74LVC4245A

Octal dual supply translating transceiver; 3-state Rev. 13 — 27 August 2021 Produc

Product data sheet

1. General description

The 74LVC4245A is an octal dual supply translating transceiver featuring 3-state bus compatible outputs in both send and receive directions. It is designed to interface between a 3 V and 5 V bus in a mixed 3 V and 5 V supply environment. The device features an output enable input (\overline{OE}) and a send/receive input (DIR) for direction control. A HIGH on \overline{OE} causes the outputs to assume a high-impedance OFF-state, effectively isolating the buses. In suspend mode, when either supply is zero, there is no current path between supplies. $V_{CCA} \ge V_{CCB}$, except in suspend mode. Schmitt-trigger action at all inputs makes the circuit tolerant of slower input rise and fall times.

2. Features and benefits

- 5 V tolerant inputs/outputs, for interfacing with 5 V logic
- Wide supply voltage range:
 - 3 V bus (V_{CC(B)}): 1.5 V to 3.6 V
 - 5 V bus (V_{CC(A)}): 1.5 V to 5.5 V
- CMOS low-power consumption
- TTL interface capability at 3.3 V
- Overvoltage tolerant control inputs to 5.5 V
- High-impedance when V_{CC(A)} = 0 V
- Complies with JEDEC standard no. JESD8B/JESD36
- Latch-up performance meets requirements of JESD78 Class 1
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

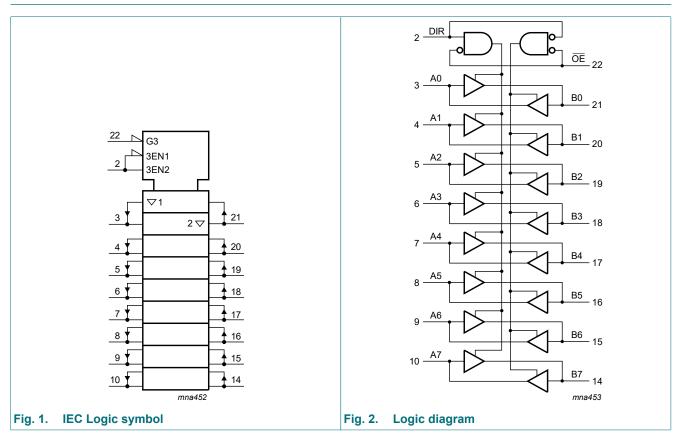

3. Ordering information

Table	1.	Ordering	information
--------------	----	----------	-------------

Type number	Package							
	Temperature range	Name	Description	Version				
74LVC4245AD	-40 °C to +125 °C	SO24	plastic small outline package; 24 leads; body width 7.5 mm	SOT137-1				
74LVC4245APW	-40 °C to +125 °C	TSSOP24	plastic thin shrink small outline package; 24 leads; body width 4.4 mm	SOT355-1				
74LVC4245ABQ	-40 °C to +125 °C	DHVQFN24	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 24 terminals; body 3.5 × 5.5 × 0.85 mm	SOT815-1				

nexperia

4. Functional diagram

5. Pinning information

5.1. Pinning

5.2. Pin description

Table 2. Pin description Pin Symbol Description 1 V_{CC(A)} supply voltage (5 V bus) 23, 24 supply voltage (3 V bus) V_{CC(B)} GND 11, 12, 13 ground (0 V) DIR 2 direction control A0, A1, A2, A3, A4, A5, A6, A7 3, 4, 5, 6, 7, 8, 9, 10 data input or output B0, B1, B2, B3, B4, B5, B6, B7 21, 20, 19, 18, 17, 16, 15, 14 data input or output OE 22 output enable input (active LOW)

6. Functional description

Table 3. Functional table

H = HIGH voltage level; *L* = LOW voltage level; *X* = don't care; *Z* = high-impedance OFF-state.

