Octal D-type transparent latch; 3-state Rev. 2 — 22 July 2020

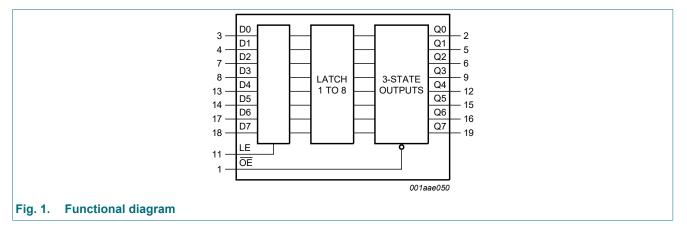
Product data sheet

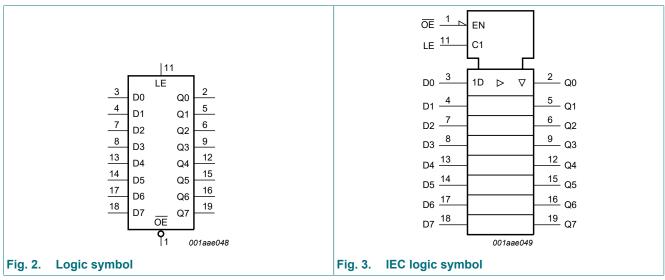
1. General description

The 74HC373-Q100; 74HCT373-Q100 is an octal D-type transparent latch with 3-state outputs. The device features latch enable (LE) and output enable (\overline{OE}) inputs. When LE is HIGH, data at the inputs enter the latches. In this condition the latches are transparent, a latch output will change each time its corresponding D-input changes. When LE is LOW the latches store the information that was present at the inputs a set-up time preceding the HIGH-to-LOW transition of LE. A HIGH on \overline{OE} causes the outputs to assume a high-impedance OFF-state. Operation of the \overline{OE} input does not affect the state of the latches. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC}.

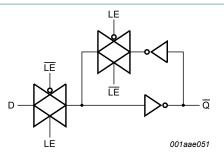
This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

2. Features and benefits

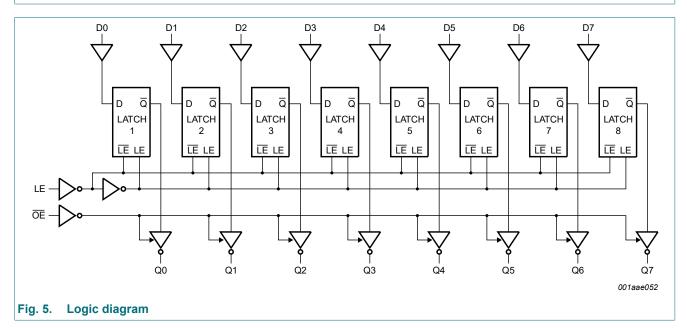

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Wide supply voltage range from 2.0 V to 6.0 V
- CMOS low power dissipation
- High noise immunity
- Latch-up performance exceeds 100 mA per JESD 78 Class II Level B
 - Complies with JEDEC standards:
 - JESD8C (2.7 V to 3.6 V)
 - JESD7A (2.0 V to 6.0 V)
- Input levels:
 - For 74HC373-Q100: CMOS level
 - For 74HCT373-Q100: TTL level
- 3-state non-inverting outputs for bus-oriented applications
- Common 3-state output enable input
- ESD protection:
 - MIL-STD-883, method 3015 exceeds 2000 V
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)
- Multiple package options
- DHVQFN package with Side-Wettable Flanks enabling Automatic Optical Inspection (AOI) of solder joints


nexperia

3. Ordering information


Type number	Package									
	Temperature range	Name	Description	Version						
74HC373D-Q100	-40 °C to +125 °C	SO20	plastic small outline package; 20 leads;	SOT163-1						
74HCT373D-Q100			body width 7.5 mm							
74HC373PW-Q100	-40 °C to +125 °C	TSSOP20	plastic thin shrink small outline package;	SOT360-1						
74HCT373PW-Q100			20 leads; body width 4.4 mm							
74HC373BQ-Q100	-40 °C to +125 °C	DHVQFN20	plastic dual in-line compatible thermal	SOT764-1						
74HCT373BQ-Q100			enhanced very thin quad flat package; no leads; 20 terminals; body 2.5 × 4.5 × 0.85 mm							

