1. General description

The 74LVC02A-Q100 provides four 2-input NOR gates.
Inputs can be driven from either 3.3 V or 5 V devices. This feature allows the use of these devices as translators in mixed 3.3 V and 5 V applications.
This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

2. Features and benefits

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
- Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- 5 V tolerant inputs for interfacing with 5 V logic
- Wide supply voltage range from 1.2 V to 3.6 V
- CMOS low power consumption
- Direct interface with TTL levels
- Complies with JEDEC standard:
- JESD8-7A (1.65 V to 1.95 V)
- JESD8-5A (2.3 V to 2.7 V)
- JESD8-C/JESD36 (2.7 V to 3.6 V)
- ESD protection:
- MIL-STD-883, method 3015 exceeds 2000 V
- HBM JESD22-A114F exceeds 2000 V
- MM JESD22-A115-A exceeds $200 \mathrm{~V}(\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0 \Omega)$
- Multiple package options
- DHVQFN package with Side-Wettable Flanks enabling Automatic Optical Inspection (AOI) of solder joints

3. Ordering information

Table 1. Ordering information

Type number	Package	Version		
	Temperature range	Name	Description	SOT108-1
$74 \mathrm{LVC} 02 \mathrm{AD}-\mathrm{Q100}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT402-1
$74 \mathrm{LVC02APW-Q100}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSSOP14	plastic thin shrink small outline package; 14 leads; body width 4.4 mm	SOT762-1
$74 \mathrm{LVC02ABQ-Q100}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DHVQFN14	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body $2.5 \times 3 \times 0.85 \mathrm{~mm}$	

4. Functional diagram

5. Pinning information

5.1. Pinning

5.2. Pin description

Table 2. Pin description

Symbol	Pin	Description
1Y to 4 Y	$1,4,10,13$	data output
1A to 4A	$2,5,8,11$	data input
1B to 4B	$3,6,9,12$	data input
GND	7	ground $(0 \mathrm{~V})$
$V_{\text {CC }}$	14	supply voltage

6. Functional description

Table 3. Function table
H = HIGH voltage level; L = LOW voltage level; X = don't care

Input $\boldsymbol{n A}$	Input $\mathbf{n B}$	Output $\boldsymbol{n} \boldsymbol{Y}$
L	L	H
X	H	L
H	X	L

7. Limiting values

Table 4. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground $=0 \mathrm{~V}$).

Symbol	Parameter	Conditions	Min	Max	Unit
$\mathrm{V}_{\text {CC }}$	supply voltage		-0.5	+6.5	V
$\mathrm{I}_{\text {IK }}$	input clamping current	$\mathrm{V}_{1}<0 \mathrm{~V}$	-50	-	mA
V_{1}	input voltage	[1]	-0.5	+6.5	V
$\mathrm{l}_{\text {OK }}$	output clamping current	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$	-	± 50	mA
V_{O}	output voltage	output in HIGH or LOW-state [2]	-0.5	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
Io	output current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to V_{CC}	-	± 50	mA
Icc	supply current		-	100	mA
$\mathrm{I}_{\text {GND }}$	ground current		-100	-	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-	500	mW
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$

[1] The minimum input voltage ratings may be exceeded if the input current ratings are observed.
[2] The output voltage ratings may be exceeded if the output current ratings are observed.
[3] For SOT108-1 (SO14) package: $P_{\text {tot }}$ derates linearly with $10.1 \mathrm{~mW} / \mathrm{K}$ above $100^{\circ} \mathrm{C}$.
For SOT402-1 (TSSOP14) package: $P_{\text {tot }}$ derates linearly with $7.3 \mathrm{~mW} / \mathrm{K}$ above $81^{\circ} \mathrm{C}$.
For SOT762-1 (DHVQFN14) package: $P_{\text {tot }}$ derates linearly with $9.6 \mathrm{~mW} / \mathrm{K}$ above $98^{\circ} \mathrm{C}$.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_{CC}	supply voltage		1.65	-	3.6	V
		functional	1.2	-	-	V
V_{I}	input voltage		0	-	5.5	V
$\mathrm{~V}_{\mathrm{O}}$	output voltage	output HIGH or LOW state	0	-	V_{CC}	V
$\mathrm{T}_{\mathrm{amb}}$	ambient temperature		-40	-	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t} / \Delta \mathrm{V}$	input transition rise and fall rate	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 2.7 V	0	-	20	$\mathrm{~ns} / \mathrm{V}$
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	0	-	10	$\mathrm{~ns} / \mathrm{V}$