Input		Input/output		
DE DIR		An	Bn	
L	L	A = B	input	
L	Н	input	B = A	
Н	X	Z	Z	

7. Limiting values

Table 4. Limiting values

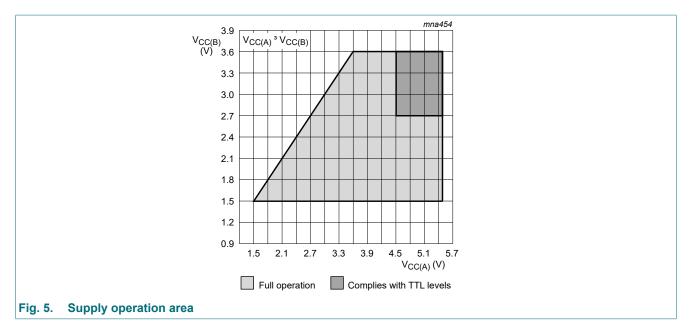
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC(A)}	supply voltage A		-0.5	+6.5	V
V _{CC(B)}	supply voltage B		-0.5	+4.6	V
I _{IK}	input clamping current	V ₁ < 0 V	-50	-	mA
VI	input voltage	[1]	-0.5	+6.5	V
I _{OK}	output clamping current	$V_{\rm O} > V_{\rm CCO} \text{ or } V_{\rm O} < 0 \text{ V}$ [2]	-	±50	mA
Vo	output voltage	output HIGH or LOW state [1]	-0.5	V _{CC} + 0.5	V
		output 3-state [1]	-0.5	+6.5	V
I _O	output current	$V_{\rm O} = 0 \ V \ to \ V_{\rm CCO} $ [2]	-	±50	mA
I _{CC}	supply current		-	100	mA
I _{GND}	ground current		-100	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \text{ °C to } +125 \text{ °C}$ [3]	-	500	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] V_{CCO} is the supply voltage associated with the output.

[3] For SOT137-1 (SO24) package: P_{tot} derates linearly with 16.2 mW/K above 119 °C.


For SOT355-1 (TSSOP24) package: P_{tot} derates linearly with 12.4 mW/K above 110 °C.

For SOT815-1 (DHVQFN24) package: Ptot derates linearly with 15.0 mW/K above 117 °C.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC(A)}	supply voltage A	$V_{CC(A)} \ge V_{CC(B)};$ see <u>Fig. 5</u> for maximum speed performance	1.5	-	5.5	V
V _{CC(B)}	supply voltage B	$V_{CC(A)} \ge V_{CC(B)};$ see <u>Fig. 5</u> for low-voltage applications	1.5	-	3.6	V
VI	input voltage	for control inputs	0	-	5.5	V
Vo	output voltage	output HIGH or LOW state	0	-	V _{CC}	V
		output 3-state	0	-	5.5	V
T _{amb}	ambient temperature		-40	-	+125	°C
Δt/ΔV	input transition rise and fall rate	V _{CC(B)} = 2.7 V to 3.0 V	-	-	20	ns/V
		V _{CC(B)} = 3.0 V to 3.6 V	-	-	10	ns/V
		V _{CC(A)} = 3.0 V to 4.5 V	-	-	20	ns/V
		V _{CC(A)} = 4.5 V to 5.5 V	-	-	10	ns/V

