

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com, http://www.nexperia.com)

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

BC807; BC807W; BC327 45 V, 500 mA PNP general-purpose transistors Rev. 06 — 17 November 2009

Product data sheet

Product profile 1.

1.1 General description

PNP general-purpose transistors.

Table 1. **Product overview**

Type number	Package	Package				
	NXP	JEITA	_			
BC807	SOT23	-	BC817			
BC807W	SOT323	SC-70	BC817W			
BC327[1]	SOT54 (TO-92)	SC-43A	BC337			

^[1] Also available in SOT54A and SOT54 variant packages (see Section 2).

1.2 Features

- High current
- Low voltage

1.3 Applications

General-purpose switching and amplification

1.4 Quick reference data

Table 2. Quick reference data

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V_{CEO}	collector-emitter voltage	open base; I _C = 10 mA		-	-	-45	V
I _C	collector current (DC)			-	-	-500	mΑ
I _{CM}	peak collector current			-	-	-1	Α
h _{FE}	DC current gain	$I_C = -100 \text{ mA};$ $V_{CE} = -1 \text{ V}$	[1]				
	BC807; BC807W; BC327			100	-	600	
	BC807-16; BC807-16W; BC327-16			100	-	250	
	BC807-25; BC807-25W; BC327-25			160	-	400	
	BC807-40; BC807-40W; BC327-40			250	-	600	

^[1] Pulse test: $t_p \le 300~\mu s;~\delta \le 0.02.$

2. Pinning information

Pin	Description	Simplified outline	Symbol
SOT23			-
1	base		
2	emitter	3	;
3	collector		1—
		1	Γκ.
			sym01:
SOT323			Symon
1	base		
2	emitter	3	;
3	collector		. V
•	odilottoi		1—
			2
		1 2	sym01
		sot323_so	
SOT54			
1	emitter		
2	base		
3	collector		2 —
		001aab347	006aaa14
SOT54A			
1	emitter		
2	base		
3	collector	A	2 —
			''
		3 001aab348	006aaa14
SOT54 v	ariant		0000007
1	emitter		
2	base	TE:	
3	collector		2 —
			- T
		001aab447	
			006aaa1

3. Ordering information

Table 4. Ordering information

Type number[1]	Package	ackage							
	Name	Description	Version						
BC807	-	plastic surface mounted package; 3 leads	SOT23						
BC807W	SC-70	plastic surface mounted package; 3 leads	SOT323						
BC327 ^[2]	SC-43A	plastic single-ended leaded (through hole) package; 3 leads	SOT54						

^[1] Valid for all available selection groups.

4. Marking

Table 5. Marking codes

Type number	Marking code ^[1]
BC807	5D*
BC807-16	5A*
BC807-25	5B*
BC807-40	5C*
BC807W	5D*
BC807-16W	5A*
BC807-25W	5B*
BC807-40W	5C*
BC327	C327
BC327-16	C32716
BC327-25	C32725
BC327-40	C32740

^{[1] * = -:} made in Hong Kong

^[2] Also available in SOT54A and SOT54 variant packages (see Section 2 and Section 9).

^{* =} p: made in Hong Kong

^{* =} t: made in Malaysia

^{* =} W: made in China

5. Limiting values

Table 6. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CBO}	collector-base voltage	open emitter	-	-50	V
V_{CEO}	collector-emitter voltage	open base; I _C = 10 mA	-	–45	V
V_{EBO}	emitter-base voltage	open collector	-	-5	V
I _C	collector current (DC)		-	-500	mA
I _{CM}	peak collector current		-	-1	Α
I _{BM}	peak base current		-	-200	mA
P _{tot}	total power dissipation				
	BC807	$T_{amb} \le 25 ^{\circ}C$	[1][2]	250	mW
	BC807W	$T_{amb} \le 25 ^{\circ}C$	[1][2] _	200	mW
	BC327	$T_{amb} \le 25 ^{\circ}C$	[1][2] _	625	mW
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		-	150	°C
T _{amb}	ambient temperature		-65	+150	°C

^[1] Transistor mounted on an FR4 printed-circuit board, single-sided copper, tin-plated and standard footprint.

