1 General description

The 74LVC1G14 provides the inverting buffer function with Schmitt-trigger input. It is capable of transforming slowly changing input signals into sharply defined, jitter-free output signals.

The input can be driven from either 3.3 V or 5 V devices. This feature allows the use of this device in a mixed 3.3 V and 5 V environment. Schmitt-trigger action at the input makes the circuit tolerant for slower input rise and fall time.

This device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

2 Features and benefits

- Wide supply voltage range from 1.65 V to 5.5 V
- High noise immunity
- · Complies with JEDEC standard:
 - JESD8-7 (1.65 V to 1.95 V)
 - JESD8-5 (2.3 V to 2.7 V)
 - JESD8-B/JESD36 (2.7 V to 3.6 V).
- ±24 mA output drive (V_{CC} = 3.0 V)
- CMOS low power consumption
- · Latch-up performance exceeds 250 mA
- Direct interface with TTL levels
- · Unlimited rise and fall times
- Input accepts voltages up to 5 V
- Multiple package options
- ESD protection:
 - HBM: ANSI/ESDA/JEDEC JS-001 Class 2 exceeds 2000 V
 - MM: JESD22-A115-A exceeds 200 V.
- Specified from -40 °C to +85 °C and -40 °C to +125 °C.

3 Applications

- · Wave and pulse shaper
- Astable multivibrator
- Monostable multivibrator

nexperia

4 Ordering information

Type number	Package							
	Temperature range	Name	Description	Version				
74LVC1G14GW	-40 °C to +125 °C	TSSOP5	plastic thin shrink small outline package; 5 leads; body width 1.25 mm	SOT353-1				
74LVC1G14GV	-40 °C to +125 °C	SC-74A	plastic surface-mounted package; 5 leads	SOT753				
74LVC1G14GM	-40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 x 1.45 x 0.5 mm	SOT886				
74LVC1G14GF	-40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 x 1 x 0.5 mm	SOT891				
74LVC1G14GN	-40 °C to +125 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body 0.9 x 1.0 x 0.35 mm	SOT1115				
74LVC1G14GS	-40 °C to +125 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body 1.0 x 1.0 x 0.35 mm	SOT1202				
74LVC1G14GX	-40 °C to +125 °C	X2SON5	plastic thermal enhanced extremely thin small outline package; no leads; 5 terminals; body 0.8 x 0.8 x 0.35 mm	SOT1226				
74LVC1G14GX4	-40 °C to +125 °C	X2SON4	plastic thermal enhanced extremely thin small outline package; no leads; 4 terminals; body 0.6 x 0.6 x 0.32 mm	SOT1269-2				

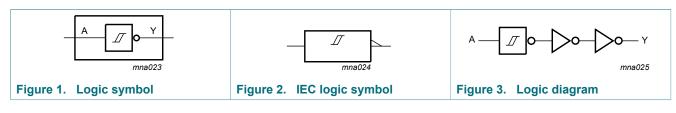
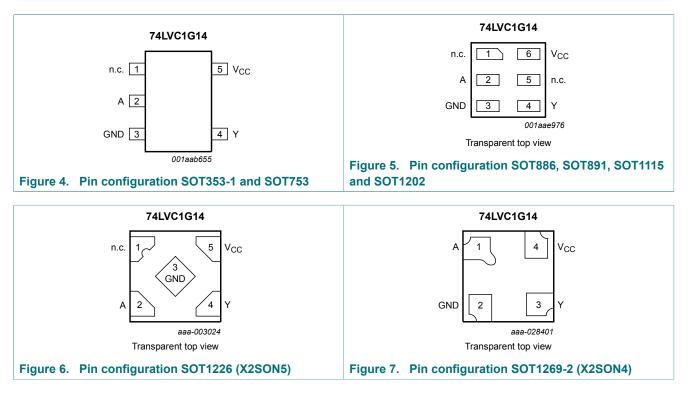

5 Marking

Table 2. Marking						
Type number	Marking code ^[1]					
74LVC1G14GW	VF					
74LVC1G14GV	V14					
74LVC1G14GM	VF					
74LVC1G14GF	VF					
74LVC1G14GN	VF					
74LVC1G14GS	VF					
74LVC1G14GX	VF					
74LVC1G14GX4	VF					

[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.


Single Schmitt-trigger inverter

6 Functional diagram

7 Pinning information

7.1 Pinning

7.2 Pin description

Table 3. Pin	Table 3. Pin description									
Symbol	Pin	Description								
	TSSOP5, SC-74A and X2SON5	XSON6	X2SON4							
n.c.	1	1, 5	-	not connected						
A	2	2	1	data input						
GND	3	3	2	ground (0 V)						
Y	4	4	3	data output						
V _{CC}	5	6	4	supply voltage						

74LVC1G14 Product data sheet © Nexperia B.V. 2018. All rights reserved.