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ [1]	Max	Unit
T _{amb} = -	40 °C to +85 °C		I			
VIH	HIGH-level input	V _{CC(B)} = 2.7 V to 3.6 V	2.0	-	-	V
	voltage	V _{CC(A)} = 4.5 V to 5.5 V	2.0	-	-	V
V _{IL}	LOW-level input	V _{CC(B)} = 2.7 V to 3.6 V	-	-	0.8	V
	voltage	V _{CC(A)} = 4.5 V to 5.5 V	-	-	0.8	V
V _{OH}	HIGH-level output voltage	V _I = V _{IH} or V _{IL}				
		$V_{CC(B)}$ = 2.7 V to 3.6 V; I _O = -100 µA	V _{CC(B)} - 0.2	V _{CC(B)}	-	V
		V _{CC(B)} = 2.7 V; I _O = -12 mA	V _{CC(B)} - 0.5	-	-	V
		V _{CC(B)} = 3.0 V; I _O = -24 mA	V _{CC(B)} - 0.8	-	-	V
		$V_{CC(A)}$ = 4.5 V to 5.5 V; I _O = -100 µA	V _{CC(A)} - 0.2	V _{CC(A)}	-	V
		V _{CC(A)} = 4.5 V; I _O = -12 mA	V _{CC(A)} - 0.5	-	-	V
		V _{CC(A)} = 4.5 V; I _O = -24 mA	V _{CC(A)} - 0.8	-	-	V
V _{OL}	LOW-level output	V _I = V _{IH} or V _{IL}				
	voltage	$V_{CC(B)}$ = 2.7 V to 3.6 V; I _O = 100 µA	-	-	0.20	V
		V _{CC(B)} = 2.7 V; I _O = 12 mA	-	-	0.40	V
		V _{CC(B)} = 3.0 V; I _O = 24 mA	-	-	0.55	V
		$V_{CC(A)}$ = 4.5 V to 5.5 V; I _O = 100 µA	-	-	0.20	V
		V _{CC(A)} = 4.5 V; I _O = 12 mA	-	-	0.40	V
		V _{CC(A)} = 4.5 V; I _O = 24 mA	-	-	0.55	V
lı	input leakage current	V _l = 5.5 V or GND	-	±0.1	±5	μA
I _{OZ}	OFF-state output	$V_{I} = V_{IH} \text{ or } V_{IL}$ [2]				
	current	$V_{CC(B)}$ = 3.6 V; V_O = $V_{CC(B)}$ or GND	-	±0.1	±5	μA
		$V_{CC(A)}$ = 5.5 V; V_O = $V_{CC(A)}$ or GND	-	±0.1	±5	μA
-						

Symbol	Parameter	Conditions	Min	Тур [1]	Max	Unit
I _{CC}	supply current	I _O = 0 A				
		$V_{CC(B)}$ = 3.6 V; other inputs at $V_{CC(B)}$ or GND	-	0.1	10	μA
		$V_{CC(A)}$ = 5.5 V; other inputs at $V_{CC(A)}$ or GND	-	0.1	10	μA
ΔI _{CC}	additional supply	per pin; I _O = 0 A				
	current	$V_{CC(B)}$ = 2.7 V to 3.6 V; V _I = V _{CC(B)} - 0.6 V; other inputs at V _{CC(B)} or GND	-	5	500	μA
		$V_{CC(A)}$ = 4.5 V to 5.5 V; V _I = V _{CC(A)} - 0.6 V; other inputs at V _{CC(A)} or GND	-	5	500	μA
Cı	input capacitance		-	4.0	-	pF
C _{I/O}	input/output capacitance	An and Bn	-	5.0	-	pF
T _{amb} = -4	40 °C to +125 °C	· · · · · · · · · · · · · · · · · · ·		11		
V _{IH}	HIGH-level input	V _{CC(B)} = 2.7 V to 3.6 V	2.0	-	-	V
	voltage	V _{CC(A)} = 4.5 V to 5.5 V	2.0	-	-	V
V _{IL}	LOW-level input	V _{CC(B)} = 2.7 V to 3.6 V	-	-	0.8	V
	voltage	V _{CC(A)} = 4.5 V to 5.5 V	-	-	0.8	V
V _{OH}	HIGH-level output	$V_{I} = V_{IH} \text{ or } V_{IL}$				
	voltage	V _{CC(B)} = 2.7 V to 3.6 V; I _O = -100 μA	V _{CC(B)} - 0.3	-	-	V
		V _{CC(B)} = 2.7 V; I _O = -12 mA	V _{CC(B)} - 0.65	-	-	V
		V _{CC(B)} = 3.0 V; I _O = -24 mA	V _{CC(B)} - 1.0	-	-	V
		V _{CC(A)} = 4.5 V to 5.5 V; I _O = -100 μA	V _{CC(A)} - 0.3	-	-	V
		V _{CC(A)} = 4.5 V; I _O = -12 mA	V _{CC(A)} - 0.65	-	-	V
		V _{CC(A)} = 4.5 V; I _O = -24 mA	V _{CC(A)} - 1.0	-	-	V
V _{OL}	LOW-level output	$V_{I} = V_{IH} \text{ or } V_{IL}$				
	voltage	V _{CC(B)} = 2.7 V to 3.6 V; I _O = 100 μA	-	-	0.30	V
		V _{CC(B)} = 2.7 V; I _O = 12 mA	-	-	0.60	V
		V _{CC(B)} = 3.0 V; I _O = 24 mA	-	-	0.80	V
		V _{CC(A)} = 4.5 V to 5.5 V; I _O = 100 μA	-	-	0.30	V
		V _{CC(A)} = 4.5 V; I _O = 12 mA	-	-	0.60	V
		V _{CC(A)} = 4.5 V; I _O = 24 mA	-	-	0.80	V
I	input leakage current	$V_1 = 5.5 V \text{ or GND}$	-	-	±20	μA
l _{oz}	OFF-state output	$V_{I} = V_{IH} \text{ or } V_{IL}$ [2]				-
	current	$V_{CC(B)}$ = 3.6 V; V_O = $V_{CC(B)}$ or GND	-	-	±20	μA
		$V_{CC(A)} = 5.5 \text{ V}; V_O = V_{CC(A)} \text{ or GND}$	-	-	±20	μA
I _{CC}	supply current	I _O = 0 A				
		$V_{CC(B)}$ = 3.6 V; other inputs at $V_{CC(B)}$ or GND	-	-	40	μA
		$V_{CC(A)} = 5.5 V;$ other inputs at $V_{CC(A)}$ or GND	-	-	40	μA

