74LVC1G123

Single retriggerable monostable multivibrator; Schmitt trigger inputs

Rev. 7 — 20 April 2021

Product data sheet

1. General description

The 74LVC1G123 is a single retriggerable monostable multivibrator with Schmitt trigger inputs. Output pulse width is controlled by three methods:

- 1. The basic pulse is programmed by selection of an external resistor (R_{EXT}) and capacitor (C_{EXT}).
- 2. Once triggered, the basic output pulse width may be extended by retriggering the gated active LOW-going edge input (A) or the active HIGH-going edge input (B). By repeating this process, the output pulse period (Q = HIGH) can be made as long as desired. Alternatively an output delay can be terminated at any time by a LOW-going edge on input CLR, which also inhibits the triggering.
- 3. An internal connection from $\overline{\text{CLR}}$ to the input gates makes it possible to trigger the circuit by a HIGH-going signal at input $\overline{\text{CLR}}$.

Inputs can be driven from either 3.3 V or 5 V devices. This feature allows the use of these devices as translators in a mixed 3.3 V and 5 V environment. Schmitt trigger inputs, makes the circuit highly tolerant to slower input rise and fall times.

This device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

2. Features and benefits

- Wide supply voltage range from 1.65 V to 5.5 V
- High noise immunity
- ±24 mA output drive (V_{CC} = 3.0 V)
- CMOS low power consumption
- DC triggered from active HIGH or active LOW inputs
- Retriggerable for very long pulses up to 100 % duty factor
- · Direct reset terminates output pulse
- · Schmitt trigger on all inputs
- Complies with JEDEC standard:
 - JESD8-7 (1.65 V to 1.95 V)
 - JESD8-5 (2.3 V to 2.7 V)
 - JESD8-B/JESD36 (2.7 V to 3.6 V)
- Power-on-reset on outputs
- Latch-up performance exceeds 100 mA
- · Direct interface with TTL levels
- Inputs accept voltages up to 5.5 V
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101E exceeds 1000 V
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

Single retriggerable monostable multivibrator; Schmitt trigger inputs

3. Ordering information

Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74LVC1G123DP	-40 °C to +125 °C	TSSOP8	plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm	SOT505-2
74LVC1G123DC	-40 °C to +125 °C	VSSOP8	plastic very thin shrink small outline package; 8 leads; body width 2.3 mm	SOT765-1
74LVC1G123GT	-40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body 1 × 1.95 × 0.5 mm	SOT833-1
74LVC1G123GN	-40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.2 × 1.0 × 0.35 mm	SOT1116
74LVC1G123GS	-40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.35 × 1.0 × 0.35 mm	SOT1203

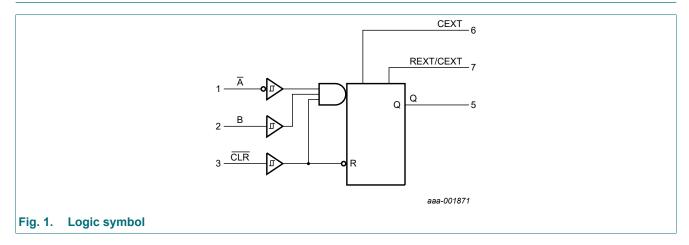
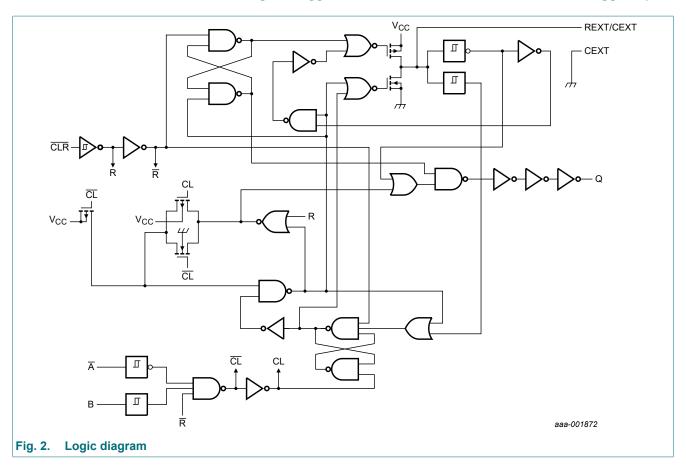
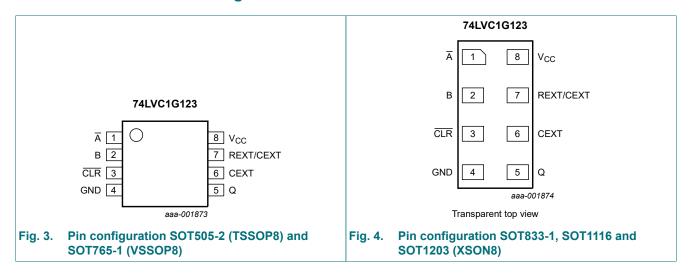

4. Marking

Table 2. Marking codes


Type number	Marking code[1]
74LVC1G123DP	Y3
74LVC1G123DC	Y3
74LVC1G123GT	Y3
74LVC1G123GN	Y3
74LVC1G123GS	Y3

^[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

5. Functional diagram



Single retriggerable monostable multivibrator; Schmitt trigger inputs

6. Pinning information

6.1. Pinning

Product data sheet

Single retriggerable monostable multivibrator; Schmitt trigger inputs

6.2. Pin description

Table 3. Pin description

Symbol	Pin	Description
Ā	1	negative-edge triggered input
В	2	positive-edge triggered input
CLR	3	direct reset LOW and positive-edge triggered input
GND	4	ground (0 V)
Q	5	active HIGH output
CEXT	6	external capacitor connection
REXT/CEXT	7	external resistor and capacitor connection
V _{CC}	8	supply voltage

7. Functional description

Table 4. Function table

 $H = HIGH \ voltage \ level; \ L = LOW \ voltage \ level; \ X = don't \ care; \ \uparrow = LOW-to-HIGH \ transition; \ \downarrow = HIGH-to-LOW \ transition; \ \downarrow = HIGH-to-L$

Input			Output
CLR	Ā	В	Q
L	X	X	L
X	Н	X	L[1]
X	X	L	L[1]
Н	L	\uparrow	Л
Н	\	Н	Л
1	L	Н	Л

^[1] If the monostable was triggered before this condition was established, the pulse continues as programmed.