6. Thermal characteristics

Table 7. Thermal characteristics

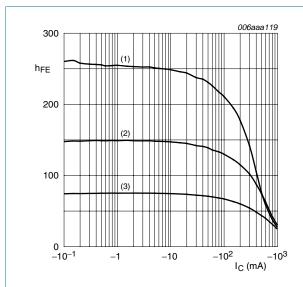
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ιι () α)	thermal resistance from junction to ambient					
	BC807	$T_{amb} \le 25 ^{\circ}C$	[1][2]	-	500	K/W
	BC807W	$T_{amb} \le 25 ^{\circ}C$	[1][2] _	-	625	K/W
	BC327	$T_{amb} \le 25 ^{\circ}C$	[1][2]	-	200	K/W

^[1] Transistor mounted on an FR4 printed-circuit board, single-sided copper, tin-plated and standard footprint.

^[2] Valid for all available selection groups.

^[2] Valid for all available selection groups.

7. Characteristics

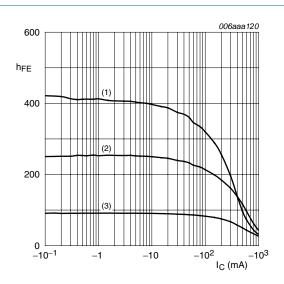

Table 8. Characteristics

 $T_{amb} = 25$ °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Unit
collector-base cut-off current	$I_E = 0 \text{ A}; V_{CB} = -20 \text{ V}$	-	-	-100	nA
	$I_E = 0 \text{ A}; V_{CB} = -20 \text{ V};$ $T_j = 150 \text{ °C}$	-	-	– 5	μА
emitter-base cut-off current	$I_C = 0 A; V_{EB} = -5 V$	-	-	-100	nΑ
DC current gain	$I_C = -100 \text{ mA}; V_{CE} = -1 \text{ V}$	[1]			
BC807; BC807W; BC327		100	-	600	
BC807-16; BC807-16W; BC327-16		100	-	250	
BC807-25; BC807-25W; BC327-25		160	-	400	
BC807-40; BC807-40W; BC327-40		250	-	600	
DC current gain	$I_C = -500 \text{ mA}; V_{CE} = -1 \text{ V}$	<u>[1]</u> 40	-	-	
collector-emitter saturation voltage	$I_C = -500 \text{ mA}; I_B = -50 \text{ mA}$	[1] -	-	-700	mV
base-emitter voltage	$I_C = -500 \text{ mA}; V_{CE} = -1 \text{ V}$	[2]	-	-1.2	V
collector capacitance	$I_E = i_e = 0 \text{ A}; V_{CB} = -10 \text{ V};$ f = 1 MHz	-	5	-	pF
transition frequency	$I_C = -10 \text{ mA}; V_{CE} = -5 \text{ V};$ f = 100 MHz	80	-	-	MHz
	emitter-base cut-off current DC current gain BC807; BC807W; BC327 BC807-16; BC807-16W; BC327-16 BC807-25; BC807-25W; BC327-25 BC807-40; BC807-40W; BC327-40 DC current gain collector-emitter saturation voltage base-emitter voltage collector capacitance	$\begin{tabular}{l} \begin{tabular}{l} tabu$	$ \begin{array}{c} \text{collector-base cut-off current} & I_{E} = 0 \text{ A; } V_{CB} = -20 \text{ V} \\ \hline I_{E} = 0 \text{ A; } V_{CB} = -20 \text{ V; } \\ \hline I_{T} = 150 \text{ °C} \\ \hline \\ \text{emitter-base cut-off current} & I_{C} = 0 \text{ A; } V_{EB} = -5 \text{ V} \\ \hline \\ \text{DC current gain} & I_{C} = -100 \text{ mA; } V_{CE} = -1 \text{ V} \\ \hline \\ \text{BC807; BC807W; BC327} & 100 \\ \hline \\ \text{BC807-16; BC807-16W; } \\ \text{BC327-16} & 100 \\ \hline \\ \text{BC327-16} & 160 \\ \hline \\ \text{BC807-25; BC807-25W; } \\ \text{BC327-25} & 160 \\ \hline \\ \text{DC current