Symbol	Parameter	Conditions	Min	Тур [1]	Max	Unit
ΔI _{CC} additional supply		per pin; I _O = 0 A				
	current	$V_{CC(B)}$ = 2.7 V to 3.6 V; V ₁ = V _{CC(B)} - 0.6 V; other inputs at V _{CC(B)} or GND	-	-	5000	μA
		$V_{CC(A)}$ = 4.5 V to 5.5 V; V _I = V _{CC(A)} - 0.6 V; other inputs at V _{CC(A)} or GND	-	-	5000	μA

[1] All typical values are measured at $V_{CC(A)}$ = 5.0 V, $V_{CC(B)}$ = 3.3 V and T_{amb} = 25 °C.

[2] For transceivers, the parameter I_{OZ} includes the input leakage current.

10. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). $V_{CC(A)} = 4.5$ V to 5.5 V; $t_r = t_f \le 2.5$ ns. For test circuit see Fig. 8.

Symbol	Parameter	Conditions	V _{CC(B)}	-40	°C to +8	5 °C	-40 °C to	o +125 °C	Unit
				Min	Typ [1]	Мах	Min	Max	1
t _{PHL}	HIGH to LOW	An to Bn; see Fig. 6	2.7 V	1.0	3.6	6.3	1.0	8.0	ns
	propagation delay		3.0 V to 3.6 V	1.0	3.3	6.3	1.0	8.0	ns
	delay	Bn to An; see Fig. 6	2.7 V	1.0	3.4	6.1	1.0	8.0	ns
			3.0 V to 3.6 V	1.0	3.4	6.1	1.0	8.0	ns
t _{PLH}	LOW to HIGH	An to Bn; see Fig. 6	2.7 V	1.0	3.3	6.7	1.0	8.5	ns
	propagation delay		3.0 V to 3.6 V	1.0	2.8	6.5	1.0	8.5	ns
	delay	Bn to An; see Fig. 6	2.7 V	1.0	3.0	5.0	1.0	6.5	ns
			3.0 V to 3.6 V	1.0	3.0	5.0	1.0	6.5	ns
t _{PZL}	OFF-state	OE to An; see Fig. 7	2.7 V	1.0	4.5	9.0	1.0	11.5	ns
pro	to LOW propagation delay		3.0 V to 3.6 V	1.0	4.5	9.0	1.0	11.5	ns
		OE to Bn; see Fig. 7	2.7 V	1.0	4.4	8.7	1.0	11.0	ns
	-		3.0 V to 3.6 V	1.0	3.8	8.1	1.0	10.5	ns
t _{PZH}	OFF-state	OE to An; see Fig. 7	2.7 V	1.0	4.5	8.1	1.0	10.5	ns
	to HIGH propagation		3.0 V to 3.6 V	1.0	4.5	8.1	1.0	10.5	ns
	delay	OE to Bn; see Fig. 7	2.7 V	1.0	4.3	8.7	1.0	11.0	ns
	-		3.0 V to 3.6 V	1.0	3.2	8.1	1.0	10.5	ns
t _{PLZ}	LOW to	OE to An; see Fig. 7	2.7 V	1.0	2.9	7.0	1.0	9.0	ns
	OFF-state propagation		3.0 V to 3.6 V	1.0	2.9	7.0	1.0	9.0	ns
	delay	OE to Bn; see Fig. 7	2.7 V	1.0	3.9	7.7	1.0	10.0	ns
	-		3.0 V to 3.6 V	1.0	3.5	7.7	1.0	10.0	ns
t _{PHZ}	HIGH to	OE to An; see Fig. 7	2.7 V	1.0	2.8	5.8	1.0	7.5	ns
	OFF-state		3.0 V to 3.6 V	1.0	2.8	5.8	1.0	7.5	ns
	propagation delay	OE to Bn; see Fig. 7	2.7 V	1.0	3.3	7.8	1.0	10.0	ns
			3.0 V to 3.6 V	1.0	2.9	7.8	1.0	10.0	ns
t _{sk(o)}	output skew time		[2]	-	-	1.0	-	1.5	ns

