HEF4017B-Q100

5-stage Johnson decade counter Rev. 1 — 4 June 2014

Product data sheet

General description 1.

The HEF4017B-Q100 is a 5-stage Johnson decade counter with ten spike-free decoded active HIGH outputs (Q0 to Q9), an active LOW carry output from the most significant flip-flop (Q5-9), active HIGH and active LOW clock inputs (CP0, CP1) and an overriding asynchronous master reset input (MR).

The counter is advanced by either a LOW-to-HIGH transition at CP0 while CP1 is LOW or a HIGH-to-LOW transition at CP1 while CP0 is HIGH (see Table 3).

When cascading counters, the \overline{Q} 5-9 output, which is LOW while the counter is in states 5, 6, 7, 8, and 9, can be used to drive the CP0 input of the next counter. A HIGH on MR resets the counter to zero (Q0 = \overline{Q} 5-9 = HIGH; Q1 to Q9 = LOW) independent of the clock inputs (CP0, CP1).

Automatic counter code correction is provided by an internal circuit: following any illegal code the counter returns to a proper counting mode within 11 clock pulses.

Schmitt trigger action makes the clock inputs highly tolerant of slower rise and fall times.

It operates over a recommended V_{DD} power supply range of 3 V to 15 V referenced to V_{SS} (usually ground). Unused inputs must be connected to V_{DD}, V_{SS}, or another input.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

Features and benefits 2.

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - ◆ Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Automatic counter correction
- Tolerant of slow clock rise and fall times
- Fully static operation
- 5 V, 10 V, and 15 V parametric ratings
- Standardized symmetrical output characteristics
- ESD protection:
 - MIL-STD-833, method 3015 exceeds 2000 V
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)
- Complies with JEDEC standard JESD 13-B

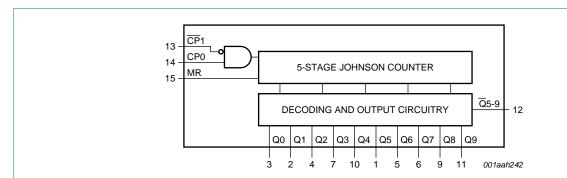
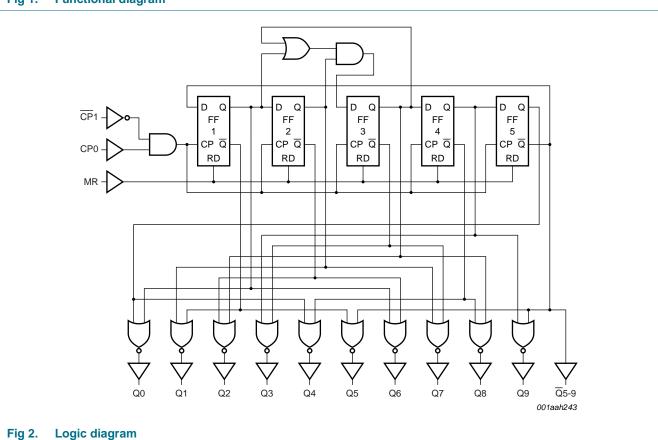
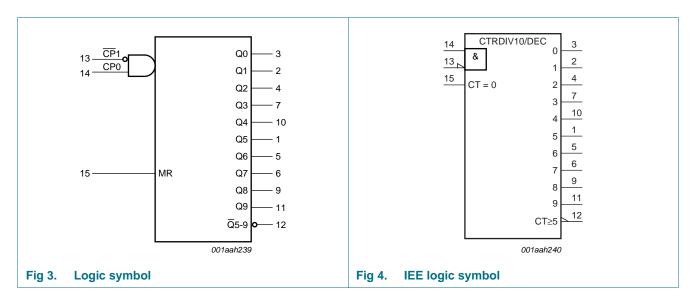
3. Ordering information

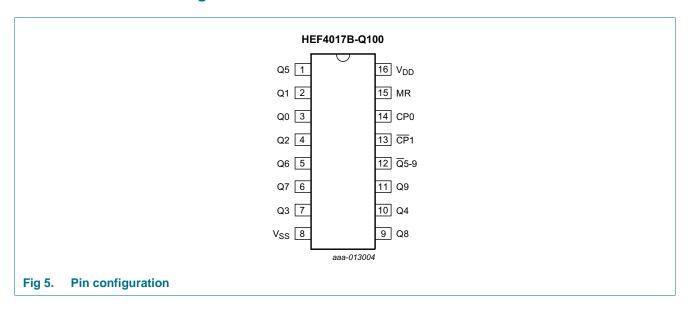
Table 1. Ordering information

All types operate from -40 °C to +125 °C

Type number	Package	Package										
	Name	ame Description										
HEF4017BT-Q100	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1									