gain} & I_{C} = -500 \text{ mA; } V_{CE} = -1 \text{ V} \\ \text{Collector-emitter saturation} \\ \text{Voltage} & I_{C} = -500 \text{ mA; } V_{CE} = -1 \text{ V} \\ \text{Collector capacitance} & I_{C} = -500 \text{ mA; } V_{CE} = -1 \text{ V} \\ \text{Collector capacitance} & I_{C} = -500 \text{ mA; } V_{CE} = -1 \text{ V} \\ \text{Collector capacitance} & I_{C} = -500 \text{ mA; } V_{CE} = -1 \text{ V} \\ \text{Collector capacitance} & I_{C} = -500 \text{ mA; } V_{CE} = -1 \text{ V} \\ \text{Collector capacitance} & I_{C} = -500 \text{ mA; } V_{CE} = -1 \text{ V} \\ \text{Collector capacitance} & I_{C} = -500 \text{ mA; } V_{CE} = -1 \text{ V} \\ \text{Collector capacitance} & I_{C} = -10 \text{ mA; } V_{CE} = -10 \text{ V; } \\ \text{Collector capacitance} & I_{C} = -10 \text{ mA; } V_{CE} = -5 \text{ V; } \\ \text{S0} & \text{S0} \\ \hline \\ \text{Collector capacitance} & I_{C} = -10 \text{ mA; } V_{CE} = -5 \text{ V; } \\ \text{Collector capacitance} & I_{C} = -10 \text{ mA; } V_{CE} = -5 \text{ V; } \\ \text{Collector capacitance} & I_{C} = -10 \text{ mA; } V_{CE} = -5 \text{ V; } \\ \text{Collector capacitance} & I_{C} = -10 \text{ mA; } V_{CE} = -5 \text{ V; } \\ \text{Collector capacitance} & I_{C} = -10 \text{ mA; } V_{CE} = -5 \text{ V; } \\ \text{Collector capacitance} & I_{C} = -10 \text{ mA; } V_{CE} = -5 \text{ V; } \\ \text{Collector capacitance} & I_{C} = -10 \text{ mA; } V_{CE} = -5 \text{ V; } \\ \text{Collector capacitance} & I_{C} = -10 \text{ mA; } V_{CE} = -5 \text{ V; } \\ \text{Collector capacitance} & I_{C} = -10 \text{ mA; } V_{CE} = -5 \text{ V; } \\ \text{Collector capacitance} & I_{C} = -10 \text{ mA; } V_{CE} = -5 \text{ V; } \\ \text{Collector capacitance} & I_{C} = -10 \text{ mA; } V_{CE} = -5 \text{ V; } \\ \text{Collector capacitance} & I_{C} = -10 \text{ mA; } V_{CE} = -5 \text{ V; } \\ Collector capacitan$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

^[1] Pulse test: $t_p \le 300~\mu s;~\delta \le 0.02.$

^[2] V_{BE} decreases by approximately 2 mV/K with increasing temperature.


$$V_{CE} = -1 V$$

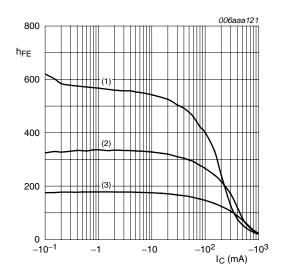
(1)
$$T_{amb} = 150 \, ^{\circ}C$$

(2)
$$T_{amb} = 25 \, ^{\circ}C$$

(3)
$$T_{amb} = -55 \, ^{\circ}C$$

Fig 1. Selection -16: DC current gain as a function of collector current; typical values

$$V_{CE} = -1 V$$

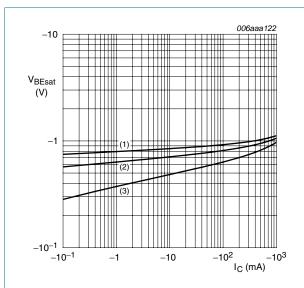

(1)
$$T_{amb} = 150 \, ^{\circ}C$$

(2)
$$T_{amb} = 25 \, ^{\circ}C$$

(3)
$$T_{amb} = -55 \, ^{\circ}C$$

Fig 2. Selection -25: DC current gain as a function of collector current; typical values