Symbol	Parameter	Conditions	V _{CC(B)}	-40 °C to +85 °C			-40 °C to +125 °C		Unit
				Min	Typ [1]	Мах	Min	Мах	
C _{PD} power dissipation capacitance	5 V bus: Bn to An; V ₁ = GND to V _{CC(A)} ; V _{CC(A)} = 5.0 V	[3]							
		outputs enabled	-	-	17	-	-	-	pF
		outputs disabled	-	-	5	-	-	-	pF
		3 V bus: An to Bn; V _I = GND to $V_{CC(B)}$; $V_{CC(B)}$ = 3.3 V	[3]						
		outputs enabled	-	-	17	-	-	-	pF
		outputs disabled	-	-	5	-	-	-	pF

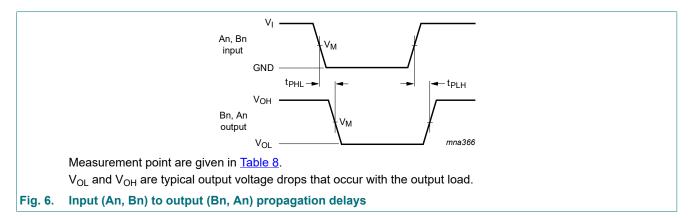
[1]

Typical values are measured at T_{amb} = 25 °C, $V_{CC(A)}$ = 5.0 V, and $V_{CC(B)}$ = 2.7 V and 3.3 V respectively. Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design. [2]

 C_{PD} is used to determine the dynamic power dissipation (P_D in μW). [3]

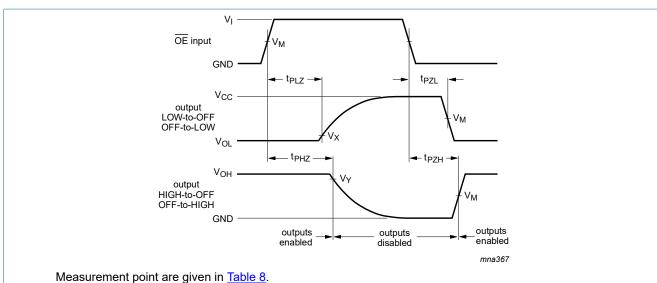
 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 f_i = input frequency in MHz; f_o = output frequency in MHz


C_L = output load capacitance in pF

V_{CC} = supply voltage in Volts

N = number of inputs switching


 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs

10.1. Waveforms and test circuit

74LVC4245A

Octal dual supply translating transceiver; 3-state

V_{OL} and V_{OH} are typical output voltage drops that occur with the output load.