4. Functional diagram



Octal D-type transparent latch; 3-state

Fig. 4. Logic diagram (one latch)

5. Pinning information

5.1. Pinning

5.2. Pin description

Table 2. Pin description

Symbol	Pin	Description
ŌĒ	1	3-state output enable input (active LOW)
Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7	2, 5, 6, 9, 12, 15, 16, 19	3-state latch output
D0, D1, D2, D3, D4, D5, D6, D7	3, 4, 7, 8, 13, 14, 17, 18	data input
GND	10	ground (0 V)
LE	11	latch enable input (active HIGH)
V _{CC}	20	supply voltage

6. Functional description

Table 3. Functional description

H = HIGH voltage level; h = HIGH voltage level one set-up time prior to the HIGH-to-LOW LE transition;

L = LOW voltage level; I = LOW voltage level one set-up time prior to the HIGH-to-LOW LE transition;

X = don't care; *Z* = high-impedance OFF-state.

Operating mode	Control		Input	Internal latches	Output
	OE	LE	Dn		Qn
Enable and read register	L	Н	L	L	L
(transparent mode)			Н	Н	Н
Latch and read register	L	L	1	L	L
			h	Н	Н
Latch register and disable outputs	Н	х	X	Х	Z

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7	V
I _{IK}	input clamping current	$V_{\rm I}$ < -0.5 V or $V_{\rm I}$ > $V_{\rm CC}$ + 0.5 V	-	±20	mA
I _{ОК}	output clamping current	$V_{\rm O}$ < -0.5 V or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5 V	-	±20	mA
I _O	output current	$V_{O} = -0.5 \text{ V to} (V_{CC} + 0.5 \text{ V})$	-	±35	mA
I _{CC}	supply current		-	+70	mA
I _{GND}	ground current		-	-70	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	[1]	-	500	mW

[1] For SOT163-1 (SO20) package: Ptot derates linearly with 12.3 mW/K above 109 °C.

For SOT360-1 (TSSOP20) package: Ptot derates linearly with 10.0 mW/K above 100 °C.

For SOT764-1 (DHVQFN20) package: P_{tot} derates linearly with 12.9 mW/K above 111 °C.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions	74	1C373-Q	100	74H	Unit		
			Min	Тур	Max	Min	Тур	Мах	
V _{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V _{CC}	0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C
Δt/ΔV	input transition rise and fall rate	V _{CC} = 2.0 V	-	-	625	-	-	-	ns/V
		V _{CC} = 4.5 V	-	1.67	139	-	1.67	139	ns/V
		V _{CC} = 6.0 V	-	-	83	-	-	-	ns/V