9. Static characteristics

Table 6. Static characteristics
At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$		Unit
			Min	Typ[1]	Max	Min	Max	
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$	1.08	-	-	1.08	-	V
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	$0.65 \times \mathrm{V}_{\text {CC }}$	-	-	$0.65 \times \mathrm{V}_{\text {CC }}$	-	V
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	1.7	-	-	1.7	-	V
		$\mathrm{V}_{C C}=2.7 \mathrm{~V}$ to 3.6 V	2.0	-	-	2.0	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{C C}=1.2 \mathrm{~V}$	-	-	0.12	-	0.12	V
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	-	-	$0.35 \times \mathrm{V}_{\mathrm{CC}}$	-	$0.35 \times \mathrm{V}_{\mathrm{CC}}$	V
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	-	-	0.7	-	0.7	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	-	-	0.8	-	0.8	V
V_{OH}	HIGH-level output voltage	$\mathrm{V}_{1}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$						
		$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\text {CC }}-0.2$	-	-	$\mathrm{V}_{\mathrm{CC}}-0.3$	-	V
		$\mathrm{I}_{\mathrm{O}}=-4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	1.2	-	-	1.05	-	V
		$\mathrm{I}_{\mathrm{O}}=-8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	1.8	-	-	1.65	-	V
		$\mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	2.2	-	-	2.05	-	V
		$\mathrm{I}_{\mathrm{O}}=-18 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	2.4	-	-	2.25	-	V
		$\mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	2.2	-	-	2.0	-	V
$\mathrm{V}_{\text {OL }}$	LOW-level output voltage	$\mathrm{V}_{1}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$						
		$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$	-	-	0.2	-	0.3	V
		$\mathrm{l}_{\mathrm{O}}=4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	-	0.45	-	0.65	V
		$\mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	-	0.6	-	0.8	V
		$\mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	-	0.4	-	0.6	V
		$\mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	-	0.55	-	0.8	V
1	input leakage current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ or GND	-	± 0.1	± 5	-	± 20	$\mu \mathrm{A}$
ICC	supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} \end{aligned}$	-	0.1	10	-	40	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {CC }}$	additional supply current	per input pin; $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V ; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A}$	-	5	500	-	5000	$\mu \mathrm{A}$
C_{1}	input capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	-	4.0	-	-	-	pF

[1] All typical values are measured at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ (unless stated otherwise) and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

10. Dynamic characteristics

Table 7. Dynamic characteristics
Voltages are referenced to GND (ground = 0 V). For test circuit see Fig. 7.

Symbol	Parameter	Conditions		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$		Unit
				Min	Typ[1]	Max	Min	Max	
t_{pd}	propagation delay	nA, nB to nY ; see Fig. 6	[2]						
		$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$		-	14	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V		0.5	4.0	8.6	0.5	10.1	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V		1.0	2.4	4.9	1.0	5.7	ns
		$\mathrm{V}_{C C}=2.7 \mathrm{~V}$		1.0	2.5	5.1	1.0	6.5	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V		1.0	2.2	4.4	1.0	5.5	ns
$\mathrm{t}_{\text {sk(0) }}$	output skew time	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	[3]	-	-	1.0	-	1.5	ns
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	per gate; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}	[4]						
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V		-	2.5	-	-	-	pF
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		-	5.7	-	-	-	pF
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V		-	8.5	-	-	-	pF

[1] Typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 2.7 \mathrm{~V}$, and 3.3 V respectively.
[2] $t_{p d}$ is the same as $t_{\text {PLH }}$ and $t_{\text {PHL }}$.
[3] Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.
[4] $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$).
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i} \times N+\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{o}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ; $\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz
$C_{L}=$ output load capacitance in pF
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in Volts
$N=$ number of inputs switching
$\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{o}\right)=$ sum of the outputs

10.1. Waveforms and test circuit

Fig. 6. The input (nA, nB) to output (nY) propagation delays

Test data is given in Table 8.
Definitions for test circuit:
$\mathrm{R}_{\mathrm{L}}=$ Load resistance.
$C_{L}=$ Load capacitance including jig and probe capacitance.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to output impedance Z_{0} of the pulse generator.
Fig. 7. Test circuit for measuring switching times

Table 8. Test data

Supply voltage	Input	Load		
	$\mathbf{V}_{\mathbf{I}}$	$\mathbf{t}_{\mathbf{r}}, \mathbf{t}_{\mathbf{f}}$	$\mathbf{C}_{\mathbf{L}}$	$\mathbf{R}_{\mathbf{L}}$
1.2 V	$\mathrm{~V}_{\mathrm{CC}}$	$\leq 2 \mathrm{~ns}$	30 pF	$1 \mathrm{k} \Omega$
1.65 V to 1.95 V	$\mathrm{~V}_{\mathrm{CC}}$	$\leq 2 \mathrm{~ns}$	30 pF	$1 \mathrm{k} \Omega$
2.3 V to 2.7 V	$\mathrm{~V}_{\mathrm{CC}}$	$\leq 2 \mathrm{~ns}$	30 pF	500Ω
2.7 V	2.7 V	$\leq 2.5 \mathrm{~ns}$	50 pF	500Ω
3.0 V to 3.6 V	2.7 V	$\leq 2.5 \mathrm{~ns}$	50 pF	500Ω