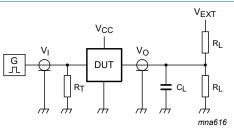

Fig. 7. 3-state enable and disable times

Table 8. Measurement points

Supply volt	Ipply voltage Input Output						
V _{CC(A)} V _{CC(B)}		V _M [1]	V _M [1] V ₁ [1] V		Vx	VY	
≤ 2.7 V	≤ 2.7 V	0.5 V _{CCI}	V _{CCI}	0.5 V _{CCO}	-	-	
-	2.7 V to 3.6 V	1.5 V	2.7 V	1.5 V	-	-	
≥ 4.5 V	-	0.5 V _{CCI}	3.0 V	0.5 V _{CCO}	-	-	
-	≥ 2.7 V	-	V _{CCI}	-	V _{OL} + 0.3 V	V _{OH} - 0.3 V	

[1] V_{CCI} is the supply voltage associated with the data input port.

[2] V_{CCO} is the supply voltage associated with the data output port.

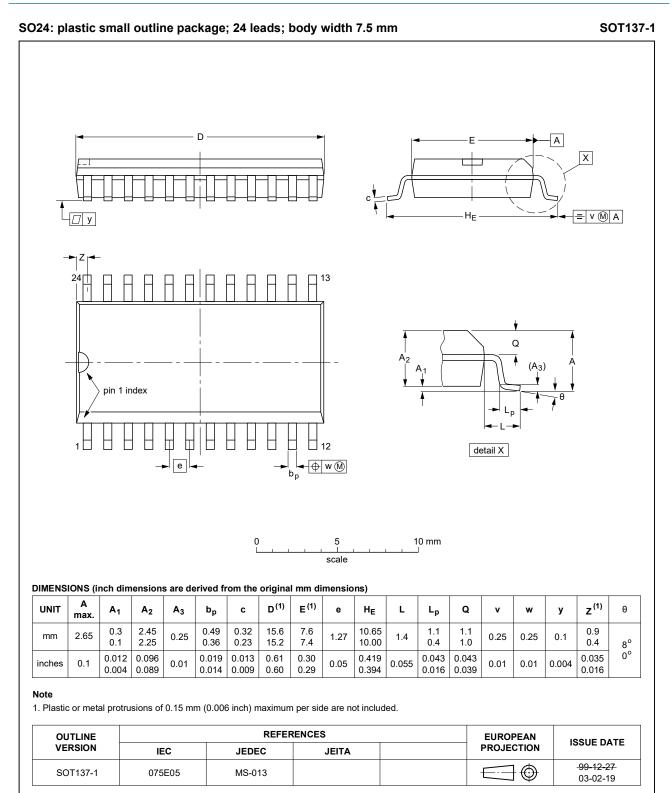
Test data is given in <u>Table 9</u>. Definitions for test circuit:

R_L = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator.

Fig. 8. Test circuit for measuring switching times


Table 9. Test data

Supply voltage		Input Load V _{EXT}					
V _{CC(A)}	V _{CC(B)}	V _I [1]	1] C _L R _L t _{PLH} , t _{PHL}		t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ} [2]	
< 2.7 V	< 2.7 V	V _{CCI}	50 pF	500 Ω	open	GND	2 × V _{CCO}
-	2.7 V to 3.6 V	2.7 V	50 pF	500 Ω	open	GND	2 × V _{CCO}
4.5 V to 5.5 V	-	3.0 V	50 pF	500 Ω	open	GND	2 × V _{CCO}

[1] V_{CCI} is the supply voltage associated with the data input port.

[2] V_{CCO} is the supply voltage associated with the output port.