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V_{CC}	supply voltage			-0.5	+6.5	V
VI	input voltage		[1]	-0.5	+6.5	V
Vo	output voltage	Active mode	[1]	-0.5	V _{CC} + 0.5	V
		Power-down mode; V _{CC} = 0 V	[1]	-0.5	+6.5	V
I _{IK}	input clamping current	V _I < 0 V		-50	-	mA
I _{OK}	output clamping current	$V_O < 0 \text{ V or } V_O > V_{CC}$		-	±50	mA
Io	output current	$V_O = 0 V \text{ to } V_{CC}$		-	±50	mA
I _{CC}	supply current			-	100	mA
I_{GND}	ground current			-100	-	mA
T _{stg}	storage temperature			-65	+150	°C

Single retriggerable monostable multivibrator; Schmitt trigger inputs

Symbol	Parameter	Conditions	Min	Max	Unit
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$ [2]	-	250	mW

- [1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
- [2] For SOT505-2 (TSSOP8) package: P_{tot} derates linearly with 4.6 mW/K above 96 °C. For SOT765-1 (VSSOP8) package: P_{tot} derates linearly with 4.9 mW/K above 99 °C. For SOT833-1 (XSON8) package: P_{tot} derates linearly with 3.1 mW/K above 68 °C. For SOT1116 (XSON8) package: P_{tot} derates linearly with 4.2 mW/K above 90 °C. For SOT1203 (XSON8) package: P_{tot} derates linearly with 3.6 mW/K above 81 °C.

9. Recommended operating conditions

Table 6. Operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		1.65	5.5	V
VI	input voltage		0	5.5	V
Vo	output voltage	Active mode	0	V _{CC}	V
		Power-down mode; V _{CC} = 0 V	0	5.5	V
T _{amb}	ambient temperature		-40	+125	°C
Δt/ΔV	input transition rise and fall rate	V _{CC} = 1.65 V to 5.5 V	-	1	ms/V

10. Static characteristics

Table 7. Static characteristics

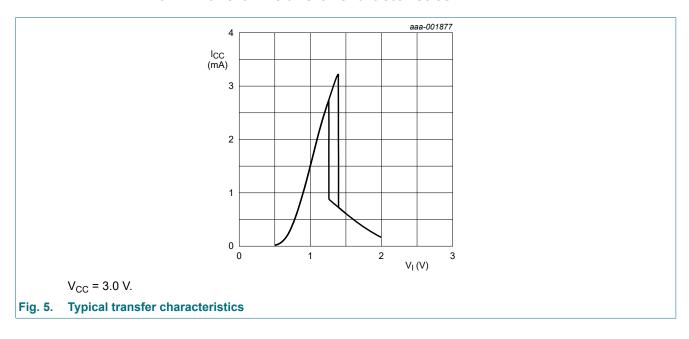
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
T _{amb} = -4	10 °C to +85 °C					
V _{OH}	OH HIGH-level output voltage	$V_I = V_{T+}$ or V_{T-}				
		I_{O} = -100 μ A; V_{CC} = 1.65 V to 5.5 V	V _{CC} - 0.1	-	-	V
		I _O = -4 mA; V _{CC} = 1.65 V	1.2	-	-	V
		I _O = -8 mA; V _{CC} = 2.3 V	1.9	-	-	V
		I _O = -12 mA; V _{CC} = 2.7 V	2.2	-	-	V
		I _O = -24 mA; V _{CC} = 3.0 V	2.4	-	-	V
		I_{O} = -32 mA; V_{CC} = 4.5 V	3.8	-	-	V
V _{OL}	LOW-level	$V_I = V_{T+}$ or V_{T-}				
	output voltage	I _O = 100 μA; V _{CC} = 1.65 V to 5.5 V	-	-	0.1	V
		I _O = 4 mA; V _{CC} = 1.65 V	-	-	0.45	V
		$I_{O} = 8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.3	V
		I _O = 12 mA; V _{CC} = 2.7 V	-	-	0.4	V
		I _O = 24 mA; V _{CC} = 3.0 V	-	-	0.55	V
		I _O = 32 mA; V _{CC} = 4.5 V	-	-	0.55	V
I _I	input leakage current	$V_I = 5.5 \text{ V or GND}; V_{CC} = 0 \text{ V to } 5.5 \text{ V}$	-	-	±2	μΑ
I _{OFF}	power-off leakage current	V_{I} or $V_{O} = 5.5 \text{ V}$; $V_{CC} = 0 \text{ V}$	-	-	±2	μA

Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
I _{CC}	supply current	V _I = 5.5 V or GND;				
		Quiescent; V _{CC} = 1.65 V to 5.5 V; I _O = 0 A	-	0.1	10	μA
		Active state; R _{EXT} /C _{EXT} = 0.5V _{CC}				
		V _{CC} = 1.65 V	-	-	80	μA
		V _{CC} = 2.3 V	-	-	130	μA
		V _{CC} = 3 V	-	-	240	μA
		V _{CC} = 4.5 V	-	-	400	μA
		V _{CC} = 5.5 V	-	-	650	μΑ
Cı	input capacitance		-	2.0	-	pF
T _{amb} = -4	10 °C to +125 °C					
V _{OH}	HIGH-level	$V_I = V_{T+}$ or V_{T-}				
	output voltage	I _O = -100 μA; V _{CC} = 1.65 V to 5.5 V	V _{CC} - 0.1	-	-	V
		I _O = -4 mA; V _{CC} = 1.65 V	1.2	-	-	V
		I _O = -8 mA; V _{CC} = 2.3 V	1.9	-	-	V
		I_{O} = -12 mA; V_{CC} = 2.7 V	2.2	-	-	V
		I_{O} = -24 mA; V_{CC} = 3.0 V	2.4	-	-	V
		I_{O} = -32 mA; V_{CC} = 4.5 V	3.8	-	-	V
V _{OL}	LOW-level output voltage	$V_I = V_{T+}$ or V_{T-}				
		I _O = 100 μA; V _{CC} = 1.65 V to 5.5 V	-	-	0.1	V
		I _O = 4 mA; V _{CC} = 1.65 V	-	-	0.45	V
		I _O = 8 mA; V _{CC} = 2.3 V	-	-	0.3	V
		I _O = 12 mA; V _{CC} = 2.7 V	-	-	0.4	V
		I _O = 24 mA; V _{CC} = 3.0 V	-	-	0.55	V
		I _O = 32 mA; V _{CC} = 4.5 V	-	-	0.55	V
I _I	input leakage current	$V_{I} = 5.5 \text{ V or GND}; V_{CC} = 0 \text{ V to } 5.5 \text{ V}$	-	-	±10	μΑ
l _{OFF}	power-off leakage current	V_{I} or $V_{O} = 5.5 \text{ V}$; $V_{CC} = 0 \text{ V}$	-	-	±10	μΑ
I _{CC}	supply current	V _I = 5.5 V or GND;				
		Quiescent; V _{CC} = 1.65 V to 5.5 V; I _O = 0 A	-	-	20	μA
		Active state; R _{EXT} /C _{EXT} = 0.5V _{CC}				
		V _{CC} = 1.65 V	-	-	80	μA
		V _{CC} = 2.3 V	-	-	130	μA
		V _{CC} = 3 V	-	-	240	μA
		V _{CC} = 4.5 V	-	-	400	μA
		V _{CC} = 5.5 V	-	-	650	μA

^[1] All typical values are measured at T_{amb} = 25 °C.

Single retriggerable monostable multivibrator; Schmitt trigger inputs


Table 8. Transfer characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 17.

Symbol	Parameter	Conditions	-40	°C to +8	5 °C	-40 °C to	+125 °C	Unit
			Min	Typ[1]	Max	Min	Max	
V_{T+}	positive-going	A, B and CLR input; see Fig. 5						
	threshold voltage	V _{CC} = 1.65 V to 1.95 V	0.72	0.98	1.22	0.71	1.22	V
		V _{CC} = 2.3 V to 2.7 V	0.97	1.26	1.52	0.97	1.52	V
		V _{CC} = 3.0 V to 3.6 V	1.20	1.58	1.90	1.20	1.90	V
		V _{CC} = 4.5 V to 5.5 V	1.74	2.27	2.75	1.74	2.78	V
V _{T-}	negative-going threshold voltage	Ā, B and CLR input; see Fig. 5						
		V _{CC} = 1.65 V to 1.95 V	0.56	0.81	1.04	0.56	1.04	V
		V _{CC} = 2.3 V to 2.7 V	0.83	1.09	1.33	0.82	1.33	V
		V _{CC} = 3.0 V to 3.6 V	1.08	1.40	1.70	1.08	1.72	V
		V _{CC} = 4.5 V to 5.5 V	1.61	2.07	2.53	1.61	2.57	V
V _H	hysteresis voltage	A, B and CLR input; (V _{T+} - V _{T-}); see Fig. 5						
		V _{CC} = 1.65 V to 1.95 V	61	170	295	54	295	mV
		V _{CC} = 2.3 V to 2.7 V	41	174	304	41	304	mV
		V _{CC} = 3.0 V to 3.6 V	40	183	319	40	319	mV
		V _{CC} = 4.5 V to 5.5 V	32	199	363	26	363	mV

^[1] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.8 V, 2.5 V, 3.3 V and 5.0 V respectively.

10.1. Waveform transfer characteristics

Single retriggerable monostable multivibrator; Schmitt trigger inputs

11. Dynamic characteristics

Table 9. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 17.

Symbol	Parameter	Conditions	-40	°C to +8	5 °C	-40 °C to	+125 °C	Unit
			Min	Typ[1]	Max	Min	Max	
t _{pd}	propagation	\overline{A} , B to Q; see Fig. 6 [2]						
	delay	C _L = 15 pF;						
		V _{CC} = 1.65 V to 1.95 V	2.5	7.1	16.3	2.5	17.6	ns
		V _{CC} = 2.3 V to 2.7 V	1.9	-	10.3	1.9	11.2	ns
		V _{CC} = 2.7 V	1.9	-	8.5	1.9	9.3	ns
		V _{CC} = 3.0 V to 3.6 V	1.5	-	7.6	1.5	8.3	ns
		V _{CC} = 4.5 V to 5.5 V	1.2	-	5.3	1.2	5.8	ns
		$C_L = 30 \text{ pF or } C_L = 50 \text{ pF}$						
		V _{CC} = 1.65 V to 1.95 V	2.9	7.8	17.6	2.9	19.0	ns
		V _{CC} = 2.3 V to 2.7 V	2.2	-	11.3	2.2	12.3	ns
		V _{CC} = 2.7 V	2.7	-	10.5	2.7	11.4	ns
		V _{CC} = 3.0 V to 3.6 V	2.0	-	9.5	2.0	10.3	ns
		V _{CC} = 4.5 V to 5.5 V	1.5	-	6.7	1.5	7.2	ns
		CLR to Q; see Fig. 6						
		C _L = 15 pF;						
		V _{CC} = 1.65 V to 1.95 V	3.0	6.9	16.2	3.0	17.4	ns
		V _{CC} = 2.3 V to 2.7 V	2.2	-	9.6	2.2	10.5	ns
		V _{CC} = 2.7 V	2.2	-	8.2	2.2	8.9	ns
		V _{CC} = 3.0 V to 3.6 V	2.0	-	7.3	2.0	8.0	ns
		V _{CC} = 4.5 V to 5.5 V	1.5	-	5.1	1.5	5.5	ns
		C _L = 30 pF or C _L = 50 pF						
		V _{CC} = 1.65 V to 1.95 V	3.3	7.5	17.2	3.8	18.6	ns
		V _{CC} = 2.3 V to 2.7 V	2.5	-	10.3	2.0	11.2	ns
		V _{CC} = 2.7 V	2.8	-	9.3	2.8	10.2	ns
		V _{CC} = 3.0 V to 3.6 V	1.5	-	8.4	1.5	9.2	ns
		V _{CC} = 4.5 V to 5.5 V	1.5	-	6.0	1.5	6.6	ns
t _{pd}	propagation	CLR to Q (trigger); see Fig. 6 [2]						
	delay	C _L = 15 pF;						
		V _{CC} = 1.65 V to 1.95 V	2.7	7.6	17.4	2.7	18.9	ns
		V _{CC} = 2.3 V to 2.7 V	2.1	-	11.0	2.1	12.0	ns
		V _{CC} = 2.7 V	2.1	-	9.2	2.1	10.0	ns
		V _{CC} = 3.0 V to 3.6 V	1.7	-	8.2	1.7	8.9	ns
		V _{CC} = 4.5 V to 5.5 V	1.4	-	5.9	1.4	6.4	ns
		C _L = 30 pF or C _L = 50 pF						
		V _{CC} = 1.65 V to 1.95 V	3.1	8.3	18.8	3.3	20.3	ns
		V _{CC} = 2.3 V to 2.7 V	2.5	-	12.0	2.5	13.1	ns
		V _{CC} = 2.7 V	2.8	-	11.1	2.8	12.1	ns
		V _{CC} = 3.0 V to 3.6 V	2.0	-	10.1	2.0	11.0	ns
		V _{CC} = 4.5 V to 5.5 V	1.5	-	7.1	1.5	7.7	ns

