

N-channel TrenchMOS logic level FET Rev. 04 — 31 January 2011

Product data sheet

Suitable for logic level gate drive

Suitable for thermally demanding environments due to 175 °C rating

Motors, lamps and solenoids

sources

Product profile 1.

1.1 General description

Logic level N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using TrenchMOS technology. This product has been designed and qualified to the appropriate AEC standard for use in automotive critical applications.

1.2 Features and benefits

- Low conduction losses due to low on-state resistance
- Q101 compliant

1.3 Applications

- 12 V and 24 V loads
- Automotive and general purpose power switching

1.4 Quick reference data

Table 1. Quick reference data Symbol Conditions Parameter Min Max Unit Тур T_i ≥ 25 °C; T_i ≤ 175 °C VDS drain-source voltage -55 V -<u>[1]</u> _ I_{D} drain current V_{GS} = 5 V; T_{mb} = 25 °C; 75 А see Figure 1; see Figure 3 P_{tot} total power dissipation T_{mb} = 25 °C; see Figure 2 253 W -_ Static characteristics R_{DSon} drain-source on-state $V_{GS} = 10 \text{ V}; I_D = 25 \text{ A};$ -6.4 7.5 mΩ resistance T_i = 25 °C V_{GS} = 4.5 V; I_D = 25 A; 8.5 mΩ --T_j = 25 °C $V_{GS} = 5 \text{ V}; I_D = 25 \text{ A};$ 6.8 8 mΩ T_j = 25 °C; see Figure 11; see Figure 12

nexperia

N-channel TrenchMOS logic level FET

Table 1.	Quick reference data	continued				
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
Avalanch	e ruggedness					
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	$ \begin{split} &I_D = 75 \text{ A}; \text{V}_{\text{sup}} \leq 55 \text{ V}; \\ &R_{\text{GS}} = 50 \Omega; \text{V}_{\text{GS}} = 5 \text{ V}; \\ &T_{j(\text{init})} = 25 ^{\circ}\text{C}; \text{ unclamped} \end{split} $	-	-	670	mJ
Dynamic	characteristics					
Q_{GD}	gate-drain charge	V _{GS} = 5 V; I _D = 25 A; V _{DS} = 44 V; T _j = 25 °C; see <u>Figure 13</u>	-	43	-	nC

2. Pinning information

Table 2.	Pinning	information		
Pin	Symbol	Description	Simplified outline	Graphic symbol
1	G	gate		2
2	D	drain ^[1]	mb	
3	S	source		
mb	D	mounting base; connected to drain		mbb076 S
			SOT404 (D2PAK)	

[1] Continuous current is limited by package.

[1] It is not possible to make a connection to pin 2.

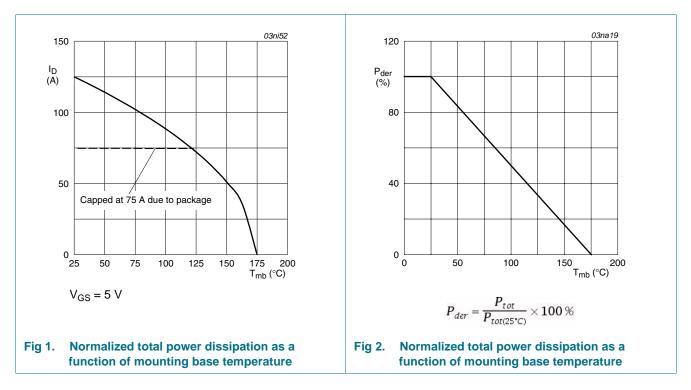
3. Ordering information

Table 3.Ordering information

Type number	Package		
	Name	Description	Version
BUK9608-55A	D2PAK	plastic single-ended surface-mounted package (D2PAK); 3 leads (one lead cropped)	SOT404