4. Functional diagram


Fig 1. Functional diagram

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
Q0 to Q9	3, 2, 4, 7, 10, 1, 5, 6, 9, 11	decoded output
V _{SS}	8	ground supply voltage
Q 5-9	12	carry output (active LOW)
CP1	13	clock input (HIGH-to-LOW edge-triggered)
CP0	14	clock input (LOW-to-HIGH edge-triggered)
MR	15	master reset input
V_{DD}	16	supply voltage

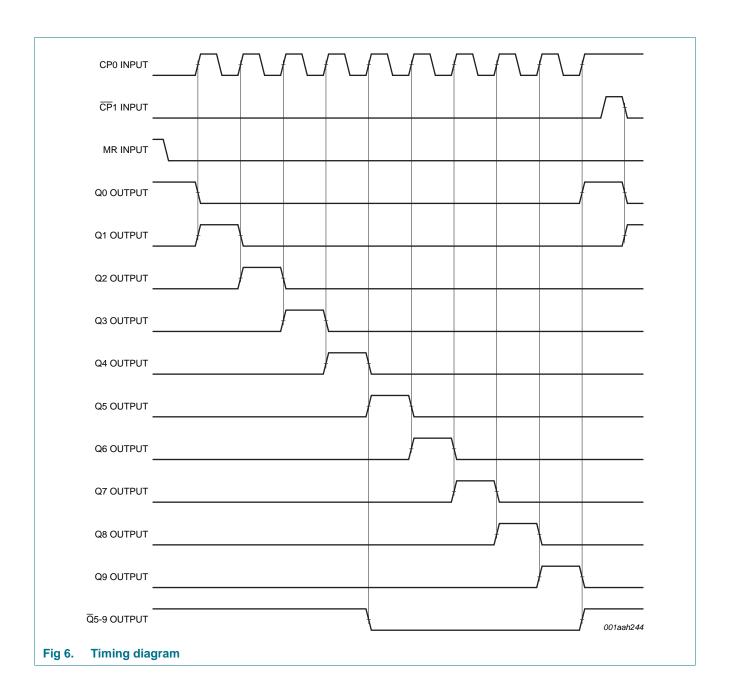

6. Functional description

Table 3. Function table [1]

MR	CP0	CP1	Operation
Н	Х	X	$Q0 = \overline{Q}5-9 = H$; Q1 to Q9 = L
L	Н	\	counter advances
L	↑	L	counter advances
L	L	Х	no change
L	Х	Н	no change
L	Н	\uparrow	no change
L	\	L	no change

^[1] H = HIGH voltage level; L = LOW voltage level; X = don't care;

 $[\]uparrow$ = positive-going transition; \downarrow = negative-going transition.

Limiting values

Limiting values Table 4.

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DD}	supply voltage		-0.5	+18	V
I _{IK}	input clamping current	$V_{I} < -0.5 \text{ V or } V_{I} > V_{DD} + 0.5 \text{ V}$	-	±10	mA
VI	input voltage		-0.5	V _{DD} + 0.5	V
lok	output clamping current	$V_{O} < -0.5 \text{ V or } V_{O} > V_{DD} + 0.5 \text{ V}$	-	±10	mA
I _{I/O}	input/output current		-	±10	mA
I _{DD}	supply current		-	50	mA
T _{stg}	storage temperature		-65	+150	°C
T _{amb}	ambient temperature		-40	+125	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	[1] -	500	mW
Р	power dissipation	per output	-	100	mW

^[1] For SO16 package: P_{tot} derates linearly with 8 mW/K above 70 °C.

Recommended operating conditions 8.

Recommended operating conditions Table 5.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DD}	supply voltage		3	-	15	V
V _I	input voltage		0	-	V_{DD}	V
T _{amb}	ambient temperature	in free air	-40	-	+125	°C
Δt/ΔV	input transition rise and fall rate	$V_{DD} = 5 V$	-	-	3.75	μs/V
		V _{DD} = 10 V	-	-	0.5	μs/V
		V _{DD} = 15 V	-	-	0.08	μs/V

9. Static characteristics

Table 6. Static characteristics

 $V_{SS} = 0$ V; $V_I = V_{SS}$ or V_{DD} unless otherwise specified.

