Triple single-pole double-throw analog switch
Rev. 8 - 15 September 2021
Product data sheet

1. General description

The 74LV4053 is a triple single-pole double-throw (SPDT) analog switch, suitable for use in 2:1 multiplexer/demultiplexer applications. Each switch features a digital select input (Sn), two independent inputs/outputs (Y 0 and Y 1) and a common input/output (Z). A digital enable input (E) is common to all switches. When \bar{E} is HIGH, the switches are turned off.

Digital inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess V_{CC}.

2. Features and benefits

- Wide supply voltage range from 1.0 V to 6.0 V
- Optimized for low-voltage applications: 1.0 V to 3.6 V
- CMOS low power disssipation
- Accepts TTL input levels between $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$
- Low ON resistance:
- 180Ω (typical) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.0 \mathrm{~V}$
- 100Ω (typical) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=3.0 \mathrm{~V}$
- 75Ω (typical) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=4.5 \mathrm{~V}$
- Logic level translation:
- To enable 3 V logic to communicate with $\pm 3 \mathrm{~V}$ analog signals
- Typical 'break before make' built in
- Latch-up performance exceeds 100 mA per JESD 78 Class II Level B
- Complies with JEDEC standards:
- JESD8-7 (1.65 V to 1.95 V)
- JESD8-5 (2.3 V to 2.7 V)
- JESD8C (2.7 V to 3.6 V)
- JESD36 (4.6 V to 5.5 V)
- ESD protection:
- HBM JESD22-A114-C exceeds 2000 V
- MM JESD22-A115-A exceeds 200 V
- Multiple package options
- Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Triple single-pole double-throw analog switch

3. Ordering information

Table 1. Ordering information

Type number	Package			Version
	Temperature range	Name	Description	SOT109-1
74 LV 4053 D	$-40^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT403-1
74 LV 4053 PW	$-40^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT763-1
74 LV 4053 BQ	$-40^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$	DHVQFN16	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body $2.5 \times 3.5 \times 0.85 ~ m m$	

4. Functional diagram

Fig. 1. Functional diagram

Triple single-pole double-throw analog switch

Fig. 2. Logic symbol

Fig. 3. IEC logic symbol

Fig. 4. Schematic diagram (one switch)

Triple single-pole double-throw analog switch

5. Pinning information

5.1. Pinning

Fig. 5. Pin configuration SOT109-1 (SO16) and SOT403-1 (TSSOP16)

Transparent top view
(1) This is not a supply pin. There is no electrical or mechanical requirement to solder the pad. In case soldered, the solder land should remain floating or connected to V_{Cc}.
Fig. 6. Pin configuration SOT763-1 (DHVQFN16)

5.2. Pin description

Table 2. Pin description

Symbol	Pin	Description
E	6	enable input (active LOW)
V_{EE}	7	supply voltage
GND	8	ground supply voltage
S1, S2, S3	$11,10,9$	select input
$1 \mathrm{Y}, 2 \mathrm{Y}, 3 \mathrm{Y0}$	$12,2,5$	independent input or output
$1 \mathrm{Y}, 2 \mathrm{Y} 1,3 \mathrm{Y} 1$	$13,1,3$	independent input or output
$1 \mathrm{Z}, 2 \mathrm{Z}, 3 \mathrm{Z}$	$14,15,4$	common output or input
V_{CC}	16	supply voltage

6. Functional description

Table 3. Function table
H = HIGH voltage level; L = LOW voltage level; $X=$ don't care.

Inputs	Sn	Channel on
E	L	
L	H	nY0 to $n Z$
L	X	nY1 to $n Z$
H	switches off	

Triple single-pole double-throw analog switch

7. Limiting values

Table 4. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to $V_{S S}=0 \mathrm{~V}$ (ground).

Symbol	Parameter	Conditions	Min	Max	Unit	
V_{CC}	supply voltage		$[1]$	-0.5	+7.0	V
I_{K}	input clamping current	$\mathrm{V}_{\mathrm{I}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{I}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$[2]$	-	± 20	mA
I_{SK}	switch clamping current	$\mathrm{V}_{\mathrm{SW}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{SW}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$[2]$	-	± 20	mA
I_{SW}	switch current	$\mathrm{V}_{\mathrm{SW}}>-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{SW}}<\mathrm{V}_{\mathrm{CC}}+0.5$ V ;source or sink current	$[2]$	-	± 25	mA
$\mathrm{~T}_{\text {stg }}$	storage temperature			-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$[3]$	-	500	mW