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Tai	_{nb} = 25	°C		-40 °C 5 °C		-40 °C 25 °C	Unit
			Min	Тур	Max	Min	Max	Min	Мах	1
74HC37	3-Q100									
V _{IH}	HIGH-level input	V _{CC} = 2.0 V	1.5	1.2	-	1.5	-	1.5	-	V
	voltage	V _{CC} = 4.5 V	3.15	2.4	-	3.15	-	3.15	-	V
		V _{CC} = 6.0 V	4.2	3.2	-	4.2	-	4.2	-	V
VIL	LOW-level input	V _{CC} = 2.0 V	-	0.8	0.5	-	0.5	-	0.5	V
	voltage	V _{CC} = 4.5 V	-	2.1	1.35	-	1.35	-	1.35	V
		V _{CC} = 6.0 V	-	2.8	1.8	-	1.8	-	1.8	V
V _{OH}	HIGH-level output	V _I = V _{IH} or V _{IL}	-	-	-					
	voltage	I_{O} = -20 µA; V_{CC} = 2.0 V	1.9	2.0	-	1.9	-	1.9	-	V
		I _O = -20 μA; V _{CC} = 4.5 V	4.4	4.5	-	4.4	-	4.4	-	V
		I _O = -20 μA; V _{CC} = 6.0 V	5.9	6.0	-	5.9	-	5.9	-	V
		I_{O} = -6.0 mA; V_{CC} = 4.5 V	3.98	4.32	-	3.84	-	3.7	-	V
		I _O = -7.8 mA; V _{CC} = 6.0 V	5.48	5.81	-	5.34	-	5.2	-	V
V _{OL}	LOW-level output	V _I = V _{IH} or V _{IL}								
voltage		I_{O} = 20 µA; V_{CC} = 2.0 V	-	0	0.1	-	0.1	-	0.1	V
		I_{O} = 20 µA; V_{CC} = 4.5 V	-	0	0.1	-	0.1	-	0.1	V
		I _O = 20 μA; V _{CC} = 6.0 V	-	0	0.1	-	0.1	-	0.1	V
		I _O = 6.0 mA; V _{CC} = 4.5 V	-	0.15	0.26	-	0.33	-	0.4	V
		I _O = 7.8 mA; V _{CC} = 6.0 V	-	0.16	0.26	-	0.33	-	0.4	V
l _l	input leakage current	$V_{I} = V_{CC}$ or GND; $V_{CC} = 6.0$ V	-	-	±0.1	-	±1.0	-	±1.0	μA
I _{OZ}	OFF-state output current	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 6.0 \text{ V};$ $V_{O} = V_{CC} \text{ or GND}$	-	-	±0.5	-	±5.0	-	±10.0	μA
I _{CC}	supply current	V_{CC} = 6.0 V; I _O = 0 A; V _I = V _{CC} or GND	-	-	8.0	-	80	-	160	μA
CI	input capacitance		-	3.5	-	-	-	-	-	pF
74HCT3	73-Q100									<u> </u>
V _{IH}	HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	1.6	-	2.0	-	2.0	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V	-	1.2	0.8	-	0.8	-	0.8	V
V _{OH}	HIGH-level output	V _I = V _{IH} or V _{IL}								
	voltage	I _O = -20 μA; V _{CC} = 4.5 V	4.4	4.5	-	4.4	-	4.4	-	V
		I_{O} = -6.0 mA; V_{CC} = 4.5 V	3.98	4.32	-	3.84	-	3.7	-	V
V _{OL}	LOW-level output	$V_{I} = V_{IH} \text{ or } V_{IL}$								<u> </u>
	voltage	I _O = 20 μA; V _{CC} = 4.5 V	-	0.0	0.1	-	0.1	-	0.1	V
		$I_0 = 6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.16	0.26	-	0.33	-	0.4	V
lı	input leakage current	$V_1 = V_{CC}$ or GND; $V_{CC} = 5.5 V$	-	-	±0.1	-	±1.0	-	±1.0	μA

Octal D-type transparent latch; 3-state

Symbol	ool Parameter Conditions		T _{amb} = 25 °C				-40 °C 5 °C	T _{amb} = -40 °C to 125 °C		Unit
			Min	Тур	Max	Min	Мах	Min	Max	
I _{OZ}	OFF-state output current	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 5.5 \text{ V};$ $V_{O} = V_{CC} \text{ or GND}$	-	-	±0.5	-	±5.0	-	±10	μA
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5$ V	-	-	8.0	-	80	-	160	μA
ΔI _{CC}	additional supply current	$V_{I} = V_{CC} - 2.1 V;$ other inputs at V _{CC} or GND; V _{CC} = 4.5 V to 5.5 V; I _O = 0 A								
		Dn	-	30	108	-	135	-	147	μA
		LE	-	150	540	-	675	-	735	μA
		ŌĒ	-	100	360	-	450	-	490	μA
CI	input capacitance		-	3.5	-	-	-	-	-	pF

10. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); C_L = 50 pF unless otherwise specified; for test circuit see Fig. 12.