6 of 19

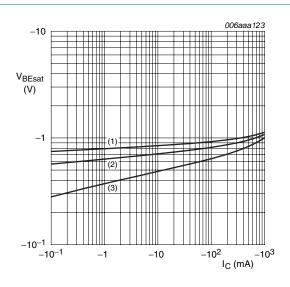

$$V_{CE} = -1 V$$

(1) $T_{amb} = 150 \, ^{\circ}C$

(2) $T_{amb} = 25 \, ^{\circ}C$

(3) $T_{amb} = -55 \, ^{\circ}C$

Selection -40: DC current gain as a function of collector current; typical values Fig 3.

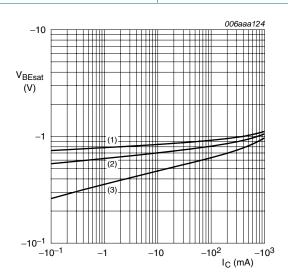

$$I_{\rm C}/I_{\rm B} = 10$$

(1)
$$T_{amb} = -55 \, ^{\circ}C$$

(2)
$$T_{amb} = 25 \, ^{\circ}C$$

(3)
$$T_{amb} = 150 \, ^{\circ}C$$

Fig 4. Selection -16: Base-emitter saturation voltage as a function of collector current; typical values

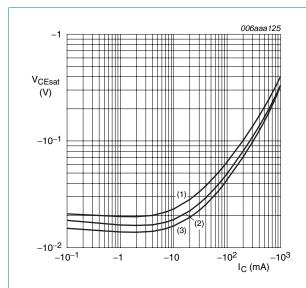

$$I_{\rm C}/I_{\rm B} = 10$$

(1)
$$T_{amb} = -55 \, ^{\circ}C$$

(2)
$$T_{amb} = 25 \, ^{\circ}C$$

(3)
$$T_{amb} = 150 \, ^{\circ}C$$

Fig 5. Selection -25: Base-emitter saturation voltage as a function of collector current; typical values

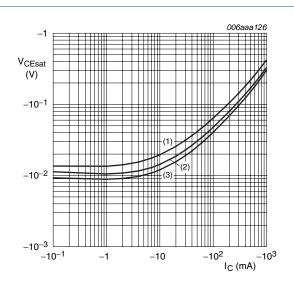

 $I_{\rm C}/I_{\rm B}=10$

(1)
$$T_{amb} = -55 \, ^{\circ}C$$

(2) $T_{amb} = 25 \, ^{\circ}C$

(3) $T_{amb} = 150 \, ^{\circ}C$

Fig 6. Selection -40: Base-emitter saturation voltage as a function of collector current; typical values

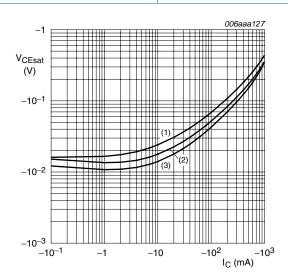

$$I_{\rm C}/I_{\rm B} = 10$$

(1)
$$T_{amb} = 150 \, ^{\circ}C$$

(2)
$$T_{amb} = 25 \, ^{\circ}C$$

(3)
$$T_{amb} = -55 \, ^{\circ}C$$

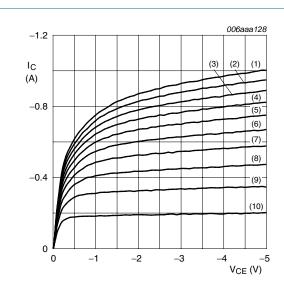
Fig 7. Selection -16: Collector-emitter saturation voltage as a function of collector current; typical values