[1] To avoid drawing $V_{C C}$ current out of terminal $n Z$, when switch current flows into terminals $n Y n$, the voltage drop across the bidirectional switch must not exceed 0.4 V . If the switch current flows into terminal $n Z$, no V_{Cc} current will flow out of terminals $n Y n$, and in this case there is no limit for the voltage drop across the switch, but the voltages at $n Y n$ and $n Z$ may not exceed $V_{C C}$ or $V_{E E}$.
[2] The minimum input voltage rating may be exceeded if the input current rating is observed.
[3] For SOT109-1 (SO16) package: $\mathrm{P}_{\text {tot }}$ derates linearly with $12.4 \mathrm{~mW} / \mathrm{K}$ above $110{ }^{\circ} \mathrm{C}$.
For SOT403-1 (TSSOP16) package: $\mathrm{P}_{\text {tot }}$ derates linearly with $8.5 \mathrm{~mW} / \mathrm{K}$ above $91^{\circ} \mathrm{C}$.
For SOT763-1 (DHVQFN16) package: $P_{\text {tot }}$ derates linearly with $11.2 \mathrm{~mW} / \mathrm{K}$ above $106{ }^{\circ} \mathrm{C}$.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_{CC}	supply voltage	see Fig. 7	1	3.3	6	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage		0	-	V_{CC}	V
V_{SW}	switch voltage		0	-	V_{CC}	V
$\mathrm{T}_{\mathrm{amb}}$	ambient temperature	in free air	-40	-	+125	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	input transition rise and fall rate	$\mathrm{V}_{\mathrm{CC}}=1.0 \mathrm{~V}$ to 2.0 V	-	-	500	$\mathrm{~ns} / \mathrm{V}$
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ to 2.7 V	-	-	200	$\mathrm{~ns} / \mathrm{V}$
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	-	-	100	$\mathrm{~ns} / \mathrm{V}$

Fig. 7. Guaranteed operating area as a function of the supply voltages

Triple single-pole double-throw analog switch

9. Static characteristics

Table 6. Static characteristics
At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$		Unit
			Min	Typ[1]	Max	Min	Max	
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{C C}=1.2 \mathrm{~V}$	0.9	-	-	0.9	-	V
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	1.4	-	-	1.4	-	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	2.0	-	-	2.0	-	V
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	3.15	-	-	3.15	-	V
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	4.20	-	-	4.20	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{C C}=1.2 \mathrm{~V}$	-	-	0.3	-	0.3	V
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	-	0.6	-	0.6	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	-	-	0.8	-	0.8	V
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	-	-	1.35	-	1.35	V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	1.80	-	1.80	V
1	input leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND						
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$	-	-	1.0	-	1.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	2.0	-	2.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(OFF) }}$	OFF-state leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}; see Fig. 8						
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$	-	-	1.0	-	1.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	2.0	-	2.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(ON })}$	ON-state leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ;$ see Fig. 9						
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$	-	-	1.0	-	1.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	2.0	-	2.0	$\mu \mathrm{A}$
ICC	supply current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{I}_{\mathrm{O}}=0 \mathrm{~A}$						
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$	-	-	20	-	40	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	40	-	80	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	additional supply current	$\begin{aligned} & \text { per input; } \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$	-	-	500	-	850	$\mu \mathrm{A}$
C_{1}	input capacitance		-	3.5	-	-	-	pF
C_{sw}	switch capacitance	independent pins nYn	-	5	-	-	-	pF
		common pins nZ	-	8	-	-	-	pF

[1] Typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Triple single-pole double-throw analog switch

9.1. Test circuits

$V_{I}=V_{C C}$ or $V_{E E}$ and $V_{O}=V_{E E}$ or $V_{C C}$.
Fig. 8. Test circuit for measuring OFF-state leakage current

$V_{I}=V_{C C}$ or $V_{E E}$ and $V_{O}=$ open circuit.
Fig. 9. Test circuit for measuring ON -state leakage current

9.2. ON resistance

Table 7. ON resistance
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for graphs see Fig. 10 and Fig. 11.