Symbol	Parameter	Conditions	Ta	_{mb} = 25	°C		-40 °C 35 °C	T _{amb} = -40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HC37	3-Q100									
t _{pd}	propagation	Dn to Qn; see Fig. 8 [1]								
	delay	V _{CC} = 2.0 V	-	41	150	-	190	-	225	ns
		V _{CC} = 4.5 V	-	15	30	-	38	-	45	ns
		V _{CC} = 5 V; C _L = 15 pF	-	12	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	12	26	-	33	-	38	ns
		LE to Qn; see <u>Fig. 9</u>								
		V _{CC} = 2.0 V	-	50	175	-	220	-	265	ns
		V _{CC} = 4.5 V	-	18	35	-	44	-	53	ns
		V _{CC} = 5 V; C _L = 15 pF	-	15	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	14	30	-	37	-	45	ns
t _{en}	enable time	OE to Qn; see Fig. 10 [2]								
		V _{CC} = 2.0 V	-	44	150	-	190	-	225	ns
		V _{CC} = 4.5 V	-	16	30	-	38	-	45	ns
		V _{CC} = 6.0 V	-	13	26	-	33	-	38	ns
t _{dis}	disable time	OE to Qn; see Fig. 10 [3]								
		V _{CC} = 2.0 V	-	47	150	-	190	-	225	ns
		V _{CC} = 4.5 V	-	17	30	-	38	-	45	ns
		V _{CC} = 6.0 V	-	14	26	-	33	-	38	ns
t _t	transition time	Qn; see <u>Fig. 8</u> and <u>Fig. 9</u> [4]								-
		V _{CC} = 2.0 V	-	14	60	-	75	-	90	ns
		V _{CC} = 4.5 V	-	5	12	-	15	-	18	ns
		V _{CC} = 6.0 V	-	4	10	-	13	-	15	ns

Octal D-type transparent latch; 3-state

Symbol	Parameter	Conditions		Tai	_{mb} = 25	°C		⊧ -40 °C 85 °C	T _{amb} = -40 °C to +125 °C		Unit
			-	Min	Тур	Max	Min	Max	Min	Max	
t _W	pulse width	LE HIGH; see <u>Fig. 9</u>									
		V _{CC} = 2.0 V		80	17	-	100	-	120	-	ns
		V _{CC} = 4.5 V		16	6	-	20	-	24	-	ns
		V _{CC} = 6.0 V		14	5	-	17	-	20	-	ns
t _{su}	set-up time	Dn to LE; see <u>Fig. 11</u>									
		V _{CC} = 2.0 V		50	14	-	65	-	75	-	ns
		V _{CC} = 4.5 V		10	5	-	13	-	15	-	ns
		V _{CC} = 6.0 V		9	4	-	11	-	13	-	ns
t _h	hold time Dn to LE; see Fig. 11										
		V _{CC} = 2.0 V		+5	-8	-	5	-	5	-	ns
		V _{CC} = 4.5 V		+5	-3	-	5	-	5	-	ns
		V _{CC} = 6.0 V		+5	-2	-	5	-	5	-	ns
C _{PD}	power dissipation capacitance	er latch; $V_I = GND$ to V_{CC} [5]		-	45	-	-	-	-	-	pF
74HCT3	73-Q100					1		1		1	_
t _{pd}	propagation	Dn to Qn; see <u>Fig. 8</u>	[1]								
	delay	V _{CC} = 4.5 V		-	17	30	-	38	-	45	ns
		V _{CC} = 5 V; C _L = 15 pF		-	14	-	-	-	-	-	ns
		LE to Qn; see <u>Fig. 9</u>									
		V _{CC} = 4.5 V		-	16	32	-	40	-	48	ns
		V _{CC} = 5 V; C _L = 15 pF		-	13	-	-	-	-	-	ns
t _{en}	enable time	OE to Qn; V _{CC} = 4.5 V; see <u>Fig. 10</u>	[2]	-	19	32	-	40	-	48	ns
t _{dis}	disable time	OE to Qn; V _{CC} = 4.5 V; see <u>Fig. 10</u>	[3]	-	18	30	-	38	-	45	ns
t _t	transition time	Qn; V _{CC} = 4.5 V; see <u>Fig. 8</u> and <u>Fig. 9</u>	[4]	-	5	12	-	15	-	18	ns
t _W	pulse width	LE HIGH; V _{CC} = 4.5 V; see <u>Fig. 9</u>		16	4	-	20	-	24	-	ns
t _{su}	set-up time	Dn to LE; V _{CC} = 4.5 V; see <u>Fig. 11</u>		12	6	-	15	-	18	-	ns
t _h	hold time	Dn to LE; V _{CC} = 4.5 V; see <u>Fig. 11</u>		4	-1	-	4	-	4	-	ns
C _{PD}	power dissipation capacitance	per latch; V _I = GND to (V _{CC} - 1.5 V)	[5]	-	41	-	-	-	-	-	pF