Functional description 8

Table 4. Function table ^[1]

Input	Output
A	Y
L	Н
Н	L

[1] H = HIGH voltage level; L = LOW voltage level

Limiting values 9

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+6.5	V
VI	input voltage		[1]	-0.5	+6.5	V
Vo	output voltage	Active mode	[1]	-0.5	V _{CC} + 0.5	V
		Power-down mode; V_{CC} = 0 V	[1]	-0.5	+6.5	V
I _{IK}	input clamping current	V ₁ < 0 V		-50	-	mA
I _{OK}	output clamping current	$V_{\rm O}$ > $V_{\rm CC}$ or $V_{\rm O}$ < 0 V		-	±50	mA
lo	output current	$V_0 = 0 V$ to V_{CC}		-	±50	mA
I _{CC}	supply current			-	+100	mA
I _{GND}	ground current			-100	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	T _{amb} = -40 °C to +125 °C				
		TSSOP5, SC-74A, XSON6 and X2SON5 package	[2]	-	250	mW
		X2SON4 package	[3]	-	150	mW

The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
 For TSSOP5 and SC-74A packages: above 87.5 °C the value of P_{tot} derates linearly with 4.0 mW/K.

For XSON6 and X2SON5 package: above 118 °C the value of P_{tot} derates linearly with 7.8 mW/K. [3] For X2SON4 packages: above 57 °C the value of P_{tot} derates linearly with 1.7 mW/K.

Single Schmitt-trigger inverter

10 Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{CC}	supply voltage		1.65	-	5.5	V
VI	input voltage		0	-	5.5	V
Vo	output voltage	Active mode	0	-	V _{CC}	V
		Power-down mode; V_{CC} = 0 V	0	-	5.5	V
T _{amb}	ambient temperature		-40	-	+125	°C

11 Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40	°C to +85	°C	-40 °C to +125 °C		Unit
			Min	Typ ^[1]	Max	Min	Мах	
V _{OH}	HIGH-level	$V_{I} = V_{T+} \text{ or } V_{T-}$						
	output voltage	I _O = -100 μA; V _{CC} = 1.65 V to 5.5 V	V _{CC} - 0.1	-	-	V _{CC} - 0.1	-	V
		I _O = -4 mA; V _{CC} = 1.65 V	1.2	1.54	-	0.95	-	V
		I _O = -8 mA; V _{CC} = 2.3 V	1.9	2.15	-	1.7	-	V
		I _O = -12 mA; V _{CC} = 2.7 V	2.2	2.50	-	1.9	-	V
		I _O = -24 mA; V _{CC} = 3.0 V	2.3	2.62	-	2.0	-	V
		I _O = -32 mA; V _{CC} = 4.5 V	3.8	4.11	-	3.4	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{T+} \text{ or } V_{T-}$						
		I _O = 100 μA; V _{CC} = 1.65 V to 5.5 V	-	-	0.10	-	0.10	V
		I _O = 4 mA; V _{CC} = 1.65 V	-	0.07	0.45	-	0.70	V
		I _O = 8 mA; V _{CC} = 2.3 V	-	0.12	0.30	-	0.45	V
		I _O = 12 mA; V _{CC} = 2.7 V	-	0.17	0.40	-	0.60	V
		I _O = 24 mA; V _{CC} = 3.0 V	-	0.33	0.55	-	0.80	V
		I _O = 32 mA; V _{CC} = 4.5 V	-	0.39	0.55	-	0.80	V
l _l	input leakage current	V _I = 5.5 V or GND; V _{CC} = 0 V to 5.5 V	-	±0.1	±1	-	±1	μA
I _{OFF}	power-off leakage current	$V_{I} \text{ or } V_{O} = 5.5 \text{ V}; V_{CC} = 0 \text{ V}$	-	±0.1	±2	-	±2	μA
I _{CC}	supply current	V_{I} = 5.5 V or GND; I_{O} = 0 A; V_{CC} = 1.65 V to 5.5 V	-	0.1	4	-	4	μA

Nexperia

74LVC1G14

Single Schmitt-trigger inverter

Symbol	Parameter Conditions		-40	-40 °C to +85 °C			-40 °C to +125 °C		
			Min	Typ ^[1]	Max	Min	Max		
ΔI _{CC}	additional supply current	$V_{I} = V_{CC} - 0.6 V; I_{O} = 0 A;$ $V_{CC} = 2.3 V to 5.5 V$	-	5	500	-	500	μA	
CI	input capacitance	V_{CC} = 3.3 V; V_{I} = GND to V_{CC}	-	5.0	-	-	-	pF	

[1] All typical values are measured at maximum V_{CC} and T_{amb} = 25 °C.

Table 8. Transfer characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 9.