Symbol	Parameter	Conditions	V_{DD}	T _{amb} =	–40 °C	T _{amb} =	25 °C	T _{amb} =	85 °C	T _{amb} =	125 °C	Unit
				Min	Max	Min	Max	Min	Max	Min	Max	
V _{IH}	HIGH-level	I _O < 1 μA	5 V	3.5	-	3.5	-	3.5	-	3.5	-	V
	input voltage		10 V	7.0	-	7.0	-	7.0	-	7.0	-	V
			15 V	11.0	-	11.0	-	11.0	-	11.0	-	V
V_{IL}	LOW-level	$ I_{O} < 1 \mu A$	5 V	-	1.5	-	1.5	-	1.5	-	1.5	V
	input voltage		10 V	-	3.0	-	3.0	-	3.0	-	3.0	V
			15 V	-	4.0	-	4.0	-	4.0	-	4.0	V
V _{OH}	HIGH-level	$ I_O < 1 \mu A;$	5 V	4.95	-	4.95	-	4.95	-	4.95	-	V
	output voltage	voltage $V_I = V_{SS}$ or V_{DD}	10 V	9.95	-	9.95	-	9.95	-	9.95	-	V
			15 V	14.95	-	14.95	-	14.95	-	14.95	-	V
V _{OL}	LOW-level output voltage	$ I_O < 1 \mu A;$ $V_I = V_{SS} \text{ or } V_{DD}$	5 V	-	0.05	-	0.05	-	0.05	-	0.05	V
			10 V	-	0.05	-	0.05	-	0.05	-	0.05	V
			15 V	-	0.05	-	0.05	-	0.05	-	0.05	V
I _{OH}	HIGH-level output current	V _O = 2.5 V	5 V	-	-1.7	-	-1.4	-	-1.1	-	-1.1	mA
		V _O = 4.6 V	5 V	-	-0.64	-	-0.5	-	-0.36	-	-0.36	mA
		V _O = 9.5 V	10 V	-	-1.6	-	-1.3	-	-0.9	-	-0.9	mA
		V _O = 13.5 V	15 V	-	-4.2	-	-3.4	-	-2.4	-	-2.4	mA
I _{OL}	LOW-level	V _O = 0.4 V	5 V	0.64	-	0.5	-	0.36	-	0.36	-	mA
	output current	V _O = 0.5 V	10 V	1.6	-	1.3	-	0.9	-	0.9	-	mA
		V _O = 1.5 V	15 V	4.2	-	3.4	-	2.4	-	2.4	-	mA
lı	input leakage current		15 V	-	±0.1	-	±0.1	-	±1.0	-	±1.0	μΑ
I_{DD}	supply current	$I_{O} = 0 A;$	5 V	-	5	-	5	-	150	-	150	μΑ
		$V_I = V_{SS}$ or V_{DD}	10 V	-	10	-	10	-	300	-	300	μΑ
			15 V	-	20	-	20	-	600	-	600	μΑ
Cı	input capacitance		-	-	-	-	7.5	-	-	-	-	pF