Symbol	Parameter	Conditions	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40{ }^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$		Unit
			Min	Typ[1]	Max	Min	Max	
$\mathrm{R}_{\text {ON(} \text { (eak) }}$	ON resistance (peak)	$\mathrm{V}_{1}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}-\mathrm{V}_{\text {EE }}$						
		$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=100 \mu \mathrm{~A} \quad[2]$	-	-	-	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$; $\mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	180	365	-	435	Ω
		$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$; $\mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	115	225	-	270	Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A} \end{aligned}$	-	100	200	-	245	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$; $\mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	75	150	-	180	Ω
		$\mathrm{V}_{\text {CC }}=6.0 \mathrm{~V}$; $\mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	70	140	-	165	Ω
$\Delta \mathrm{R}_{\text {ON }}$	ON resistance mismatch between channels	$\mathrm{V}_{1}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}-\mathrm{V}_{\text {EE }}$						
		$\mathrm{V}_{C C}=1.2 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=100 \mu \mathrm{~A} \quad[2]$	-	-	-	-	-	Ω
		$\mathrm{V}_{\text {CC }}=2.0 \mathrm{~V}$; $\mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	5	-	-	-	Ω
		$\mathrm{V}_{C C}=2.7 \mathrm{~V}$; $\mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	4	-	-	-	Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A} \end{aligned}$	-	4	-	-	-	Ω
		$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$; $\mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	3	-	-	-	Ω
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$; $\mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	2	-	-	-	Ω
$\mathrm{R}_{\mathrm{ON}(\text { rail }}$	ON resistance (rail)	$\mathrm{V}_{1}=\mathrm{GND}$						
		$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=100 \mu \mathrm{~A} \quad$ [2]	-	250	-	-	-	Ω
		$\mathrm{V}_{\text {CC }}=2.0 \mathrm{~V}$; $\mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	120	280	-	325	Ω
		$\mathrm{V}_{C C}=2.7 \mathrm{~V}$; $\mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	75	170	-	195	Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A} \end{aligned}$	-	70	155	-	180	Ω
		$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$; $\mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	50	120	-	135	Ω
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$; $\mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	45	105	-	120	Ω

Triple single-pole double-throw analog switch

Symbol	Parameter	Conditions	$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$		Unit
			Min	Typ[1]	Max	Min	Max	
$\mathrm{R}_{\text {ON(rail) }}$	ON resistance (rail)	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$						
		$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=100 \mu \mathrm{~A} \quad$ [2]	-	350	-	-	-	Ω
		$\mathrm{V}_{C C}=2.0 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	170	340	-	400	Ω
		$\mathrm{V}_{C C}=2.7 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	105	210	-	250	Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A} \end{aligned}$	-	95	190	-	225	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$; $\mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	70	140	-	165	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$; $\mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	65	125	-	150	Ω

[1] Typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
[2] When supply voltages $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$ near 1.2 V the analog switch ON resistance becomes extremely non-linear. When using a supply of 1.2 V , it is recommended to use these devices only for transmitting digital signals.

9.3. On resistance waveform and test circuit

$\mathrm{R}_{\mathrm{ON}}=\mathrm{V}_{\mathrm{SW}} / \mathrm{I}_{\mathrm{SW}}$.
Fig. 10. Test circuit for measuring R_{ON}

$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$
Fig. 11. Typical R_{ON} as a function of input voltage

Triple single-pole double-throw analog switch

10. Dynamic characteristics

Table 8. Dynamic characteristics
Voltages are referenced to GND (ground = 0 V). For test circuit see Fig. 14.

Symbol	Parameter	Conditions		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$		Unit
				Min	Typ[1]	Max	Min	Max	
t_{pd}	propagation delay	nYn, nZ to nZ, nYn; see Fig. 12	[2]						
		$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$		-	25	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$		-	9	17	-	20	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		-	6	13	-	15	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	[3]	-	5	10	-	12	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		-	4	9	-	10	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$		-	3	7	-	8	ns
$\mathrm{t}_{\text {en }}$	enable time	\bar{E} to nYn, nZ; see Fig. 13	[2]						
		$\mathrm{V}_{C C}=1.2 \mathrm{~V}$		-	100	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$		-	34	65	-	77	ns
		$\mathrm{V}_{C C}=2.7 \mathrm{~V}$		-	25	48	-	56	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	[3]	-	16	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	[3]	-	19	38	-	45	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		-	17	32	-	38	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$		-	13	25	-	29	ns
		Sn to nYn, nZ; see Fig. 13	[2]						
		$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$		-	125	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$		-	43	82	-	97	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		-	31	60	-	71	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	[3]	-	20	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	[3]	-	24	48	-	57	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		-	21	41	-	48	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$		-	16	31	-	37	ns
$\mathrm{t}_{\text {dis }}$	disable time	E to nYn, nZ; see Fig. 13	[2]						
		$\mathrm{V}_{C C}=1.2 \mathrm{~V}$		-	95	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$		-	34	61	-	73	ns
		$\mathrm{V}_{C C}=2.7 \mathrm{~V}$		-	26	46	-	54	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	[3]	-	17	-	-	-	ns
		$\mathrm{V}_{\text {CC }}=3.0 \mathrm{~V}$ to 3.6 V	[3]	-	20	37	-	44	ns
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$		-	18	32	-	38	ns
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$		-	15	25	-	30	ns
		Sn to $n Y n, n Z$; see Fig. 13	[2]						
		$\mathrm{V}_{C C}=1.2 \mathrm{~V}$		-	90	-	-	-	ns
		$\mathrm{V}_{C C}=2.0 \mathrm{~V}$		-	32	59	-	70	ns
		$\mathrm{V}_{C C}=2.7 \mathrm{~V}$		-	24	44	-	52	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	[3]	-	16	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	[3]	-	19	36	-	42	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		-	17	31	-	36	ns
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$		-	14	24	-	28	ns