Symbol	Parameter	Conditions	-40) °C to +85	S°C	-40 °C to +125 °C		Unit
			Min	Typ ^[1]	Max	Min	Max	
V _{T+}	positive-going	see Figure 10 and Figure 11						
	threshold voltage	V _{CC} = 1.8 V	0.82	1.0	1.14	0.79	1.14	V
		V _{CC} = 2.3 V	1.03	1.2	1.40	1.00	1.40	V
		V _{CC} = 3.0 V	1.29	1.5	1.71	1.26	1.71	V
		V _{CC} = 4.5 V	1.84	2.1	2.36	1.81	2.36	V
		V _{CC} = 5.5 V	2.19	2.5	2.79	2.16	2.79	V
V _{T-}	negative-going threshold voltage	see Figure 10 and Figure 11						
		V _{CC} = 1.8 V	0.46	0.6	0.75	0.46	0.78	V
		V _{CC} = 2.3 V	0.65	0.8	0.96	0.65	0.99	V
		V _{CC} = 3.0 V	0.88	1.0	1.24	0.88	1.27	V
		V _{CC} = 4.5 V	1.32	1.5	1.84	1.32	1.87	V
		V _{CC} = 5.5 V	1.58	1.8	2.24	1.58	2.27	V
V _H	hysteresis voltage	$(V_{T+} - V_{T-})$; see <u>Figure 10</u> , <u>Figure 11</u> and <u>Figure 12</u>						
		V _{CC} = 1.8 V	0.26	0.4	0.51	0.19	0.51	V
		V _{CC} = 2.3 V	0.28	0.4	0.57	0.22	0.57	V
		V _{CC} = 3.0 V	0.31	0.5	0.64	0.25	0.64	V
		V _{CC} = 4.5 V	0.40	0.6	0.77	0.34	0.77	V
		V _{CC} = 5.5 V	0.47	0.6	0.88	0.41	0.88	V

[1] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.8 V, 2.5 V, 2.7 V, 3.3 V and 5.0 V respectively.

Single Schmitt-trigger inverter

12 Dynamic characteristics

Table 9. Dynamic characteristics

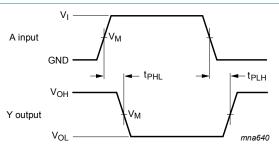
Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 9.

Symbol Parameter		Conditions	-40 °C to +85 °C			-40 °C to +125 °C		Unit
			Min	Тур ^[1]	Max	Min	Мах	
t _{pd}	propagation delay	A to Y; see Figure 8 [2]						
		V _{CC} = 1.65 V to 1.95 V	1.0	4.1	11.0	1.0	14.0	ns
		V_{CC} = 2.3 V to 2.7 V	0.7	2.8	6.5	0.7	8.5	ns
		V _{CC} = 2.7 V	0.7	3.2	6.5	0.7	8.5	ns
		V _{CC} = 3.0 V to 3.6 V	0.7	3.0	5.5	0.7	7.0	ns
		V_{CC} = 4.5 V to 5.5 V	0.7	2.2	5.0	0.7	6.5	ns
C _{PD}	power dissipation capacitance	V_{CC} = 3.3 V; V_{I} = GND to V_{CC} ^[3]	-	15.4	-	-	-	pF

[1] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.8 V, 2.5 V, 2.7 V, 3.3 V and 5.0 V respectively.

[2] t_{pd} is the same as t_{pLH} and t_{PHL} . [3] C_{pD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + (C_L \times V_{CC}^2 \times f_o)$ where:


 f_i = input frequency in MHz;

fo = output frequency in MHz;

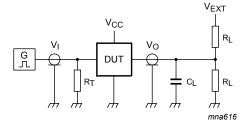
C_L = output load capacitance in pF;

V_{CC} = supply voltage in V.

12.1 Waveform and test circuit

Measurement points are given in Table 10.

 V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.


Figure 8. The data input (A) to output (Y) propagation delays

Nexperia

74LVC1G14

Single Schmitt-trigger inverter

Table 10. Measurement points							
Supply voltage	Input	Output					
V _{cc}	V _M	V _M					
1.65 V to 1.95 V	0.5 x V _{CC}	0.5 x V _{CC}					
2.3 V to 2.7 V	0.5 x V _{CC}	0.5 x V _{CC}					
2.7 V	1.5 V	1.5 V					
3.0 V to 3.6 V	1.5 V	1.5 V					
4.5 V to 5.5 V	0.5 x V _{CC}	0.5 x V _{CC}					

Test data is given in <u>Table 11</u>.

Definitions for test circuit:

R_L = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to the output impedance Z_o of the pulse generator.

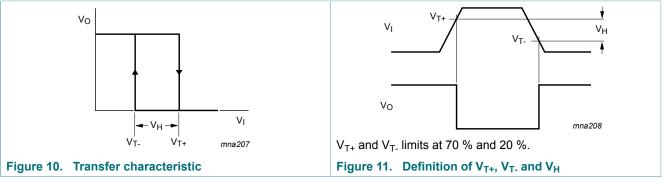
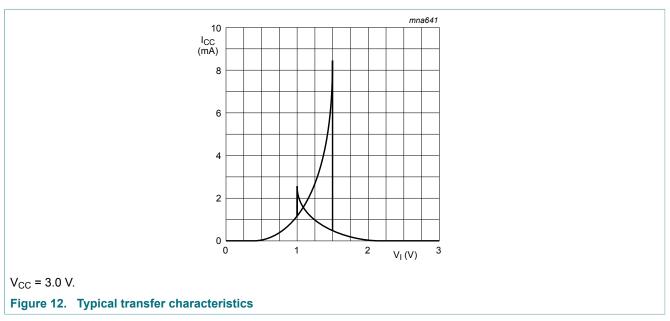

V_{EXT} = External voltage for measuring switching times.