Nexperia

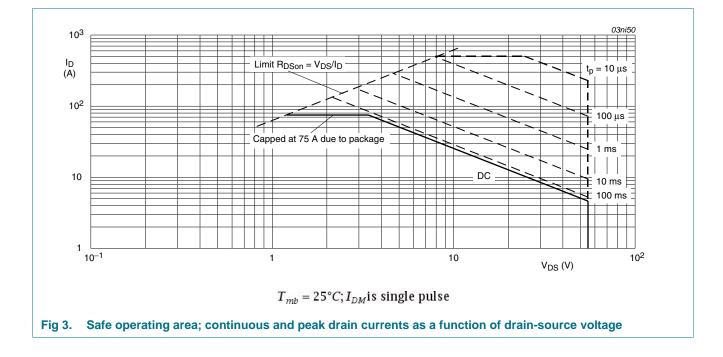
4. Limiting values


Table 4. Limiting values

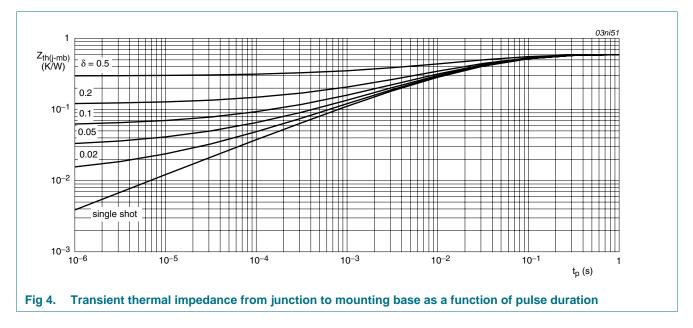
In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C		-	55	V
V _{DGR}	drain-gate voltage	$R_{GS} = 20 \text{ k}\Omega$		-	55	V
V _{GS}	gate-source voltage			-15	15	V
I _D	drain current	T _{mb} = 25 °C; V _{GS} = 5 V; see <u>Figure 1;</u>	[1]	-	125	А
		see <u>Figure 3</u>	[2]	-	75	А
		T_{mb} = 100 °C; V_{GS} = 5 V; see <u>Figure 1</u>	[2]	-	75	А
I _{DM}	peak drain current	T_{mb} = 25 °C; pulsed; $t_p \le 10 \ \mu$ s; see Figure 3		-	503	А
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>		-	253	W
T _{stg}	storage temperature			-55	175	°C
Tj	junction temperature			-55	175	°C
Source-drain	n diode					
Is	source current	T _{mb} = 25 °C	[1]	-	125	А
			[2]	-	75	А
I _{SM}	peak source current	pulsed; $t_p \le 10 \ \mu s$; $T_{mb} = 25 \ ^{\circ}C$		-	503	А
Avalanche ru	uggedness					
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	I _D = 75 A; V _{sup} ≤ 55 V; R _{GS} = 50 Ω; V _{GS} = 5 V; T _{i(init)} = 25 °C; unclamped		-	670	mJ

[1] Current is limited by power dissipation chip rating.


[2] Continuous current is limited by package.

All information provided in this document is subject to legal disclaimers.


BUK9608-55A

N-channel TrenchMOS logic level FET

Thermal characteristics 5.

Table 5.	mermai characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-mb)}$	thermal resistance from junction to mounting base	see Figure 4	-	-	0.59	K/W
R _{th(j-a)}	thermal resistance from junction to ambient	mounted on a printed-circuit board ; minimum footprint	-	50	-	K/W