Triple single-pole double-throw analog switch

Symbol	Parameter	Conditions	$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$		Unit
			Min	Typ[1]	Max	Min	Max	
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{l}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}} \quad$ [4]	-	36	-	-	-	pF

[1] All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
[2] $t_{p d}$ is the same as $t_{\text {PLH }}$ and $t_{\text {PHL }}$. $t_{\text {en }}$ is the same as $t_{\text {pzl }}$ and $t_{\text {pzh }}$. $\mathrm{t}_{\text {dis }}$ is the same as $\mathrm{t}_{\text {PLZ }}$ and $\mathrm{t}_{\text {PHz }}$.
[3] Typical values are measured at nominal supply voltage ($\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$).
[4] $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$).
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i} \times N+\Sigma\left(\left(C_{L}+C_{S W}\right) \times V_{C C}{ }^{2} \times f_{o}\right)$ where:
$f_{i}=$ input frequency in $\mathrm{MHz}, \mathrm{f}_{\mathrm{o}}=$ output frequency in MHz
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF
$\mathrm{C}_{\mathrm{SW}}=$ maximum switch capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in Volts
$\mathrm{N}=$ number of inputs switching
$\Sigma\left(C_{L} \times V_{C C}{ }^{2} x f_{0}\right)=$ sum of the outputs.

10.1. Waveforms and test circuit

Measurement points are given in Table 9.
V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.
Fig. 12. Propagation delay input ($n Y n, n Z$) to output ($n Z, n Y n$)

Measurement points are given in Table 9.
V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.
Fig. 13. Enable and disable times

Triple single-pole double-throw analog switch
Table 9. Measurement points

Supply voltage	Input	Output		
$\mathbf{V}_{\mathbf{C C}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{X}}$	$\mathbf{V}_{\mathbf{Y}}$
$<2.7 \mathrm{~V}$	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{OL}}+0.1 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{OH}}-0.1 \mathrm{~V}_{\mathrm{CC}}$
2.7 V to 3.6 V	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$
$>3.6 \mathrm{~V}$	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{OL}}+0.1 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{OH}}-0.1 \mathrm{~V}_{\mathrm{CC}}$

Test data is given in Table 10.
Definitions for test circuit:
$\mathrm{R}_{\mathrm{L}}=$ Load resistance.
$C_{L}=$ Load capacitance including jig and probe capacitance.
$R_{T}=$ Termination resistance should be equal to output impedance Z_{o} of the pulse generator.
$\mathrm{V}_{\mathrm{EXT}}=$ External voltage for measuring switching times.
Fig. 14. Test circuit for measuring switching times
Table 10. Test data

Supply voltage	Input		Load		$\mathrm{V}_{\text {EXT }}$		
$\mathrm{V}_{\text {cc }}$	V_{1}	$\mathbf{t r}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	C_{L}	\mathbf{R}_{L}	$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	$\mathbf{t}_{\text {PZH }}, \mathrm{t}_{\text {PHZ }}$	$\mathbf{t}_{\text {PZL }}, \mathrm{t}_{\text {PLZ }}$
$<2.7 \mathrm{~V}$	V_{CC}	$\leq 6 \mathrm{~ns}$	50 pF	$1 \mathrm{k} \Omega$	open	$\mathrm{V}_{\text {EE }}$	$2 V_{\text {CC }}$
2.7 V to 3.6 V	2.7 V	$\leq 6 \mathrm{~ns}$	$15 \mathrm{pF}, 50 \mathrm{pF}$	$1 \mathrm{k} \Omega$	open	V_{EE}	$2 V_{C C}$
$>3.6 \mathrm{~V}$	V_{Cc}	$\leq 6 \mathrm{~ns}$	50 pF	$1 \mathrm{k} \Omega$	open	V_{EE}	$2 V_{C C}$