10. Dynamic characteristics

Table 7. Dynamic characteristics

 $T_{amb} = 25$ °C; $V_{SS} = 0$ V; for test circuit see <u>Figure 10</u>

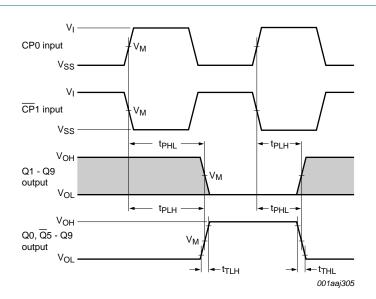
Symbol	Parameter	Conditions	V_{DD}	Extrapolation formula[1]	Min	Тур	Max	Unit
t _{PHL}	HIGH to LOW	CP0, $\overline{CP}1 \rightarrow Q0$ to Q9;	5 V	113 ns + (0.55 ns/pF)C _L	-	140	280	ns
	propagation delay	see Figure 7	10 V	44 ns + (0.23 ns/pF)C _L	-	55	110	ns
			15 V	32 ns + (0.16 ns/pF)C _L	-	40	80	ns
		CP0, $\overline{CP}1 \rightarrow \overline{Q}5-9$;	5 V	118 ns + (0.55 ns/pF)C _L	-	145	290	ns
		see Figure 7	10 V	44 ns + (0.23 ns/pF)C _L	-	55	110	ns
			15 V	32 ns + (0.16 ns/pF)C _L	-	40	80	ns
		$MR \rightarrow Q1 \text{ to } Q9;$	5 V	88 ns + (0.55 ns/pF)C _L	-	115	230	ns
		see Figure 8	10 V	39 ns + (0.23 ns/pF)C _L	-	50	100	ns
			15 V	27 ns + (0.16 ns/pF)C _L	-	35	70	ns
t _{PLH}	LOW to HIGH	CP0, $\overline{CP1} \rightarrow Q0$ to Q9;	5 V	98 ns + (0.55 ns/pF)C _L	-	125	250	ns
	propagation delay	see Figure 7	10 V	39 ns + (0.23 ns/pF)C _L	-	50	100	ns
			15 V	32 ns + (0.16 ns/pF)C _L	-	40	80	ns
		CP0, $\overline{CP}1 \rightarrow \overline{Q}5-9$;	5 V	98 ns + (0.55 ns/pF)C _L	-	125	250	ns
		see Figure 7	10 V	39 ns + (0.23 ns/pF)C _L	-	50	100	ns
			15 V	32 ns + (0.16 ns/pF)C _L	-	40	80	ns
		$MR \rightarrow \overline{Q}5-9;$	5 V	83 ns + (0.55 ns/pF)C _L	-	110	220	ns
		see Figure 8	10 V	34 ns + (0.23 ns/pF)C _L	-	45	90	ns
			15 V	27 ns + (0.16 ns/pF)C _L	-	35	70	ns
		$MR \rightarrow Q0;$	5 V	103 ns + (0.55 ns/pF)C _L	-	130	260	ns
		see Figure 8	10 V	44 ns + (0.23 ns/pF)C _L	-	55	105	ns
			15 V	32 ns + (0.16 ns/pF)C _L	-	40	75	ns
t _t	transition time	see Figure 7	5 V [2]	10 ns + (1.00 ns/pF)C _L	-	60	120	ns
			10 V	9 ns + (0.42 ns/pF)C _L	-	30	60	ns
			15 V	6 ns + (0.28 ns/pF)C _L	-	20	40	ns
t _h	hold time	$CP0 \rightarrow \overline{CP1};$	5 V		90	45	-	ns
		see Figure 9	10 V		40	20	-	ns
			15 V		20	10	-	ns
		$\overline{\text{CP}1} \rightarrow \text{CP0};$	5 V		80	40	-	ns
		see Figure 9	10 V		40	20	-	ns
			15 V		30	10	-	ns

 Table 7.
 Dynamic characteristics ...continued

 $T_{amb} = 25$ °C; $V_{SS} = 0$ V; for test circuit see <u>Figure 10</u>

Symbol	Parameter	Conditions	V_{DD}	Extrapolation formula[1]	Min	Тур	Max	Unit
t _W	pulse width	CP0 input LOW;	5 V		80	40	-	ns
		minimum width;	10 V		40	20	-	ns
		see Figure 8	15 V		30	15	-	ns
		CP1 input HIGH; minimum width;	5 V		80	40	-	ns
			10 V		40	20	-	ns
		see Figure 8	15 V		30	15	-	ns
		MR input HIGH; minimum width;	5 V		50	25	-	ns
			10 V		30	15	-	ns
		see <u>Figure 8</u>	15 V		20	10	-	ns
t _{rec}	recovery time	MR input;	5 V		60	30	-	ns
		see Figure 8	10 V		30	15	-	ns
			15 V		20	10	-	ns
f _{max}	maximum	see Figure 8	5 V		6	12	-	MHz
	frequency		10 V		12	30	-	MHz
			15 V		15	30	-	MHz

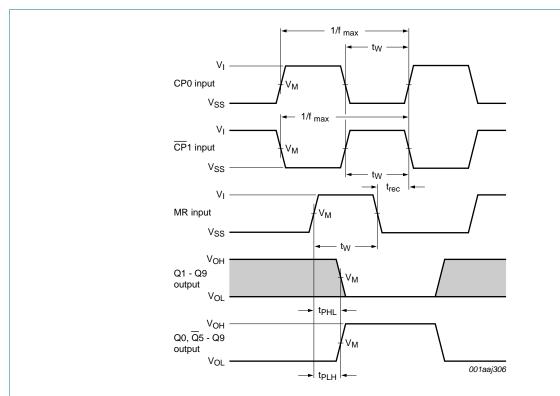
^[1] The typical values of the propagation delay and transition times are calculated from the extrapolation formulas shown (C_L in pF).