11. Package outline

Fig. 9. Package outline SOT137-1 (SO24)

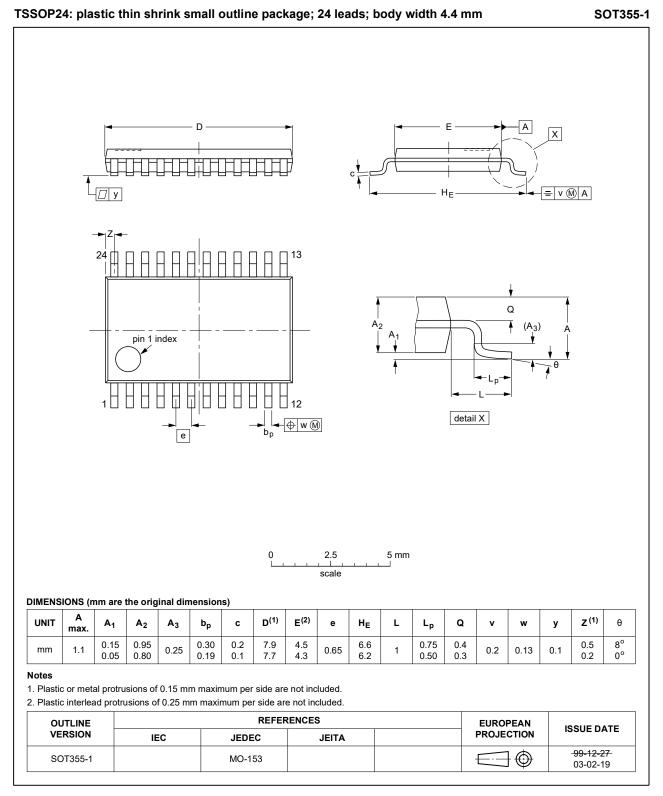
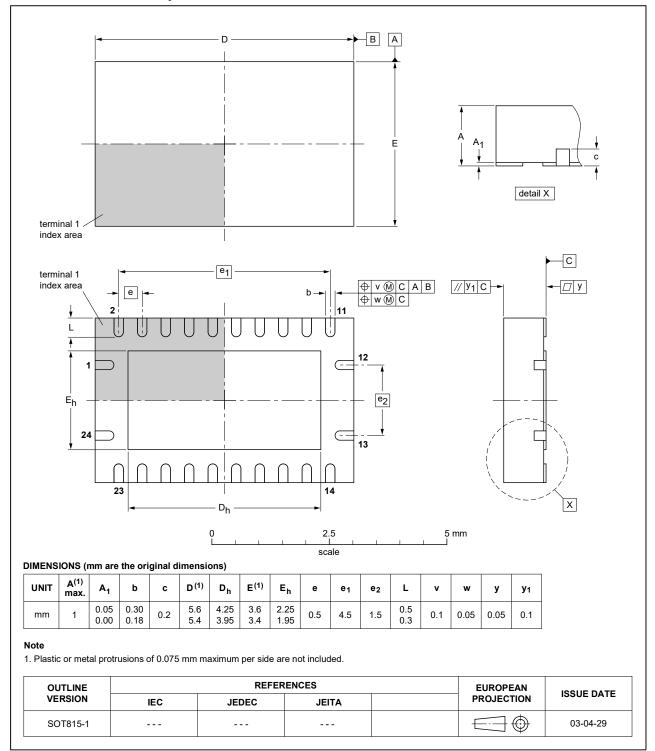



Fig. 10. Package outline SOT355-1 (TSSOP24)

DHVQFN24: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 24 terminals; body 3.5 x 5.5 x 0.85 mm

SOT815-1

12. Abbreviations

Table 10. Abbreviations				
Acronym	Description			
CMOS	Complementary Metal-Oxide Semiconductor			
DUT	Device Under Test			
ESD	ElectroStatic Discharge			
HBM	Human Body Model			
MM	Machine Model			
TTL	Transistor-Transistor Logic			

