO-153.</li> </ul>                                                                                                                                                                                                                                        |                    |               |                      |
| 74HC_HCT366_Q100 v.2       | 20210217                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Product data sheet | -             | 74HC_HCT366_Q100 v.1 |
| Modifications:             | <ul> <li>The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia.</li> <li>Legal texts have been adapted to the new company name where appropriate.</li> <li><u>Section 1</u> and <u>Section 2</u> updated.</li> <li><u>Section 7</u>: Derating values for P<sub>tot</sub> total power dissipation updated.</li> <li><u>Table 7</u>: Conditions for I<sub>OZ</sub> have changed for 74HCT366-Q100. (errata)</li> </ul> |                    |               |                      |
| 74HC_HCT366_Q100 v.1       | 20120807                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Product data sheet | -             | -                    |

74HC\_HCT366\_Q100

### 14. Legal information

#### Data sheet status

| Document status<br>[1][2]         | Product<br>status [3] | Definition                                                                            |
|-----------------------------------|-----------------------|---------------------------------------------------------------------------------------|
| Objective [short]<br>data sheet   | Development           | This document contains data from the objective specification for product development. |
| Preliminary [short]<br>data sheet | Qualification         | This document contains data from the preliminary specification.                       |
| Product [short]<br>data sheet     | Production            | This document contains the product specification.                                     |

 Please consult the most recently issued document before initiating or completing a design.

- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at <u>https://www.nexperia.com</u>.

#### **Definitions**

**Draft** — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

**Product specification** — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

#### **Disclaimers**

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

**Right to make changes** — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or

#### Hex buffer/line driver; 3-state; inverting

equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

**Quick reference data** — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nexperia.com/profile/terms</u>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

**Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

#### Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

# Contents

| 1. General description              | 1  |
|-------------------------------------|----|
| 2. Features and benefits            | 1  |
| 3. Ordering information             | 1  |
| 4. Functional diagram               | 2  |
| 5. Pinning information              | 3  |
| 5.1. Pinning                        | 3  |
| 5.2. Pin description                | 3  |
| 6. Functional description           | 3  |
| 7. Limiting values                  | 4  |
| 8. Recommended operating conditions | 4  |
| 9. Static characteristics           | 5  |
| 10. Dynamic characteristics         | 8  |
| 10.1. Waveforms and test circuit    | 11 |
| 11. Package outline                 | 13 |
| 12. Abbreviations                   | 14 |
| 13. Revision history                | 15 |
| 14. Legal information               | 16 |
|                                     |    |

© Nexperia B.V. 2024. All rights reserved

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 13 March 2024

74HC\_HCT366\_Q100

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by Nexperia manufacturer:

Other Similar products are found below :

LXV200-024SW 74AUP2G34FW3-7 HEF4043BP NL17SG125DFT2G NLU1GT126CMUTCG CD4041UBE 54FCT240CTDB 74HCT540N DS14C88N 070519XB NL17SZ07P5T5G 74LVC2G17FW4-7 CD4502BE 5962-8982101PA 61446R00 74LVCE1G126FZ4-7 NL17SH17P5T5G 74HCT126T14-13 74LVC2G34FW4-7 74VHC9126FT(BJ) RHRXH162244K1 74AUP1G34FW5-7 74LVC1G126FW4-7 74LVC2G126RA3-7 74LVCE1G125FZ4-7 74AUP1G126FW5-7 54FCT240TLB 74LVCE1G07FZ4-7 NLX3G16DMUTCG NLX2G06AMUTCG LE87100NQCT LE87285NQC LE87290YQC LE87290YQCT 74AUP1G125FW5-7 NLU2G16CMUTCG MC74LCX244MN2TWG NL17SG17P5T5G NLV74HC125ADR2G NLVHCT245ADTR2G NLVVHC1G126DFT2G EL5623IRZ ISL1539IRZ-T13 MC100EP17MNG MC74HCT365ADR2G MC74LCX244ADTR2G NL27WZ126US NL37WZ16US NLU1G07MUTCG NLU2G07MUTCG