Figure 9. Test circuit for measuring switching times


Table 11. Test data

Supply voltage	Input	Load		V _{EXT}	
V _{cc}	VI	t _r = t _f	CL	RL	t _{PLH} , t _{PHL}
1.65 V to 1.95 V	V _{CC}	≤ 2.0 ns	30 pF	1 kΩ	open
2.3 V to 2.7 V	V _{CC}	≤ 2.0 ns	30 pF	500 Ω	open
2.7 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open
4.5 V to 5.5 V	V _{CC}	≤ 2.5 ns	50 pF	500 Ω	open

Single Schmitt-trigger inverter

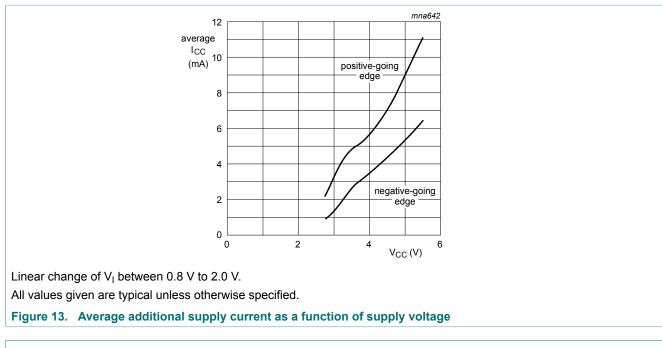
12.2 Waveforms transfer characteristics

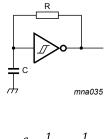
13 Application information

The slow input rise and fall times cause additional power dissipation, this can be calculated using the following formula:

 $P_{add} = f_i x (t_r x \Delta I_{CC(AV)} + t_f x \Delta I_{CC(AV)}) x V_{CC}$ where:

- P_{add} = additional power dissipation (µW);
- f_i = input frequency (MHz);
- t_r = input rise time (ns); 10 % to 90 %;
- t_f = input fall time (ns); 90 % to 10 %;
- $\Delta I_{CC(AV)}$ = average additional supply current (µA).

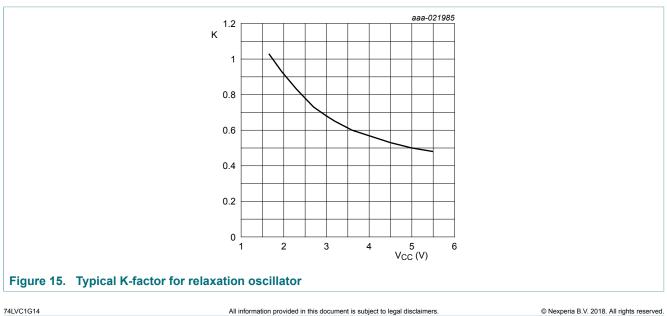

Average $\Delta I_{CC(AV)}$ differs with positive or negative input transitions, as shown in Figure 13.


An example of a relaxation circuit using the 74LVC1G14 is shown in Figure 14.