13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
74LVC4245A v.13	20210827	Product data sheet	-	74LVC4245A v.12		
Modifications:	Type numb	Type number 74LVC4245ADB (SOT340-1/SSOP24) removed.				
74LVC4245A v.12	20210412	Product data sheet	-	74LVC4245A v.11		
Modifications:	• <u>Section 9</u> :	 <u>Section 9</u>: ΔI_{CC} conditions have changed. 				
74LVC4245A v.11	20200922	Product data sheet	-	74LVC4245A v.10		
Modifications:	 The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia. Legal texts have been adapted to the new company name where appropriate. <u>Section 1</u> updated. <u>Table 4</u>: Derating values for P_{tot} total power dissipation updated. Measurement points related to <u>Fig. 6</u> and <u>Fig. 7</u> are given in <u>Table 8</u>. 					
74LVC4245A v.10	20121218	Product data sheet	-	74LVC4245A v.9		
Modifications:	 V_{CC(A}) and 	* $V_{CC(A)}$ and $V_{CC(B)}$ changed into $V_{CC(A)}$ and $V_{CC(B)}$ (errata)				
74LVC4245A v.9	20121120	Product data sheet	-	74LVC4245A v.8		
Modifications:	• <u>Fig. 4</u> : Pin	• Fig. 4: Pin configuration drawing corrected for DHVQFN24 package				
74LVC4245A v.8	20111122	Product data sheet	-	74LVC4245A v.7		
74LVC4245A v.7	20110812	Product data sheet	-	74LVC4245A v.6		
74LVC4245A v.6	20080118	Product data sheet	-	74LVC4245A v.5		
74LVC4245A v.5	20040330	Product specification	-	74LVC4245A v.4		
74LVC4245A v.4	20040211	Product specification	-	74LVC4245A v.3		
74LVC4245A v.3	19990615	Product specification	-	74LVC4245A v.2		
74LVC4245A v.2	19980729	Product specification	-	74LVC4245A v.1		
74LVC4245A v.1	19980729	Product specification	-	-		

14. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

 Please consult the most recently issued document before initiating or completing a design.

- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at <u>https://www.nexperia.com</u>.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

Octal dual supply translating transceiver; 3-state

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nexperia.com/profile/terms</u>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Contents

1. General description	1
2. Features and benefits	1
3. Ordering information	1
4. Functional diagram	2
5. Pinning information	3
5.1. Pinning	3
5.2. Pin description	3
6. Functional description	3
7. Limiting values	4
8. Recommended operating conditions	4
9. Static characteristics	5
10. Dynamic characteristics	7
10.1. Waveforms and test circuit	8
11. Package outline	10
12. Abbreviations	13
13. Revision history	13
14. Legal information	14

© Nexperia B.V. 2021. All rights reserved

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 27 August 2021

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bus Transceivers category:

Click to view products by Nexperia manufacturer:

Other Similar products are found below :

 74LS645N
 PI74LVCC3245AS
 5962-8968201LA
 5962-7802301Q2A
 TC74VCX164245(EL,F
 MC74LCX245MNTWG

 TC7WPB8306L8X,LF(S
 MM74HC245AMTCX
 74LVX245MTC
 74ALVC16245MTDX
 74LCXR162245MTX
 74VCX164245MTDX

 74VHC245M
 74VHC245MX
 FXL2TD245L10X
 74LVC1145GM,115
 74LVC245ADTR2G
 TC74AC245P(F)
 74LVT245BBT20-13

 CD74ACT245M
 74AHC245D.112
 SN74LVCH16952ADGGR
 CY74FCT16245TPVCT
 74AHCT245PW.118
 74LV245DB.118

 74LV245D.112
 74LVC245APW.112
 74LVCH245AD.112
 SN74LVCH16952ADGGR
 CY74FCT16245TPVCT
 74AHCT245PW.118
 74LV245DB.118

 74LV245D.112
 74LVC245APW.112
 74LVCH245AD.112
 SN75138NSR
 AP54RHC506ELT-R
 AP54RHC506BLT-R

 74LVCR162245ZQLR
 SN74LVCR16245AZQLR
 MC100EP16MNR4G
 MC100LVEP16MNR4G
 714100R
 74HC643N

 MC100EP16DTR2G
 5962-9221403MRA
 74FCT16245ATPVG
 74FCT16245ETPAG
 74FCT245CTSOG
 MAX22088GTG+
 74HC646N

 MAX9320EUA
 74AVC8T245PW,118
 TC7QPB9306FT(EL)
 SY88808LMH
 74LVCH2T45DC-Q100H
 74HC646N