Table 5 Thermal characteristics

6. Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static chara		Conditions		ЧŲ	max	onic
V _{(BR)DSS}	drain-source breakdown	I _D = 0.25 mA; V _{GS} = 0 V; T _i = 25 °C	55		-	V
(BR)DSS	voltage	$I_D = 0.25 \text{ m/s}, V_{GS} = 0 \text{ V}; T_i = -55 \text{ °C}$	50	-	-	V
V _{GS(th)}	gate-source threshold voltage	$I_D = 0.25$ mA; $V_{DS} = V_{GS}$; $T_j = 25$ °C;	1	1.5	2	V
		see Figure 10				
		$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 175 \text{ °C};$ see <u>Figure 10</u>	0.5	-	-	V
		$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = -55 \text{ °C};$ see <u>Figure 10</u>	-	-	2.3	V
I _{DSS}	drain leakage current	$V_{DS} = 55 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 175 \text{ °C}$	-	-	500	μA
		$V_{DS} = 55 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	0.05	10	μΑ
I _{GSS}	gate leakage current	V_{GS} = 10 V; V_{DS} = 0 V; T_j = 25 °C	-	2	100	nA
		V_{GS} = -10 V; V_{DS} = 0 V; T_j = 25 °C	-	2	100	nA
Deen	drain-source on-state	V_{GS} = 10 V; I _D = 25 A; T _j = 25 °C	-	6.4	7.5	mΩ
	resistance	V _{GS} = 5 V; I _D = 25 A; T _j = 175 °C; see <u>Figure 11</u> ; see <u>Figure 12</u>	-	-	16	mΩ
		V_{GS} = 4.5 V; I _D = 25 A; T _j = 25 °C	-	-	8.5	mΩ
		V _{GS} = 5 V; I _D = 25 A; T _j = 25 °C; see <u>Figure 11</u> ; see <u>Figure 12</u>	-	6.8	8	mΩ
Dynamic cl	naracteristics					
Q _{G(tot)}	total gate charge	al gate charge $I_D = 25 \text{ A}; V_{DS} = 44 \text{ V}; V_{GS} = 5 \text{ V};$	-	92	-	nC
Q _{GS}	gate-source charge	$T_j = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 13}{13}$	-	11	-	nC
Q _{GD}	gate-drain charge		-	43	-	nC
C _{iss}	input capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}; \text{ f} = 1 \text{ MHz};$	-	4551	6021	pF
C _{oss}	output capacitance	$T_j = 25 \text{ °C}; \text{ see } Figure 14$	-	760	900	pF
C _{rss}	reverse transfer capacitance		-	500	687	pF
t _{d(on)}	turn-on delay time	$V_{DS} = 30 \text{ V}; \text{ R}_{L} = 1.2 \Omega; \text{ V}_{GS} = 5 \text{ V};$ $\text{R}_{G(ext)} = 10 \Omega; \text{ T}_{I} = 25 \text{ °C}$	-	40	-	ns
t _r	rise time	$V_{DS} = 30 \text{ V}; \text{ R}_{L} = 1.2 \Omega; \text{ V}_{GS} = 5 \text{ V};$ $\text{R}_{G(ext)} = 10 \Omega; \text{ T}_{I} 25 \text{ °C}$	-	175	-	ns
t _{d(off)}	turn-off delay time	$V_{DS} = 30 \text{ V}; \text{ R}_{L} = 1.2 \Omega; \text{ V}_{GS} = 5 \text{ V};$	-	280	-	ns
t _f	fall time	$R_{G(ext)} = 10 \ \Omega; T_j = 25 \ ^{\circ}C$	-	167	-	ns
L _D	internal drain inductance	from drain lead 6 mm from package to centre of die ; $T_j = 25 \text{ °C}$	-	4.5	-	nH
		from upper edge of drain mounting base to centre of die ; $T_j = 25 \text{ °C}$	-	2.5	2.5 -	nH
L _S	internal source inductance	from source lead to source bond pad ; T _i = 25 °C	-	7.5	-	nH