Nexperia

74LVC1G14

Single Schmitt-trigger inverter



$$f = \frac{1}{T} \approx \frac{1}{K \times \text{RC}}$$

For K-factor, see Figure 15

Figure 14. Relaxation oscillator

Single Schmitt-trigger inverter

14 Package outline

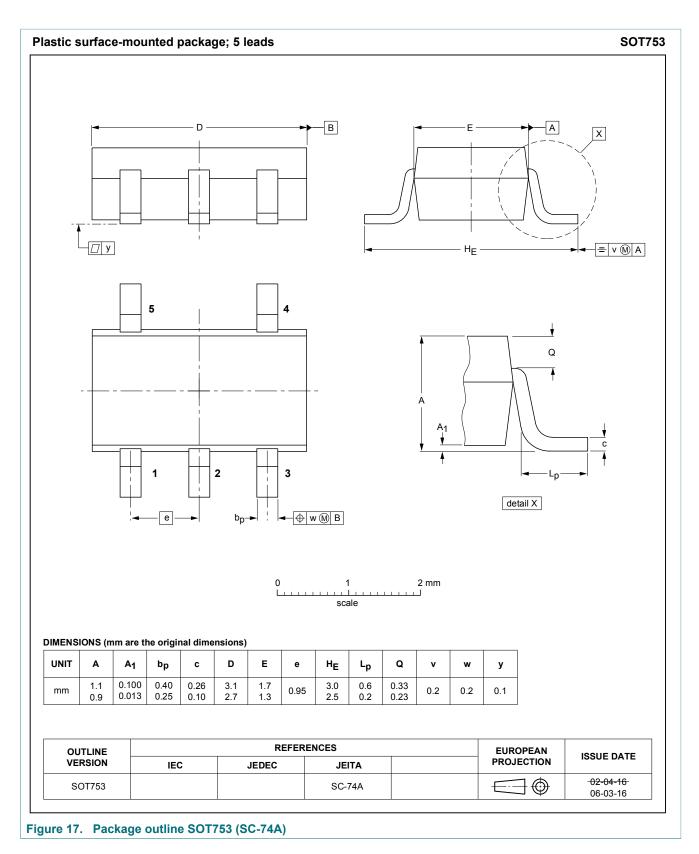
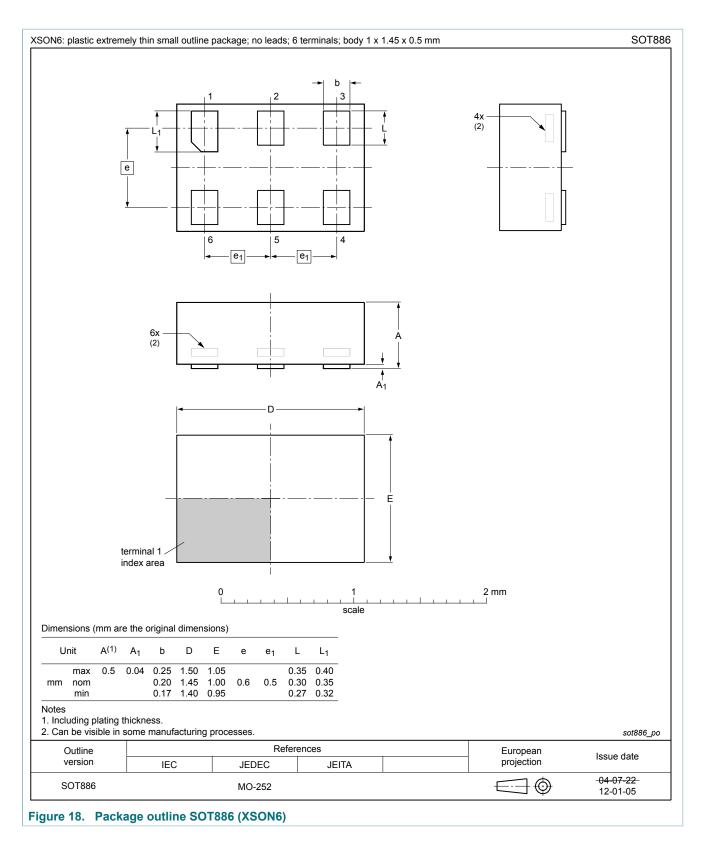
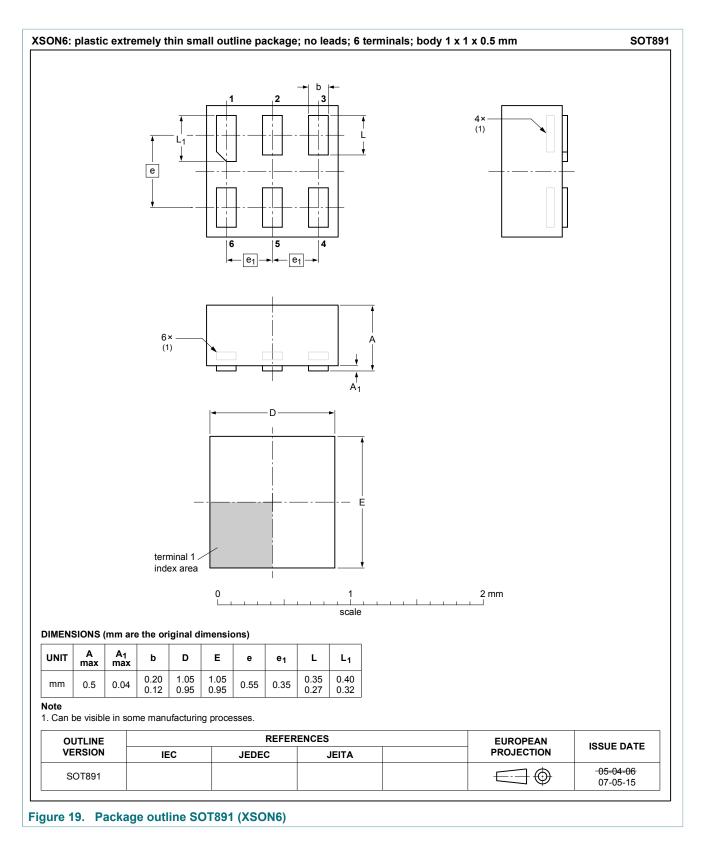
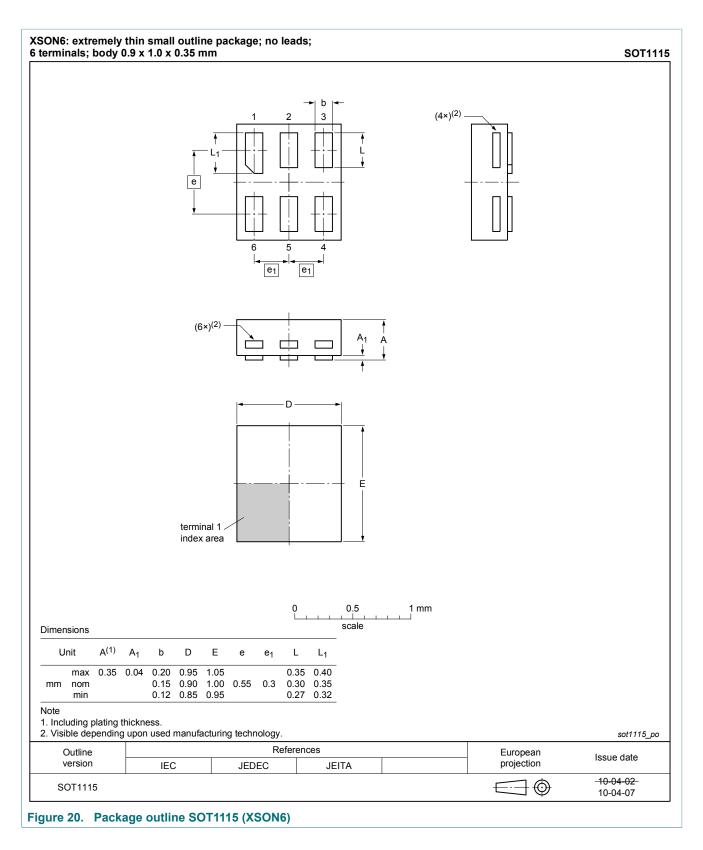