$$I_{\rm C}/I_{\rm B} = 10$$

(1)
$$T_{amb} = 150 \, ^{\circ}C$$

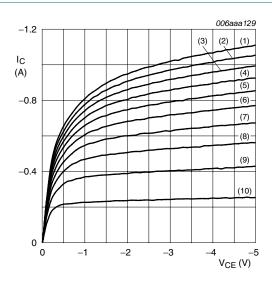
(2)
$$T_{amb} = 25 \, ^{\circ}C$$

(3)
$$T_{amb} = -55 \, ^{\circ}C$$


Fig 8. Selection- 25: Collector-emitter saturation voltage as a function of collector current; typical values

$$I_{\rm C}/I_{\rm B}=10$$

- (1) $T_{amb} = 150 \, ^{\circ}C$
- (2) T_{amb} = 25 °C
- (3) $T_{amb} = -55 \, ^{\circ}C$


Fig 9. Selection -40: Collector-emitter saturation voltage as a function of collector current; typical values

 $T_{amb} = 25 \, ^{\circ}C$

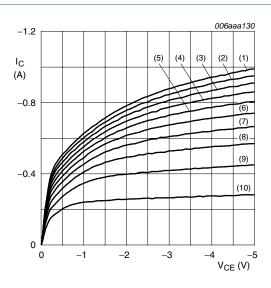

- (1) $I_B = -16.0 \text{ mA}$
- (2) $I_B = -14.4 \text{ mA}$
- (3) $I_B = -12.8 \text{ mA}$
- (4) $I_B = -11.2 \text{ mA}$
- (5) $I_B = -9.6 \text{ mA}$
- (6) $I_B = -8.0 \text{ mA}$
- (7) $I_B = -6.4 \text{ mA}$
- (8) $I_B = -4.8 \text{ mA}$
- (9) $I_B = -3.2 \text{ mA}$
- (10) $I_B = -1.6 \text{ mA}$

Fig 10. Selection -16: Collector current as a function of collector-emitter voltage; typical values

T_{amb} = 25 °C

- (1) $I_B = -13.0 \text{ mA}$
- (2) $I_B = -11.7 \text{ mA}$
- (3) $I_B = -10.4 \text{ mA}$
- (4) $I_B = -9.1 \text{ mA}$
- (5) $I_B = -7.8 \text{ mA}$
- (6) $I_B = -6.5 \text{ mA}$
- (7) $I_B = -5.2 \text{ mA}$
- (8) $I_B = -3.9 \text{ mA}$
- (9) $I_B = -2.6 \text{ mA}$ (10) $I_B = -1.3 \text{ mA}$
- Fig 11. Selection -25: Collector current as a function of collector-emitter voltage; typical values

T_{amb} = 25 °C

- (1) $I_B = -12.0 \text{ mA}$
- (2) $I_B = -10.8 \text{ mA}$
- (3) $I_B = -9.6 \text{ mA}$
- (4) $I_B = -8.4 \text{ mA}$
- (5) $I_B = -7.2 \text{ mA}$
- (6) $I_B = -6.0 \text{ mA}$
- (7) $I_B = -4.8 \text{ mA}$ (8) $I_B = -3.6 \text{ mA}$
- (9) $I_B = -2.4 \text{ mA}$
- (5) IB = 2.4 III/
- (10) $I_B = -1.2 \text{ mA}$

Fig 12. Selection -40: Collector current as a function of collector-emitter voltage; typical values