Product data sheet

8 / 24

Single retriggerable monostable multivibrator; Schmitt trigger inputs

Symbol	Parameter	Conditions	-40	°C to +8	5 °C	-40 °C to	+125 °C	Unit
			Min	Typ[1]	Max	Min	Max	
t _W	pulse width	input \overline{A} LOW; B HIGH; see Fig. 6 and Fig. 7						
		V _{CC} = 1.65 V to 1.95 V	8.0	-	-	8.0	-	ns
		V _{CC} = 2.3 V to 2.7 V	4.0	-	-	4.0	-	ns
		V _{CC} = 2.7 V	3.0	-	-	3.0	-	ns
		V _{CC} = 3.0 V to 3.6 V	3.0	-	-	3.0	-	ns
		V _{CC} = 4.5 V to 5.5 V	2.5	-	-	2.5	-	ns
		input CLR LOW; see Fig. 6 and Fig. 8						
		V _{CC} = 1.65 V to 1.95 V	8.0	-	-	8.0	-	ns
		V _{CC} = 2.3 V to 2.7 V	4.0	-	-	4.0	-	ns
		V _{CC} = 2.7 V	3.0	-	-	3.0	-	ns
		V _{CC} = 3.0 V to 3.6 V	3.0	-	-	3.0	-	ns
		V _{CC} = 4.5 V to 5.5 V	2.5	-	-	2.5	-	ns
t _W	pulse width	output Q HIGH; see <u>Fig. 6</u> , <u>Fig. 7</u> and <u>Fig. 8</u> ; [3] $R_{EXT} = 10 \text{ k}\Omega$						
		C _{EXT} = 100 pF						
		V _{CC} = 1.65 V to 1.95 V	-	1.4	2.2	-	2.2	μs
		V _{CC} = 2.3 V to 2.7 V	-	1.3	1.8	-	1.8	μs
		V _{CC} = 2.7 V	-	1.2	1.8	-	1.8	μs
		V _{CC} = 3.0 V to 3.6 V	-	1.2	1.8	-	1.8	μs
		V _{CC} = 4.5 V to 5.5 V	-	1.2	1.8	-	1.8	μs
		$C_{EXT} = 0.01 \mu F$ [3]						
		V _{CC} = 1.65 V to 1.95 V	-	100	110	-	110	μs
		V _{CC} = 2.3 V to 2.7 V	-	100	110	-	110	μs
		V _{CC} = 2.7 V	-	100	110	-	110	μs
		V _{CC} = 3.0 V to 3.6 V	-	100	110	-	110	μs
		V _{CC} = 4.5 V to 5.5 V	-	100	110	-	110	μs
		$C_{EXT} = 0.1 \mu F$ [3]						
		V _{CC} = 1.65 V to 1.95 V	-	1.0	1.05	-	1.05	ms
		V _{CC} = 2.7 V	-	1.0	1.05	-	1.05	ms
		V _{CC} = 3.0 V to 3.6 V	-	1.0	1.05	-	1.05	ms
		V _{CC} = 3.0 V to 3.6 V	-	1.0	1.05	-	1.05	ms
		V _{CC} = 4.5 V to 5.5 V	-	1.0	1.05	-	1.05	ms

9 / 24

Single retriggerable monostable multivibrator; Schmitt trigger inputs

Symbol	Parameter	Conditions	-40	-40 °C to +85 °C		-40 °C to +125 °C		Unit
				Typ[1]	Max	Min	Max	
t _{rtrig}	retrigger time	A, B; see Fig. 7						
		C_{EXT} = 100 pF; R_{EXT} = 5 k Ω						
		V _{CC} = 1.65 V to 1.95 V		174	-	-	-	ns
		V _{CC} = 2.3 V to 2.7 V		59	-	-	-	ns
		C_{EXT} = 100 pF; R_{EXT} = 1 k Ω						
		V _{CC} = 3.0 V to 3.6 V		32	-	-	-	ns
		V _{CC} = 4.5 V to 5.5 V	-	20	-	-	-	ns
		$C_{EXT} = 100 \ \mu F; R_{EXT} = 5 \ k\Omega$						
		V _{CC} = 1.65 V to 1.95 V	-	14	-	-	-	ms
		V _{CC} = 2.3 V to 2.7 V		10	-	-	-	ms
		$C_{EXT} = 100 \ \mu F; R_{EXT} = 1 \ k\Omega$						
		V _{CC} = 3.0 V to 3.6 V	-	10	-	-	-	ms
		V _{CC} = 4.5 V to 5.5 V	-	8	-	-	-	ms
R _{ext}	external resistance	see Fig. 11, Fig. 12 and Fig. 13						
		V _{CC} = 2.0 V	5	-	-	-	-	kΩ
		V _{CC} ≥ 3.0 V	1	-	-	-	-	kΩ
C _{ext}	external capacitance	V _{CC} = 5.0 V; see <u>Fig. 11</u> , <u>Fig. 12</u> and <u>Fig. 13</u>		-	-	-	-	pF
C _{PD}	power dissipation capacitance	V _I = GND to V _{CC} ; C _{EXT} = 0 pF;						
		R _{EXT} = 5 kΩ						
		V _{CC} = 1.8 V	-	35	-	-	-	pF
		V _{CC} = 2.5 V	-	35	-	-	-	pF
		R _{EXT} = 1 kΩ						
		V _{CC} = 3.3 V	-	27	-	-	-	pF
		V _{CC} = 5.0 V	-	29	-	-	-	pF

Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.8 V, 2.5 V, 3.3 V and 5.0 V respectively.

 t_W = K x R_{EXT} x C_{EXT}, where:

t_W = typical output pulse width in ns;

 R_{EXT} = external resistor in $k\Omega$;

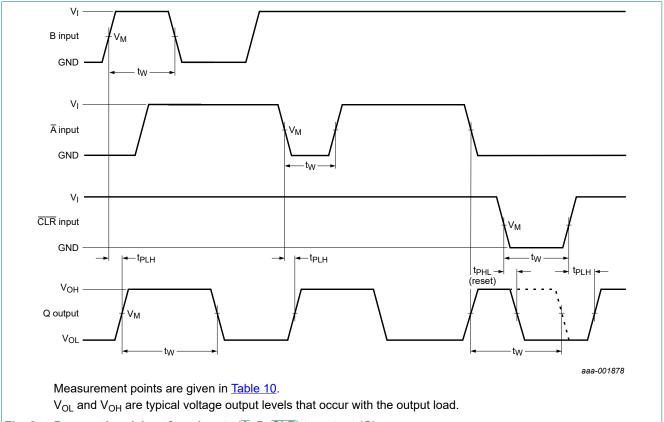
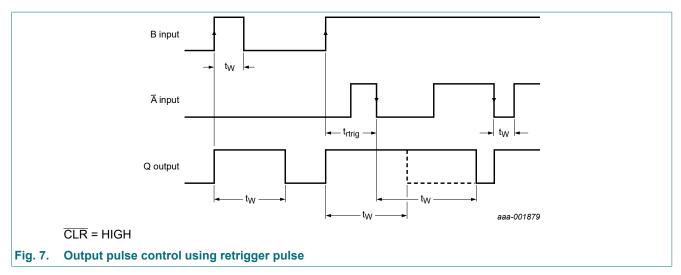
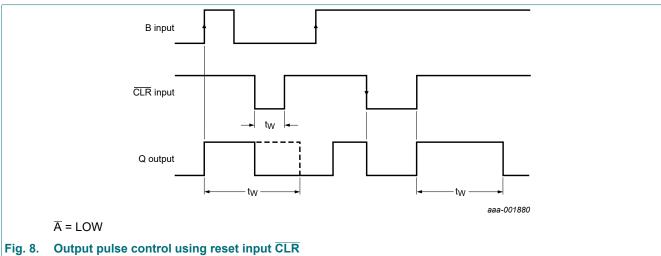
C_{EXT} = external capacitor in pF;

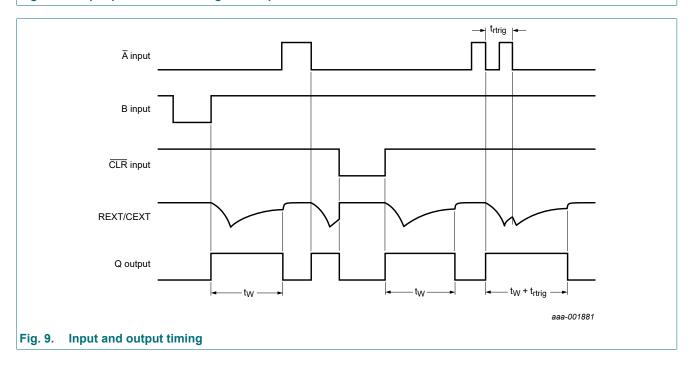
K = constant = 1; see $\underline{\text{Fig. }14}$ for typical "K" factor as function of V_{CC} .

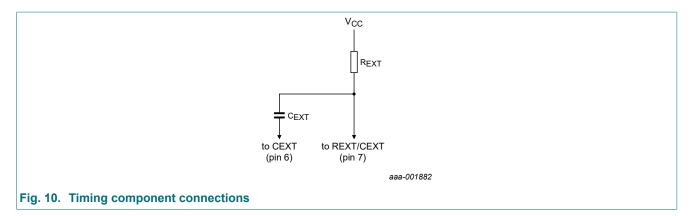
 t_{pd} is the same as t_{PHL} and t_{PLH} For other R_{EXT} and C_{EXT} combinations see <u>Fig. 11</u>, <u>Fig. 12</u> and <u>Fig. 13</u>. If $C_{EXT} > 10$ nF, the next formula is valid.

Single retriggerable monostable multivibrator; Schmitt trigger inputs

11.1. Waveforms, graphs and test circuit


Fig. 6. Propagation delays from inputs $(\overline{A}, B, \overline{CLR})$ to output (Q)


Table 10. Measurement points

Supply voltage	Input	Output
V _{CC}	V_{M}	V _M
1.65 V to 1.95 V	0.5V _{CC}	0.5V _{CC}
2.3 V to 2.7 V	0.5V _{CC}	0.5V _{CC}
2.7 V	1.5 V	1.5 V
3.0 V to 3.6 V	1.5 V	1.5 V
4.5 V to 5.5 V	0.5V _{CC}	0.5V _{CC}

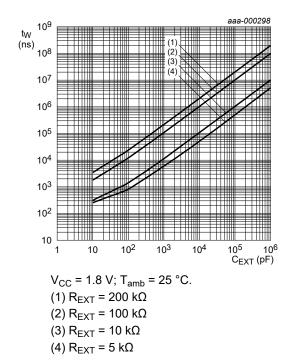


Fig. 11. Typical output pulse width as a function of the external capacitor value