	. pias	tic th	in shr	ink sr		utiine	раска	age; t	b lead	s; bo	dy wid	lth 1.2	5 mn	1			50	OT353
		Ť							с	¥ *		• E		X] ()) A			
		-	5	- z		4					A ₁		Lp	(A ₃)	A A I I I I I I I I I I I I I I I I I I			
				e	- ► b _p	- ⊕ w	' M					detail	+ L → X	.				
IMENS	·	nm are		e e1	⊢ Ϊ		1.5 	le		3 mm		-	 L ► X 					
DIMENS	IONS (n A max.	A ₁	the orig	e1	0 L bp	s) c	1.5 sca	le E(1)	e	3 mm	HE	- detail	Lp	v	w	У	Z ⁽¹⁾	θ
	A		the orig	jinal din	0 L nension	s)	1.5 sca	le	e 0.65		Н _Е 2.25 2.0			v 0.3	w 0.1	y 0.1	Z(1) 0.60 0.15	θ 7° 0°
UNIT mm lote	A max. 1.1	A₁ 0.1 0	the orig A2 1.0 0.8	inal din A3 0.15	0 b p 0.30 0.15	s) c 0.25 0.08	1.5 sca D(1) 2.25 1.85	E(1) 1.35 1.15	0.65	e ₁	2.25	L	L р 0.46				0.60	7°
UNIT mm lote . Plastic	A max. 1.1	A₁ 0.1 0	the orig A2 1.0 0.8	jinal din	0 b p 0.30 0.15	s) c 0.25 0.08	1.5 sca D(1) 2.25 1.85	E(1) 1.35 1.15	0.65 cluded.	e ₁	2.25	L	L р 0.46	0.3	0.1	0.1	0.60 0.15	7° 0°
UNIT mm lote . Plastic	A max. 1.1	A₁ 0.1 0	the orig A2 1.0 0.8	inal din A3 0.15	0 b p 0.30 0.15	s) c 0.25 0.08	1.5 sca D(1) 2.25 1.85 side are REFE	E(1) 1.35 1.15 e not inc	0.65 cluded.	e ₁	2.25	L	L р 0.46		0.1 PEAN	0.1	0.60	7° 0°

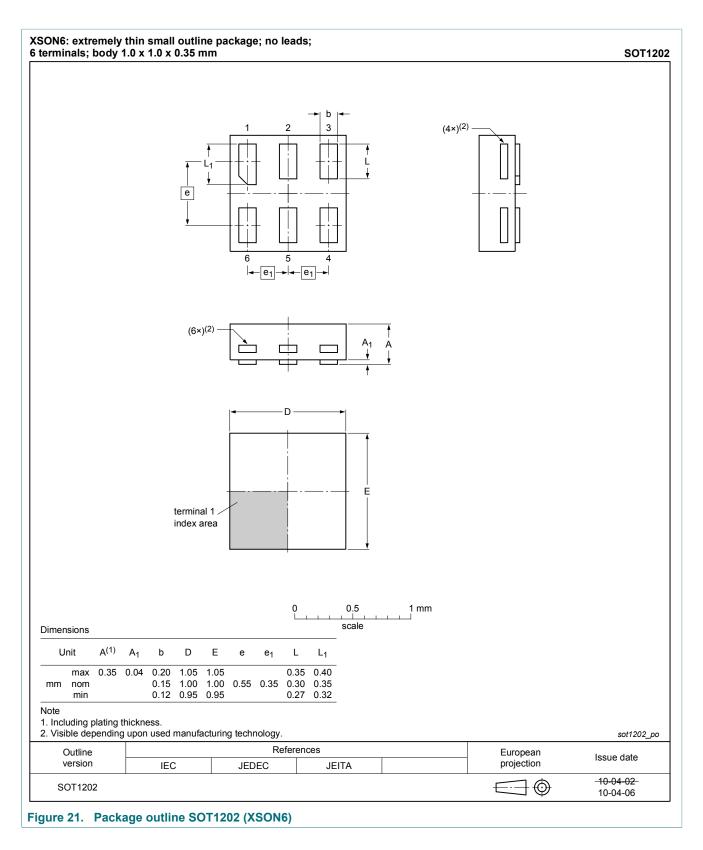
Figure 16. Package outline SOT353-1 (TSSOP5)