11. Package outline

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	C	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 8.75 \\ & 8.55 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.069	$\begin{aligned} & 0.010 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\left.\begin{array}{\|l\|} \hline 0.0100 \\ 0.0075 \end{array} \right\rvert\,$	$\begin{aligned} & 0.35 \\ & 0.34 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.05	$\begin{aligned} & 0.244 \\ & 0.228 \end{aligned}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.024 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT108-1	076E06	MS-012		\square (+)	$\begin{aligned} & \text {-9-12-27 } \\ & 03-02-19 \end{aligned}$

Fig. 8. Package outline SOT108-1 (SO14)

detail X

DIMENSIONS (mm are the original dimensions)

| UNIT | \mathbf{A} | | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| max. | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{2}}$ | $\mathbf{A}_{\mathbf{3}}$ | $\mathbf{b}_{\mathbf{p}}$ | \mathbf{c} | $\mathbf{D}^{(\mathbf{1})}$ | $\mathbf{E}^{(\mathbf{2})}$ | \mathbf{e} | $\mathbf{H}_{\mathbf{E}}$ | \mathbf{L} | $\mathbf{L}_{\mathbf{p}}$ | \mathbf{Q} | \mathbf{v} | \mathbf{w} | \mathbf{y} | $\mathbf{Z}^{(\mathbf{1})}$ | $\boldsymbol{\theta}$ |
| mm | 1.1 | 0.15 | 0.95 | 0.25 | 0.30 | 0.2 | 5.1 | 4.5 | 0.65 | 6.6 | 1 | 0.75 | 0.4 | | | | |
| | 0.05 | 0.80 | 0.25 | 0.19 | 0.1 | 4.9 | 4.3 | 0.6 | 6.2 | 0.13 | 0.1 | 0.72 | 8° | | | | |
| 0.38 | 0° | | | | | | | | | | | | | | | |

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
		MO-153			$03-02-18$	

Fig. 9. Package outline SOT402-1 (TSSOP14)

DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body $2.5 \times 3 \times 0.85 \mathrm{~mm}$

Fig. 10. Package outline SOT762-1 (DHVQFN14)

12. Abbreviations

Table 9. Abbreviations

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MIL	Military
MM	Machine Model
TTL	Transistor-Transistor Logic

13. Revision history

Table 10. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74LVC02A_Q100 v. 2	20200824	Product data sheet		74LVC02A_Q100 v. 1
Modifications:	- The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia. - Legal texts have been adapted to the new company name where appropriate. - Section 2 updated. - Table 4: Derating values for $\mathrm{P}_{\text {tot }}$ total power dissipation have been updated. - Package outline drawing of SOT762-1 (Fig. 10) updated.			
74LVC02A_Q100 v. 1	20130404	Product data sheet		

14. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term 'short data sheet' is explained in section "Definitions".
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.
Short data sheet - A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification - The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes - Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications - This Nexperia product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or
equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.
Quick reference data - The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.
Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.
Terms and conditions of commercial sale - Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control - This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.
Translations - A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.
Contents

1. General description 1
2. Features and benefits 1
3. Ordering information1
4. Functional diagram. 2
5. Pinning information 2
5.1. Pinning. 2
5.2. Pin description 2
6. Functional description 3
7. Limiting values 3
8. Recommended operating conditions. 3
9. Static characteristics 4
10. Dynamic characteristics 5
10.1. Waveforms and test circuit. 6
11. Package outline 7
12. Abbreviations 10
13. Revision history 10
14. Legal information 11

© Nexperia B.V. 2020. All rights reserved

For more information, please visit: http://www.nexperia.com
For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 24 August 2020

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Logic Gates category:
Click to view products by Nexperia manufacturer:
Other Similar products are found below :
74HC85N NLU1G32AMUTCG NLVHC1G08DFT1G CD4068BE NL17SG32P5T5G NL17SG86DFT2G NLV14001UBDR2G
NLX1G11AMUTCG NLX1G97MUTCG 74LS38 74LVC32ADTR2G MC74HCT20ADTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G
NLV74HC02ADR2G 74HC32S14-13 74LS133 M38510/30402BDA 74LVC1G86Z-7 74LVC2G08RA3-7 NLV74HC08ADTR2G
NLV74HC14ADR2G NLV74HC20ADR2G NLX2G86MUTCG 5962-8973601DA 74LVC2G02HD4-7 NLU1G00AMUTCG
74LVC2G32RA3-7 74LVC2G00HD4-7 NL17SG02P5T5G 74LVC2G00HK3-7 74LVC2G86HK3-7 NLX1G99DMUTWG NLVVHC1G00DFT2G NLVHC1G08DFT2G NLV7SZ57DFT2G NLV74VHC04DTR2G NLV27WZ86USG NLV27WZ00USG

NLU1G86CMUTCG NLU1G08CMUTCG NL17SZ32P5T5G NL17SZ00P5T5G NL17SH02P5T5G 74AUP2G00RA3-7
NLV74HC02ADTR2G NLX1G332CMUTCG NL17SG86P5T5G NL17SZ05P5T5G NLV74VHC00DTR2G