8. Package outline

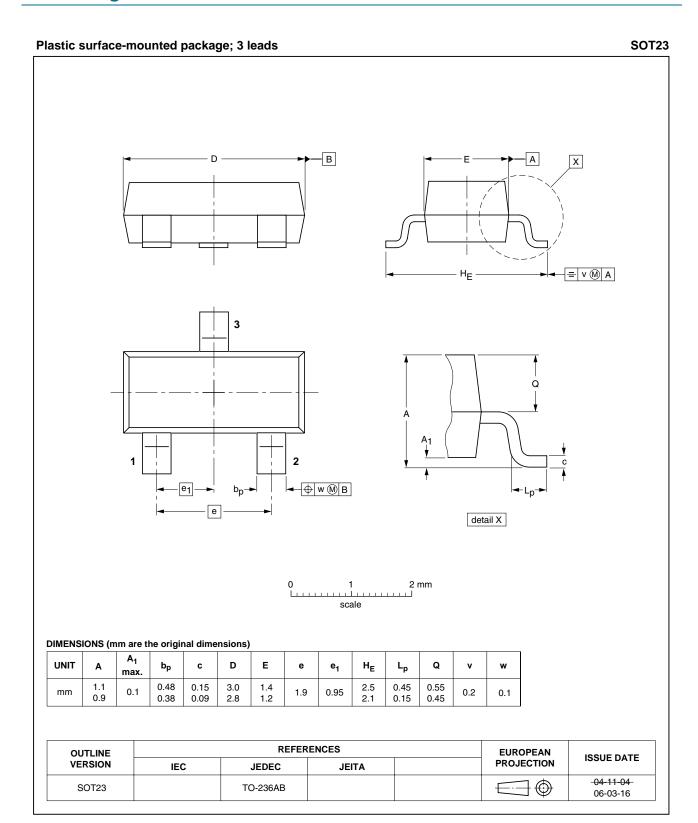


Fig 13. Package outline SOT23 (TO-236AB)

BC807_BC807W_BC327_6 © NXP B.V. 2009. All rights reserved.

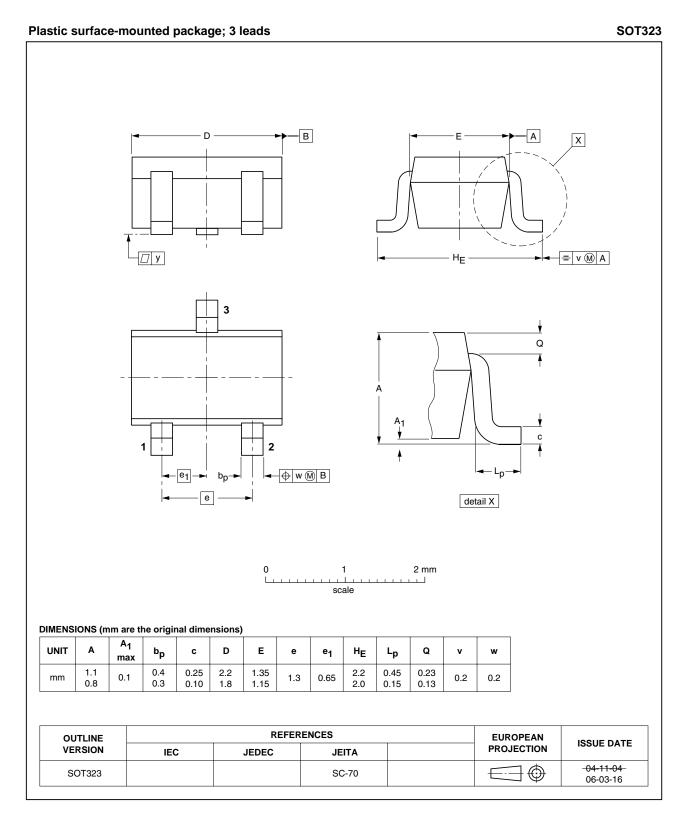
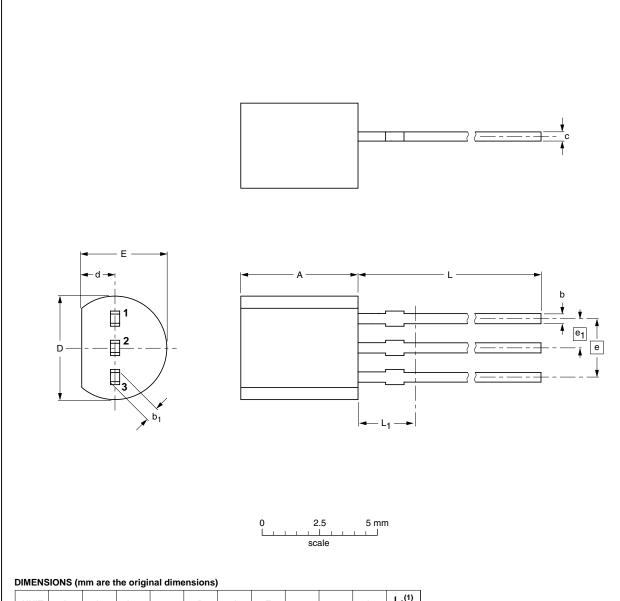