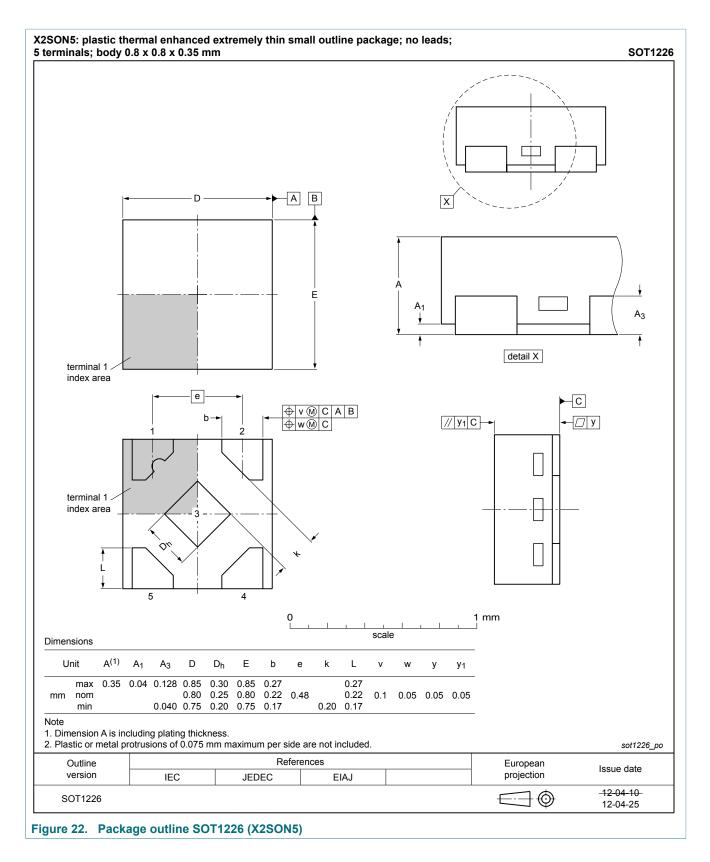

74LVC1G14 Product data sheet

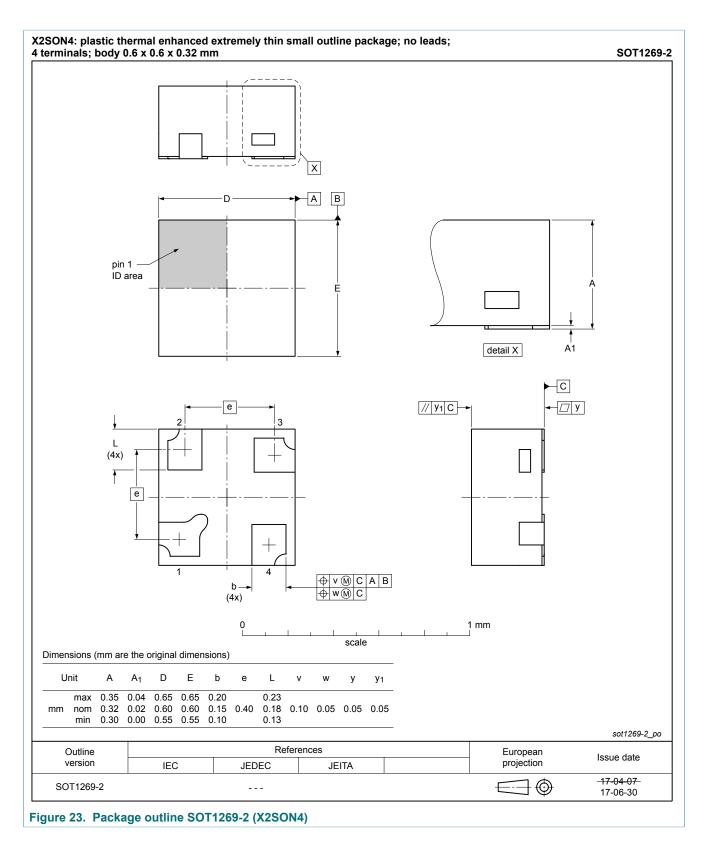
© Nexperia B.V. 2018. All rights reserved.