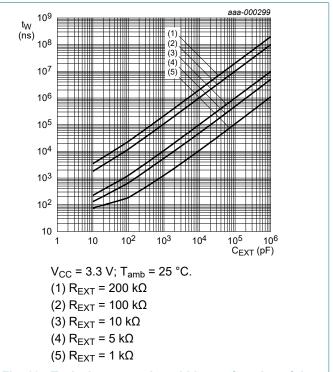
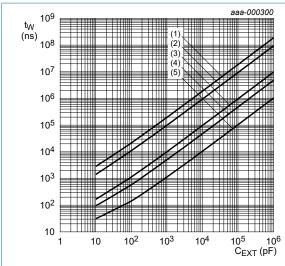
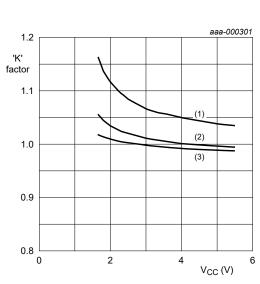
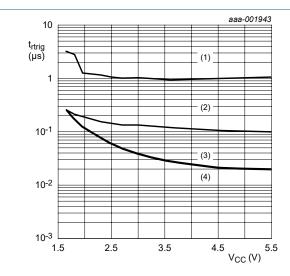



Fig. 12. Typical output pulse width as a function of the external capacitor value


Single retriggerable monostable multivibrator; Schmitt trigger inputs

$$V_{CC}$$
 = 5.0 V; T_{amb} = 25 °C.

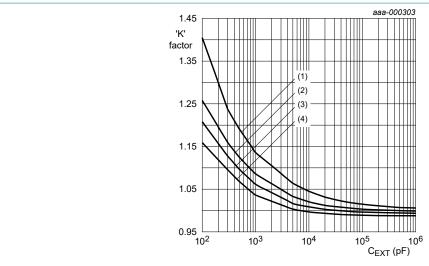
- (1) $R_{EXT} = 200 \text{ k}\Omega$
- (2) $R_{EXT} = 100 \text{ k}\Omega$
- (3) $R_{EXT} = 10 \text{ k}\Omega$
- (4) $R_{EXT} = 5 k\Omega$
- (5) $R_{EXT} = 1 k\Omega$


Fig. 13. Typical output pulse width as a function of the external capacitor value

$$R_{EXT}$$
 = 10 k Ω ; T_{amb} = 25 °C.

- (1) $C_{EXT} = 1000 pF$
- (2) C_{EXT} = 0.01 μF
- (3) $C_{EXT} = 0.1 \mu F$

Fig. 14. Typical 'K' factor as function of V_{CC}

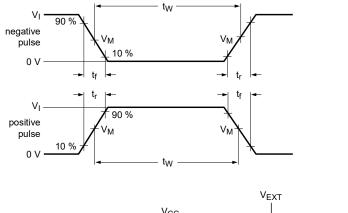


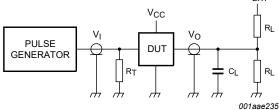
 $T_{amb} = 25 \, ^{\circ}C.$

- (1) $C_{EXT} = 0.01 \mu F$
- (2) $C_{EXT} = 1000 pF$
- (3) $C_{EXT} = 100 pF$
- (4) $C_{EXT} = 10 pF$

Fig. 15. Minimum retrigger time as function of the supply voltage

Single retriggerable monostable multivibrator; Schmitt trigger inputs




 R_{EXT} = 10 k Ω ; T_{amb} = 25 °C.

- (1) $V_{CC} = 1.8 \text{ V}$
- (2) $V_{CC} = 2.5 \text{ V}$
- $(3) V_{CC} = 3.3 V$
- $(4) V_{CC} = 5.0 V$

Fig. 16. Typical 'K' factor as function of C_{EXT}

Single retriggerable monostable multivibrator; Schmitt trigger inputs

Test data is given in Table 11.

Definitions for test circuit:

R_L = Load resistance.

C_L = Load capacitance including jig and probe capacitance.

 R_{T} = Termination resistance should be equal to output impedance Z_{o} of the pulse generator.

V_{EXT} = Test voltage for switching times.

Fig. 17. Test circuit for measuring switching times

Table 11. Test data

Supply voltage	voltage Input		Load	Load	
V _{CC}	V _I	t _r , t _f	CL	R _L	t _{PLH} , t _{PHL}
1.65 V to 1.95 V	V _{CC}	≤ 2.0 ns	15 pF	1 ΜΩ	open
2.3 V to 2.7 V	V _{CC}	≤ 2.0 ns	15 pF	1 ΜΩ	open
2.7 V	2.7 V	≤ 2.5 ns	15 pF	1 ΜΩ	open
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	15 pF	1 ΜΩ	open
4.5 V to 5.5 V	V _{CC}	≤ 2.5 ns	15 pF	1 ΜΩ	open
1.65 V to 1.95 V	V _{CC}	≤ 2.0 ns	30 pF	1 kΩ	open
2.3 V to 2.7 V	V _{CC}	≤ 2.0 ns	30 pF	500 Ω	open
2.7 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open
4.5 V to 5.5 V	V _{CC}	≤ 2.5 ns	50 pF	500 Ω	open