Symbol

BUK9608-55A

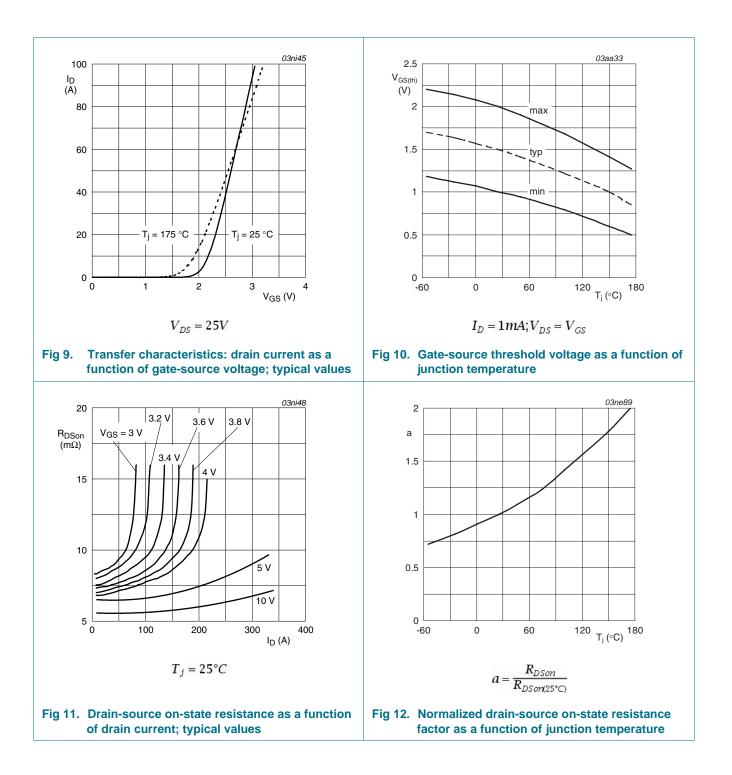
Max

Unit

N-channel TrenchMOS logic level FET

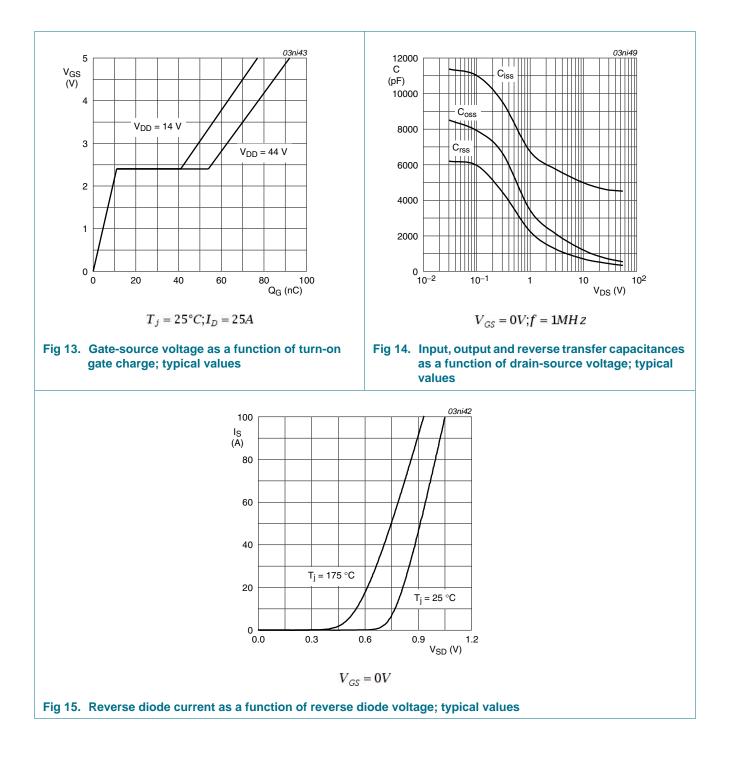
Тур

Min

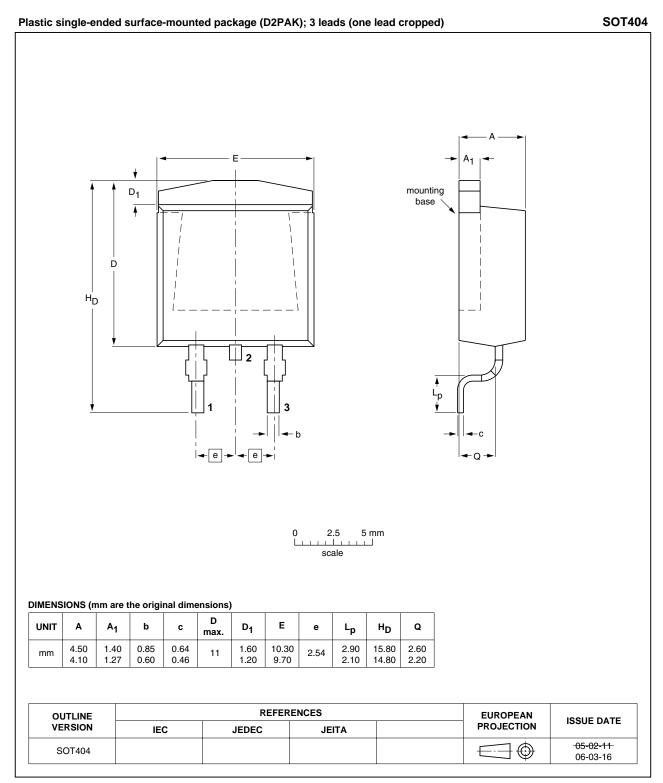

		Conditiono		.76	шал	•
	rain diode					
SD	source-drain voltage	$I_S = 25 \text{ A}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C};$ see <u>Figure 15</u>	-	0.85	1.2	V
r	reverse recovery time	$I_{S} = 75 \text{ A}; \text{ dI}_{S}/\text{dt} = -100 \text{ A}/\mu\text{s};$	-	70	-	ns
Q _r	recovered charge	V _{GS} = -10 V; V _{DS} = 25 V; T _j = 25 °C	-	170	-	nC
400 I _D (A)	10 8 5 label is V _{GS}	03ni47 9 (V) R _{DSon} (mΩ)			03ni46	
300 200						
100	3.6 3.4 3.2 3 2.8 2.6	6 6				
0		10 5 (V) 5 (V)	5	10 V _G	15 S (V)	
	$T_j = 25^{\circ}C; t_p = 300 \mu s$ Output characteristics: drain curre function of drain-source voltage; t	ent as a Fig 6. Drain-source		esistanc		unctio
10 ⁻¹ I _D (A) 10 ⁻²		120 9fs (S) 100			03ni44	
10 ⁻³	$ \begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $	60				
10 ⁻⁵		20				
10 ⁻⁶	0 1 2 V _{GS} (V	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40	60	80 I _D (A)	
		Τ	$25^{\circ}C; V_{DS}$	= 25V		
	$T_j = 25 ^{\circ}C; V_{DS} = V_{GS}$	1 j -	1 5 C, 1 DS	25,		

Conditions

Parameter


BUK9608-55A

N-channel TrenchMOS logic level FET


BUK9608-55A

N-channel TrenchMOS logic level FET

N-channel TrenchMOS logic level FET

7. Package outline

Fig 16. Package outline SOT404 (D2PAK)

All information provided in this document is subject to legal disclaimers.

8. Revision history