Fig 14. Package outline SOT323 (SC-70)

BC807_BC807W_BC327_6

Plastic single-ended leaded (through hole) package; 3 leads

SOT54

UNIT	A	b	b ₁	С	D	d	E	е	e ₁	L	L ₁ ⁽¹⁾ max.
mm	5.2 5.0	0.48 0.40	0.66 0.55	0.45 0.38	4.8 4.4	1.7 1.4	4.2 3.6	2.54	1.27	14.5 12.7	2.5

Note

1. Terminal dimensions within this zone are uncontrolled to allow for flow of plastic and terminal irregularities.

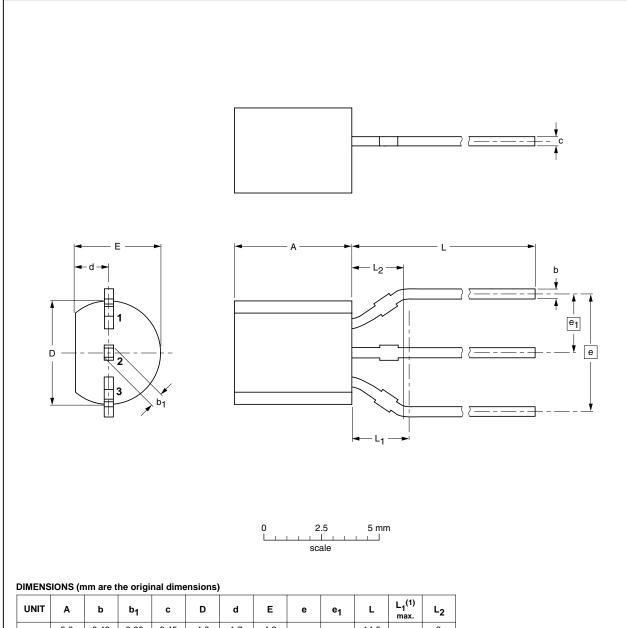

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT54		TO-92	SC-43A		-04-06-28- 04-11-16

Fig 15. Package outline SOT54 (SC-43A/TO-92)

BC807_BC807W_BC327_6

Plastic single-ended leaded (through hole) package; 3 leads (wide pitch)

SOT54A

UNIT	Α	b	b ₁	С	D	d	Е	е	e ₁	L	L ₁ ⁽¹⁾ max.	L ₂
mm	5.2 5.0	0.48 0.40	0.66 0.55	0.45 0.38	4.8 4.4	1.7 1.4	4.2 3.6	5.08	2.54	14.5 12.7	3	3 2

1. Terminal dimensions within this zone are uncontrolled to allow for flow of plastic and terminal irregularities.

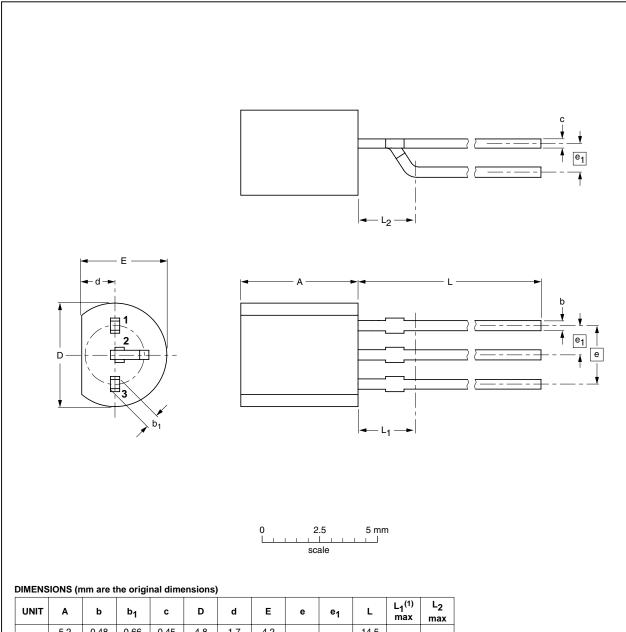

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
SOT54A					97-05-13 04-06-28	