Single retriggerable monostable multivibrator; Schmitt trigger inputs

12. Package outline

TSSOP8: plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm SOT505-2

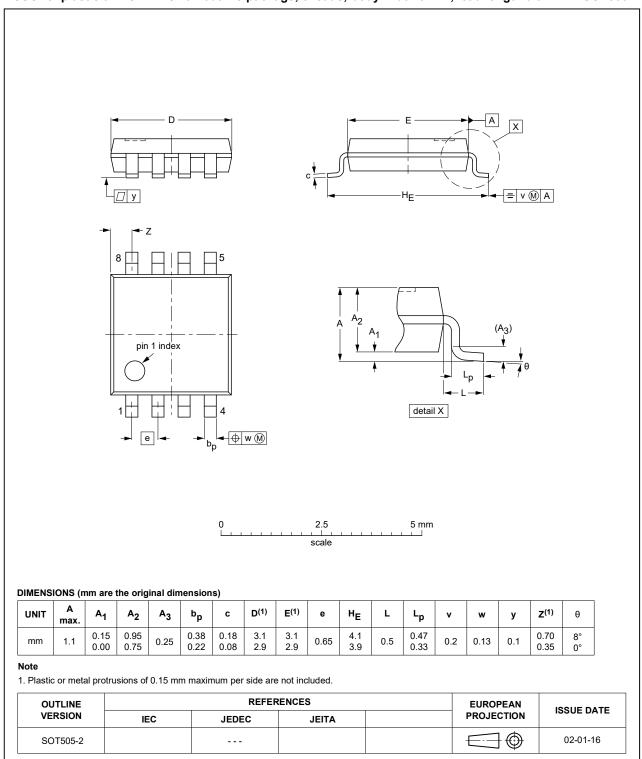


Fig. 18. Package outline SOT505-2 (TSSOP8)

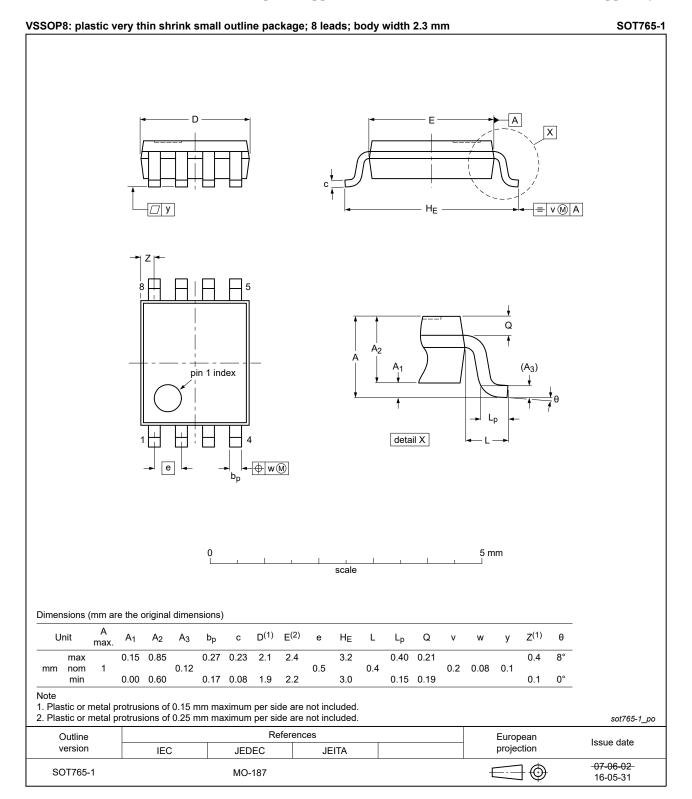


Fig. 19. Package outline SOT765-1 (VSSOP8)

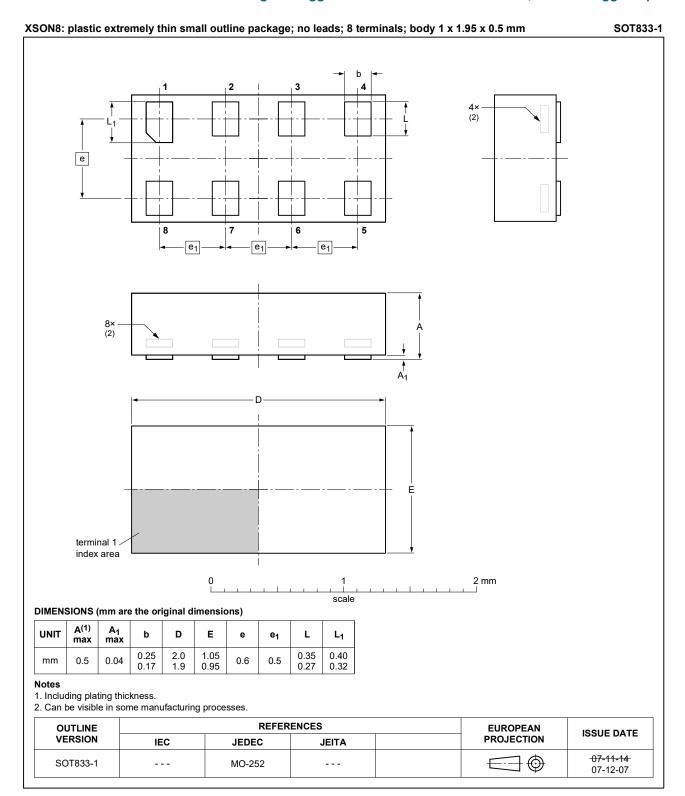


Fig. 20. Package outline SOT833-1 (XSON8)

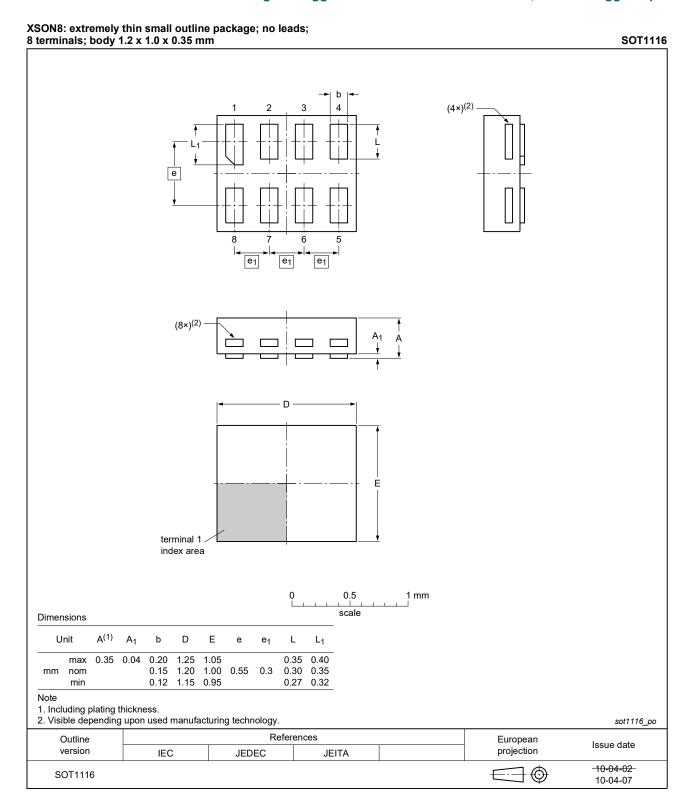


Fig. 21. Package outline SOT1116 (XSON8)