Table 7. Revision his	story			
Document ID	Release date	Data sheet status	Change notice	Supersedes
BUK9608-55A v.4	20110131	Product data sheet	-	BUK95_9608_55A v.3
Modifications:		of this data sheet has be niconductors.	een redesigned to com	ply with the new identity guidelines
	 Legal texts 	have been adapted to t	he new company nam	e where appropriate.
	 Type numb 	er BUK9608-55A separa	ated from data sheet B	UK95_9608_55A v.3.
BUK95_9608_55A v.3	20020506	Product data	-	BUK9508_9608-55A v.2

9. Legal information

9.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

9.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive

applications. The product is not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual

Product data sheet

N-channel TrenchMOS logic level FET

agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

10. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

N-channel TrenchMOS logic level FET

11. Contents

1	Product profile1
1.1	General description1
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data1
2	Pinning information2
3	Ordering information2
4	Limiting values3
5	Thermal characteristics5
6	Characteristics6
7	Package outline10
8	Revision history11
9	Legal information12
9.1	Data sheet status12
9.2	Definitions12
9.3	Disclaimers
9.4	Trademarks
10	Contact information13

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Nexperia manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C IPS70R2K0CEAKMA1 BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 US6M2GTR TK10A80W,S4X(S SSM6P69NU,LF