Triple single-pole double-throw analog switch

10.2. Additional dynamic parameters

Table 11. Additional dynamic characteristics
At recommended operating conditions; voltages are referenced to GND (ground $=0 \mathrm{~V}$); $V_{l}=G N D$ or $V_{C C}$ (unless otherwise specified); $t_{r}=t_{f} \leq 6.0 \mathrm{~ns} ; T_{\text {amb }}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
THD	total harmonic distortion	$\mathrm{f}_{\mathrm{i}}=1 \mathrm{kHz} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$; see Fig. 15				
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=2.75 \mathrm{~V}(\mathrm{p}-\mathrm{p})$	-	0.8	-	\%
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ (p-p)	-	0.4	-	\%
		$\mathrm{f}_{\mathrm{i}}=10 \mathrm{kHz} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$; see Fig. 15				
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \mathrm{~V}_{\mathrm{I}}=2.75 \mathrm{~V}(\mathrm{p}-\mathrm{p})$	-	2.4	-	\%
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ (p-p)	-	1.2	-	\%
$\mathrm{f}_{(-3 \mathrm{~dB})}$	-3 dB frequency response	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=50 \Omega$; see Fig. 16				
		$\mathrm{V}_{\text {CC }}=3.0 \mathrm{~V}$	-	180	-	MHz
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	-	200	-	MHz
$\mathrm{a}_{\text {iso }}$	isolation (OFF-state)	$\mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=600 \Omega$; see Fig. 18 [2]				
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	-50	-	dB
		$\mathrm{V}_{\text {CC }}=6.0 \mathrm{~V}$	-	-50	-	dB
V_{ct}	crosstalk voltage	between digital inputs and switch; $\mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz}$; $C_{L}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=600 \Omega$; see Fig. 20				
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	0.11	-	V
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	-	0.12	-	V
Xtalk	crosstalk	between switches; $f_{i}=1 \mathrm{MHz} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; $R_{L}=600 \Omega$; see Fig. 21				
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	-60	-	dB
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	-	-60	-	dB

[1] Adjust f_{i} voltage to obtain 0 dBm level at output for $1 \mathrm{MHz}(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $50 \Omega)$.
[2] Adjust f_{i} voltage to obtain 0 dBm level at output for $1 \mathrm{MHz}(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $600 \Omega)$.

10.2.1. Test circuits

Fig. 15. Test circuit for measuring total harmonic distortion

Triple single-pole double-throw analog switch

Fig. 16. Test circuit for measuring frequency response

$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=50 \Omega$; $R_{\text {SOURCE }}=1 \mathrm{k} \Omega$.
Fig. 17. Typical frequency response

Fig. 19. Typical isolation (OFF-state) as function of frequency

Triple single-pole double-throw analog switch

a.Test circuit

b. Input and output pulse definitions
V_{1} may be connected to Sn or $\overline{\mathrm{E}}$.
Fig. 20. Test circuit for measuring crosstalk voltage between digital inputs and switch

a. Switch closed condition

b. Switch open condition

Fig. 21. Test circuit for measuring crosstalk between switches

Triple single-pole double-throw analog switch

11. Package outline

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.8 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	8°
inches	0.069	$\begin{array}{\|l\|} 0.010 \\ 0.004 \end{array}$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0100 \\ 0.0075 \\ \hline \end{array}$	$\begin{aligned} & 0.39 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.05	$\begin{aligned} & 0.244 \\ & 0.228 \end{aligned}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.020 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT109-1	076E07	MS-012		\square	$\begin{aligned} & 99-12-27 \\ & 03-02-19 \end{aligned}$

Fig. 22. Package outline SOT109-1 (SO16)