[3] t_{dis} is the same as t_{PLZ} and t_{PHZ} .

[4] t_t is the same as t_{THL} and t_{TLH} . [5] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W). $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where: f_i = input frequency in MHz; f_o = output frequency in MHz; C_L = output load capacitance in pF; V_{CC} = supply voltage in V; N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs.}$

10.1. Waveforms

Octal D-type transparent latch; 3-state

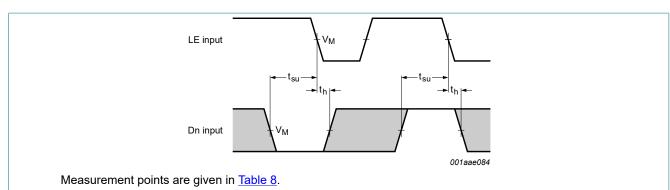


Fig. 11. Set-up and hold time data input (Dn) to latch enable input (LE)

Table 8. Measurement points							
Туре	Input	Output					
	V _M	V _M					
74HC373-Q100	0.5V _{CC}	0.5V _{CC}					
74HCT373-Q100	1.3 V	1.3 V					

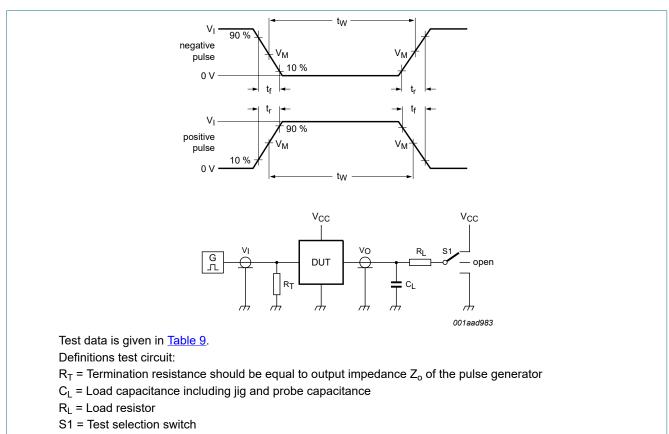
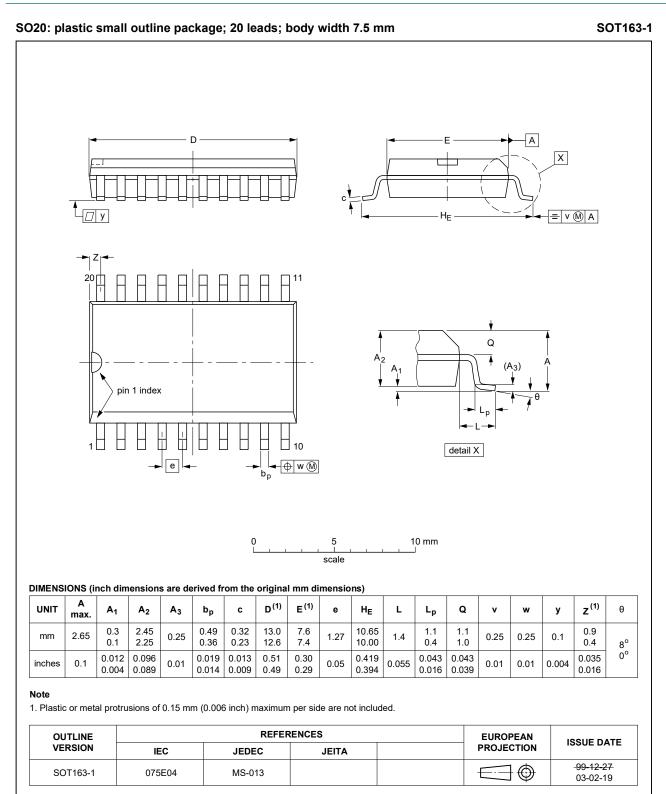