Single Schmitt-trigger inverter


Single Schmitt-trigger inverter


Single Schmitt-trigger inverter


Single Schmitt-trigger inverter


Single Schmitt-trigger inverter

Single Schmitt-trigger inverter

Single Schmitt-trigger inverter

15 Abbreviations

Table 12. Abbreviations						
Acronym	Description					
CMOS	Complementary Metal Oxide Semiconductor					
TTL	Transistor-Transistor Logic					
НВМ	Human Body Model					
ESD	ElectroStatic Discharge					
MM	Machine Model					
DUT	Device Under Test					

16 Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74LVC1G14 v.15	20180608	Product data sheet	-	74LVC1G14 v.15
Modifications:	Nexperia. Legal texts ha 	this data sheet has been rec ve been adapted to the new imber 74LVC1G14GX4 (SO	company name where	
74LVC1G14 v.14	20161202	Product data sheet	-	74LVC1G14 v.13
Modifications:	• <u>Table 7</u> : The n	naximum limits for leakage c	urrent and supply curre	ent have changed.
74LVC1G14 v.13	20160315	Product data sheet	-	74LVC1G14 v.12
Modifications:	• Figure 15 add	ed (typical K-factor for relaxa	ation oscillator).	
74LVC1G14 v.12	20120806	Product data sheet	-	74LVC1G14 v.11
Modifications:	 Package outling 	ne drawing of SOT1226 (Fig	ure 22) modified.	
74LVC1G14 v.11	20120412	Product data sheet	-	74LVC1G14 v.10
Modifications:	51	Imber 74LVC1G14GX (SOT ne drawing of SOT886 (Figu	,	
74LVC1G14 v.10	20111206	Product data sheet	-	74LVC1G14 v.9
Modifications:	 Legal pages u 	pdated.		
74LVC1G14 v.9	20110922	Product data sheet	-	74LVC1G14 v.8
74LVC1G14 v.8	20101110	Product data sheet	-	74LVC1G14 v.7
74LVC1G14 v.7	20070718	Product data sheet	-	74LVC1G14 v.6
74LVC1G14 v.6	20060615	Product data sheet	-	74LVC1G14 v.5
74LVC1G14 v.5	20040910	Product specification	-	74LVC1G14 v.4
74LVC1G14 v.4	20021119	Product specification	-	74LVC1G14 v.3
74LVC1G14 v.3	20020521	Product specification	-	74LVC1G14 v.2
74LVC1G14 v.2	20010406	Product specification	-	74LVC1G14 v.1
74LVC1G14 v.1	20001212	Product specification	-	-

Single Schmitt-trigger inverter

17 Legal information

17.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

Please consult the most recently issued document before initiating or completing a design. [1]

The term 'short data sheet' is explained in section "Definitions".

[2] [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

17.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

17.3 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia. In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia

Right to make changes - Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Single Schmitt-trigger inverter

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer

design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

17.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Nexperia

74LVC1G14

Single Schmitt-trigger inverter

Contents

1	General description	1
2	Features and benefits	1
3	Applications	1
4	Ordering information	2
5	Marking	2
6	Functional diagram	
7	Pinning information	
7.1	Pinning	
7.2	Pin description	
8	Functional description	4
9	Limiting values	
10	Recommended operating conditions	5
11	Static characteristics	
12	Dynamic characteristics	7
12.1	Waveform and test circuit	
12.2	Waveforms transfer characteristics	9
13	Application information	
14	Package outline	
15	Abbreviations	
16	Revision history	19
17	Legal information	

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© Nexperia B.V. 2018.

All rights reserved.

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com

Date of release: 8 June 2018 Document identifier: 74LVC1G14

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Inverters category:

Click to view products by Nexperia manufacturer:

Other Similar products are found below :

E5-652Z NL17SGU04P5T5G NLX2G04BMX1TCG CD4009UBE TC4584BFN 022413E NL17SG14AMUTCG NLU2G04AMUTCG NLU2GU04BMX1TCG NLV17SZ14DFT2G NLV17SZ06DFT2G NLV27WZ04DFT2G TC74VHC04FK(EL,K) NLV74HC04ADTR2G NLV17SZ04DFT2G NLU1G04AMUTCG NLX2G04CMUTCG NLX2G04AMUTCG NLV27WZ04DFT1G NLU1GT14AMUTCG NLU1G04CMUTCG NL17SZU04P5T5G 74LVC06ADTR2G 74LVC04ADR2G 6SL3210-5BB13-7BV1 NLV37WZ04USG NLX3G14FMUTCG NL17SZ04P5T5G NLV27WZU04DFT2G NLVVHC1GT14DFT1G NLV17SG14DFT2G 74ACT14SC MM74HC14MTCX 74VHC14MX BU4069UBF-E2 EMPP008Z NL27WZU04DTT1G NLU3G14MUTAG NLV14106BDTR2G NLV74AC14DTR2G SN74HCT04DE4 ODE-3-120023-1F12 74LVC2G04GW-Q100H 74VHCT04AM TC74HC04APF TC7SH04F,LJ(CT CD74HC14M96 TC7W14FK,LF TC7WH04FU,LJ(CT 74VHC14MTCX