Triple single-pole double-throw analog switch

detail X

DIMENSIONS (mm are the original dimensions)

| UNIT | \mathbf{A} | | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| max. | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{2}}$ | $\mathbf{A}_{\mathbf{3}}$ | $\mathbf{b}_{\mathbf{p}}$ | \mathbf{c} | $\mathbf{D}^{(\mathbf{1})}$ | $\mathbf{E}^{(\mathbf{2})}$ | \mathbf{e} | $\mathbf{H}_{\mathbf{E}}$ | \mathbf{L} | $\mathbf{L}_{\mathbf{p}}$ | \mathbf{Q} | \mathbf{v} | \mathbf{w} | \mathbf{y} | $\mathbf{Z}^{(\mathbf{1})}$ | $\boldsymbol{\theta}$ |
| mm | 1.1 | 0.15 | 0.95 | 0.25 | 0.30 | 0.2 | 5.1 | 4.5 | 0.65 | 6.6 | 1 | 0.75 | 0.4 | | | | |
| | 0.05 | 0.80 | 0.25 | 0.19 | 0.1 | 4.9 | 4.3 | 0.6 | 6.2 | 0.13 | 0.1 | 0.40 | 8° | | | | |
| 0.06 | 0° | | | | | | | | | | | | | | | |

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

Fig. 23. Package outline SOT403-1 (TSSOP16)

DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body $2.5 \times 3.5 \times 0.85 \mathrm{~mm}$

detail X

DIMENSIONS (mm are the original dimensions)

UNIT	$\mathbf{A}^{(\mathbf{1})}$ max.	$\mathbf{A}_{\mathbf{1}}$	\mathbf{b}	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{D}_{\mathbf{h}}$	$\mathbf{E}^{(\mathbf{1})}$	$\mathbf{E}_{\mathbf{h}}$	\mathbf{e}	\mathbf{e}	\mathbf{L}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{y}_{\mathbf{1}}$
mm	1	0.05	0.30	0.2	3.6	2.15	2.6	1.15	0.5	2.5	0.5	0.1	0.05	0.05	0.1

Note

1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN
	IEC	JEDEC	JEITA		
SOT763-1	$-\ldots$	MO-241	--	$-02-10-17$	

Fig. 24. Package outline SOT763-1 (DHVQFN16)

Triple single-pole double-throw analog switch

12. Abbreviations

Table 12. Abbreviations

Acronym	Description
CMOS	Complementary Metal-Oxide Semiconductor
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

13. Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74LV4053 v. 8	20210915	Product data sheet	-	74LV4053 v. 7
Modifications:	- Type number 74LV4053DB (SOT338-1/SSOP16) removed. - Section 1 and Section 2 updated.			
74LV4053 v. 7	20200923	Product data sheet	-	74LV4053 v. 6
Modifications:	- The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia. - Legal texts have been adapted to the new company name where appropriate. - Table 4: Derating values for $\mathrm{P}_{\text {tot }}$ total power dissipation updated.			
74LV4053 v. 6	20160317	Product data sheet	-	74LV4053 v. 5
Modifications:	- Type number 74LV4053N (SOT38-4) removed.			
74LV4053 v. 5	20140918	Product data sheet	-	74LV4053 v. 4
Modifications:	- Fig. 6: Figure note added for DHVQFN16 package.			
74LV4053 v.4	20090810	Product data sheet	-	74LV4053 v. 3
Modifications:	- The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. - Legal texts have been adapted to the new company name where appropriate. - Added type number 74LV4053BQ (DHVQFN16 package) - $R_{\text {ON }}$ values changed in Section 2. - Package version SOT38-1 changed to SOT38-4 in Section 5, and Section 11.			
74LV4053 v. 3	19980623	Product specification	-	74LV4053 v. 2
74LV4053 v. 2	19970715	Product specification	-	-

Triple single-pole double-throw analog switch

14. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term 'short data sheet' is explained in section "Definitions".
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.
Short data sheet - A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification - The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes - Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal
injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data - The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.
Applications - Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.
Export control - This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products - Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations - A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.
Contents

1. General description 1
2. Features and benefits 1
3. Ordering information 2
4. Functional diagram. 2
5. Pinning information 4
5.1. Pinning 4
5.2. Pin description 4
6. Functional description 4
7. Limiting values 5
8. Recommended operating conditions 5
9. Static characteristics 6
9.1. Test circuits 7
9.2. ON resistance 7
9.3. On resistance waveform and test circuit. 8
10. Dynamic characteristics 9
10.1. Waveforms and test circuit 10
10.2. Additional dynamic parameters. 12
10.2.1. Test circuits 12
11. Package outline 15
12. Abbreviations 18
13. Revision history 18
14. Legal information 19
© Nexperia B.V. 2021. All rights reserved

For more information, please visit: http://www.nexperia.com
For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 15 September 2021

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Nexperia manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAS4599DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 DG2502DB-T2-GE1

TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN\#PBF 74LV4066DB,118
FSA2275AUMX