Fig. 12. Test circuit for measuring switching times

Table 9. Test data

Туре	Input		Load		S1 position		
	VI	t _r , t _f	CL	RL	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
74HC373-Q100	V _{CC}	6 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}
74HCT373-Q100	3 V	6 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}

11. Package outline

Fig. 13. Package outline SOT163-1 (SO20)

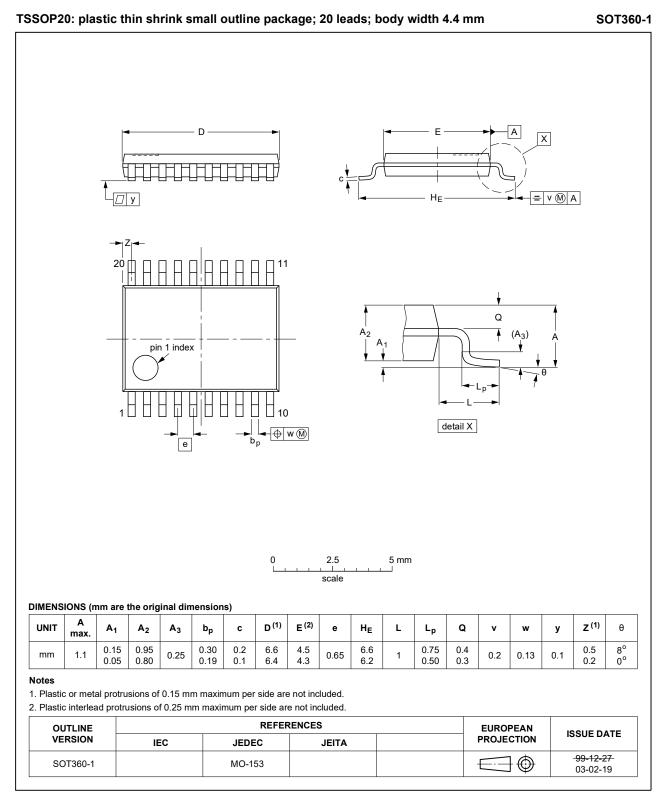


Fig. 14. Package outline SOT360-1 (TSSOP20)