Fig 16. Package outline SOT54A

BC807_BC807W_BC327_6 © NXP B.V. 2009. All rights reserved.

Plastic single-ended leaded (through hole) package; 3 leads (on-circle)

SOT54 variant

UNIT	Α	b	b ₁	С	D	d	E	е	e ₁	L	L ₁ ⁽¹⁾ max	L ₂ max	
mm	5.2 5.0	0.48 0.40	0.66 0.55	0.45 0.38	4.8 4.4	1.7 1.4	4.2 3.6	2.54	1.27	14.5 12.7	2.5	2.5	

1. Terminal dimensions within this zone are uncontrolled to allow for flow of plastic and terminal irregularities.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT54 variant						04-06-28 05-01-10

Fig 17. Package outline SOT54 variant

BC807_BC807W_BC327_6 © NXP B.V. 2009. All rights reserved.

9. Packing information

Table 9. Packing methods

The indicated -xxx are the last three digits of the 12NC ordering code.[1]

Type number	Package	Description	Packing	Packing quantity		
			3000	5000	10000	
BC807	SOT23	4 mm pitch, 8 mm tape and reel	-215	-	-235	
BC807W	SOT323	4 mm pitch, 8 mm tape and reel	-115	-	-135	
BC327	SOT54	bulk, straight leads	-	-412	-	
BC327	SOT54A	tape and reel, wide pitch	-	-	-116	
BC327	SOT54A	tape ammopack, wide pitch	-	-	-126	
BC327	SOT 54 variant	bulk, delta pinning (on-circle)	-	-112	-	

^[1] For further information and the availability of packing methods, see Section 12.

10. Revision history

Table 10. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes				
BC807_BC807W_ BC327_6	20091117	Product data sheet	-	BC807_BC807W_ BC327_5				
Modifications:	 This data sheet was changed to reflect the new company name NXP Semiconducto including new legal definitions and disclaimers. No changes were made to the techn content. <u>Table 3 "Pinning"</u>: updated Figure 13 "Package outline SOT23 (TO-236AB)": updated 							
	• Figure 14 "Package outline SOT323 (SC-70)": updated							
BC807_BC807W_ BC327_5	20050221	Product data sheet	CPCN200302007F CPCN200405006F	BC807_4; BC807W_3; BC327_3				
BC807_4	20040116	Product specification	-	BC807_3				
BC807W_3	19990518	Product specification	-	BC807W_808W_CNV_2				
BC327_3	19990415	Product specification	-	BC327_2				

BC807; BC807W; BC327

45 V, 500 mA PNP general-purpose transistors

11. Legal information

11.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

11.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

11.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental

damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

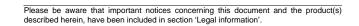
No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

11.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.


12. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

13. Contents

1	Product profile
1.1	General description
1.2	Features
1.3	Applications 1
1.4	Quick reference data
2	Pinning information
3	Ordering information 3
4	Marking 3
5	Limiting values
6	Thermal characteristics
7	Characteristics
8	Package outline
9	Packing information 16
10	Revision history
11	Legal information
11.1	Data sheet status
11.2	Definitions
11.3	Disclaimers
11.4	Trademarks
12	Contact information
13	Contents

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Nexperia manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460

2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 2N2369ADCSM

2N5769 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E

US6T6TR NJL0281DG 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E IMZ2AT108 UMX21NTR MCH6102-TL-E

NJL0302DG TTA1452B,S4X(S 2N3583 NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13 NTE15 NTE16001 NTE16006

NTE26