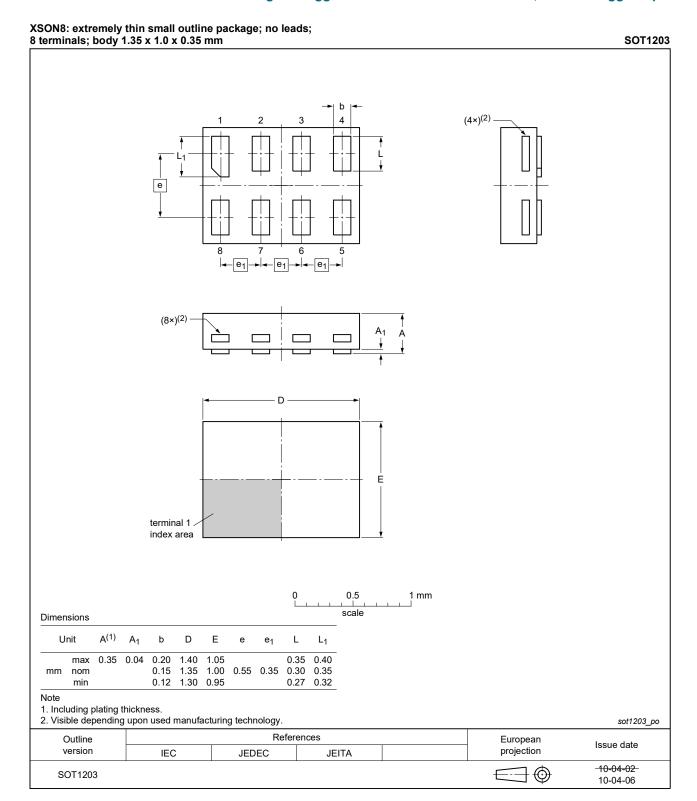


Fig. 22. Package outline SOT1203 (XSON8)

Single retriggerable monostable multivibrator; Schmitt trigger inputs

13. Abbreviations

Table 12. Abbreviations

Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

14. Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
74LVC1G123 v.7	20210420	Product data sheet	-	74LVC1G123 v.6		
Modifications:	7.7	 Type number 74LVC1G123GF (SOT1089/XSON8) removed. Section 8: Derating values for P_{tot} total power dissipation have been updated. 				
74LVC1G123 v.6	20181102	Product data sheet	-	74LVC1G123 v.5		
Modifications:	Nexperia. • Legal texts ha	 The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia. Legal texts have been adapted to the new company name where appropriate. Type numbers 74LVC1G123GD (SOT996-2/XSON8) removed. 				
74LVC1G123 v.5	20160614	Product data sheet	-	74LVC1G123 v.4		
Modifications:	• <u>Fig. 19</u> , packa	Fig. 19, package outline drawing for SOT765-1 has changed				
74LVC1G123 v.4	20131127	Product data sheet	-	74LVC1G123 v.3		
Modifications:	• 74LVC1G123	GM (XQFN8) removed.				
74LVC1G123 v.3	20130329	Product data sheet	-	74LVC1G123 v.2		
Modifications:	For type numl	For type number 74LVC1G123GD XSON8U has changed to XSON8.				
74LVC1G123 v.2	20120801	Product data sheet	-	74LVC1G123 v.1		
Modifications:	V _{HYS} condition	V _{HYS} conditions and limits corrected (errata).				
74LVC1G123 v.1	20120123	Product data sheet	-	-		

Single retriggerable monostable multivibrator; Schmitt trigger inputs

15. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by sustained.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

74LVC1G123

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2021. All rights reserved

Single retriggerable monostable multivibrator; Schmitt trigger inputs

Contents

1. Gene	eral description	1
2. Featu	ures and benefits	1
3. Orde	ring information	2
4. Mark	king	2
5. Func	tional diagram	2
6. Pinni	ing information	3
6.1. Pin	ning	3
6.2. Pin	description	4
	tional description	
	ting values	
9. Reco	mmended operating conditions	5
10. Stat	tic characteristics	5
10.1. W	aveform transfer characteristics	. 7
11. Dyn	amic characteristics	8
11.1. Wa	aveforms, graphs and test circuit	11
12. Pac	kage outline	17
	previations	
14. Rev	rision history	22
	al information	

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 20 April 2021

Product data sheet

24 / 24

[©] Nexperia B.V. 2021. All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Monostable Multi-vibrator category:

Click to view products by Nexperia manufacturer:

Other Similar products are found below:

NLV74HC4538ADR2G NTE4528B TC74HC4538AP(F) JM38510/31401B2A CD74HC123E 74VHC221AFT(BJ) NTE74123
74HC4538DB.112 74HC123DB.112 74HCT4538D.112 74HCT4538PW.112 74LV123PW.112 LTC6993CDCB-3#TRMPBF
LTC6993IDCB-4#TRMPBF LTC6993IDCB-1#TRMPBF 74VHC123AM 74VHC123AMX 74HC4538D NTE4047BT NTE4528BT
NTE4047B NTE4098B NTE74LS122 74AHC123AD,112 74AHC123AD,118 74AHC123AD-Q100J 74AHC123APW,118
74AHCT123APW,118 74HC123D,652 74HC123D,653 74HC123DB,112 74HC123PW,112 74HC123PW,118 74HC423D 74HCT123D
74HC423BQ,115 74HC423D,652 74HC423D,653 74HC4538D,652 74HC4538D,653 74HCT123D,653 74HCT123D,653 74LV123BQ,115
74LV123D,118 HEF4047BT,652 HEF4047BT,653 74VHC123AMTCX 74VHC123ASJX MC14538BDWR2G MC74HC4538ADG