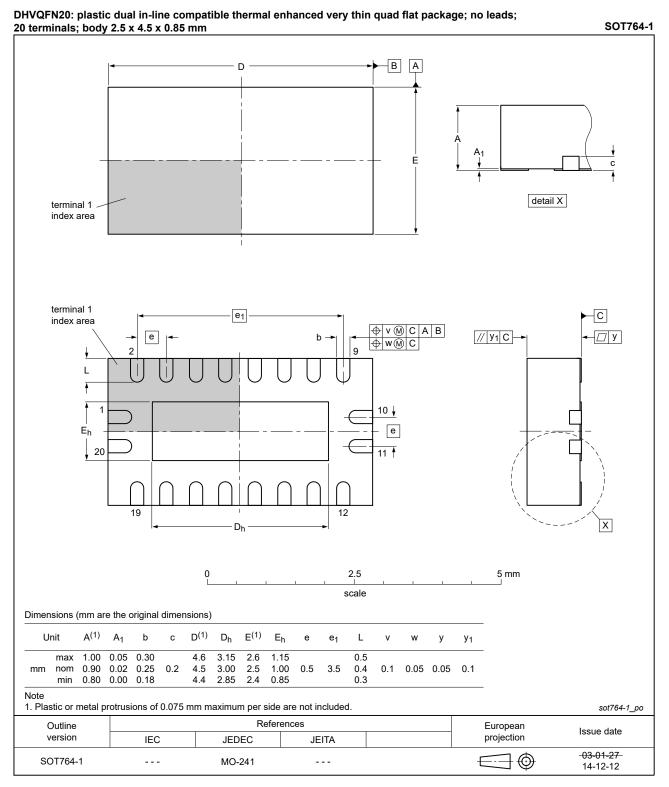


Fig. 15. Package outline SOT764-1 (DHVQFN20)

12. Abbreviations

Table 10. Abbreviatio	Table 10. Abbreviations						
Acronym	Description						
CMOS	Complementary Metal Oxide Semiconductor						
ESD	ElectroStatic Discharge						
HBM	Human Body Model						
MIL	Military						
MM	Machine Model						
TTL	Transistor-Transistor Logic						

13. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC_HCT373_Q100 v.2	20200722	Product data sheet	-	74HC_HCT373_Q100 v.1
Modifications:	guidelines o Legal texts I <u>Section 1</u> ar <u>Table 4</u> : Der <u>Table 6</u> : Cor	of this data sheet has been f Nexperia. nave been adapted to the r nd <u>Section 2</u> updated. rating values for P _{tot} total p nditions I _{OZ} updated. kage outline drawing SOT	new company nan	ne where appropriate. Ipdated.
74HC_HCT373_Q100 v.1	20120810	Product data sheet	-	-

14. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

 Please consult the most recently issued document before initiating or completing a design.

- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at <u>https://www.nexperia.com</u>.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or

Octal D-type transparent latch; 3-state

equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nexperia.com/profile/terms</u>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Product data sheet

Contents

1. General description	1
2. Features and benefits	1
3. Ordering information	2
4. Functional diagram	
5. Pinning information	4
5.1. Pinning	4
5.2. Pin description	4
6. Functional description	5
7. Limiting values	
8. Recommended operating conditions	
9. Static characteristics	
10. Dynamic characteristics	
10.1. Waveforms	
11. Package outline	11
12. Abbreviations	
13. Revision history	
14. Legal information	

© Nexperia B.V. 2020. All rights reserved

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 22 July 2020

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Latches category:

Click to view products by Nexperia manufacturer:

Other Similar products are found below :

ML4875CS-5 401639B 716165RB 74F373DW 74LVC373ADTR2G 74LVC573ADTR2G NL17SG373DFT2G NLV14044BDG 5962-8863901RA 5962-88639012A NLV14042BDR2G M22W-1333-21/3/45-90-02 (NI 2.PM18.002-18 2.PM18.006-18 2.T18.001-21 2.T18.002-18 2.T18.006-18 CQ/A-M22X1,5-45-32 M22-2-D5-2-21-01-P CY74FCT2373CTSOC 421283 MM74HC373WM MM74HC573WM 74LCX373MTC 74LVT16373MTDX 74VHC373MX KLD5.001-02 MIC58P01YV 74AHCT573D.112 74LCX16373MTDX CQ/A-M22X1,5-45-16 CQ/A-M22X1,5-45-18 CQ/A-M22X1,5-45-20 CQ/A-M22X1,5-45-24 CQ/A-M22X1,5-45-30 CQT/A-32-18 AE-V0 CQT/A-32 20-AE-V0 CQT/A-32 32-AE-V0 CY54FCT841ATDMB TPIC6B273DWRG4 Z-2106-25001-22 2.904.005 2.904.006 2.904.008 2.KLB-KW8.001PA-07 2.KLB-T9.001PA-07 2.KL-T9.002-02 2.L18.001-18 2.L30.002-30 2.PM30.001-33