Table 8. Dynamic power dissipation P_D

 P_D can be calculated from the formulas shown. $V_{SS} = 0$ V; $t_r = t_f \le 20$ ns; $T_{amb} = 25$ °C.

Symbol	Parameter	V_{DD}	Typical formula for P _D (μW)	where:
P_D	P _D dynamic power dissipation		$P_D = 500 \times f_i + \Sigma(f_o \times C_L) \times V_{DD}^2$	f _i = input frequency in MHz;
			$P_D = 2200 \times f_i + \Sigma (f_0 \times C_L) \times V_{DD}^2$	f _o = output frequency in MHz;
		15 V	$P_D = 6000 \times f_i + \Sigma (f_0 \times C_L) \times V_{DD}^2$	C _L = output load capacitance in pF;
				V _{DD} = supply voltage in V;
				$\Sigma(C_L \times f_o)$ = sum of the outputs.

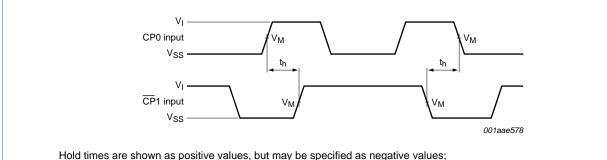
^[2] t_t is the same as t_{THL} and t_{TLH} .


11. Waveforms

Conditions: $\overline{\text{CP}}1 = \text{LOW}$, while CP0 triggers on a LOW-to-HIGH transition. $\overline{\text{CP}}1$ triggers on a HIGH-to-LOW transition; The shaded areas indicate where the output state is set by the input count.

Measurement points given in Table 9.

Fig 7. Waveforms showing the propagation delays for CP0, $\overline{\text{CP}}1$ to Qn, $\overline{\text{Q}}5$ -9 outputs and the output transition times



 $\overline{\text{CP}}$ 1 = LOW, while CP0 triggers on a LOW-to-HIGH transition, t_{W} and t_{rec} are measured when CP0 = HIGH and $\overline{\text{CP}}$ 1 triggers on a HIGH-to-LOW transition.

The shaded areas indicate where the output state is set by the input count.

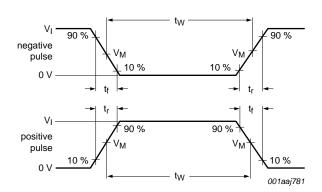
Measurement points given in Table 9.

Fig 8. Waveforms showing the minimum pulse width for CP0, CP1 and MR input; the maximum frequency for CP0 and CP1 input; the recovery time for MR and the MR input to Qn and Q5-9 output propagation delays

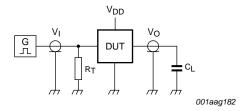
Hold times are snown as positive values, but may be specified as negative values;

Measurement points given in Table 9.

Fig 9. Waveforms showing hold times for CP0 to CP1 and CP1 to CP0


Table 9. Measurement points

Supply voltage	Input	Output
V_{DD}	V _M	V _M
5 V to 15 V	0.5V _{DD}	0.5V _{DD}


HEF4017B_Q100

All information provided in this document is subject to legal disclaimers.

11 of 18

a. Input waveforms

b. Test circuit

Test data is given in <u>Table 10</u>.

Definitions for test circuit:

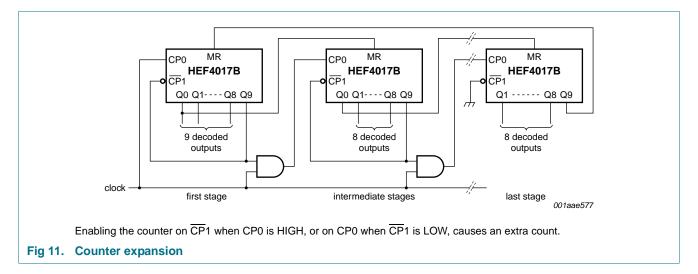
DUT = Device Under Test;

C_L = load capacitance including jig and probe capacitance;

 R_T = termination resistance should be equal to the output impedance Z_0 of the pulse generator.

Fig 10. Test circuit for measuring switching times

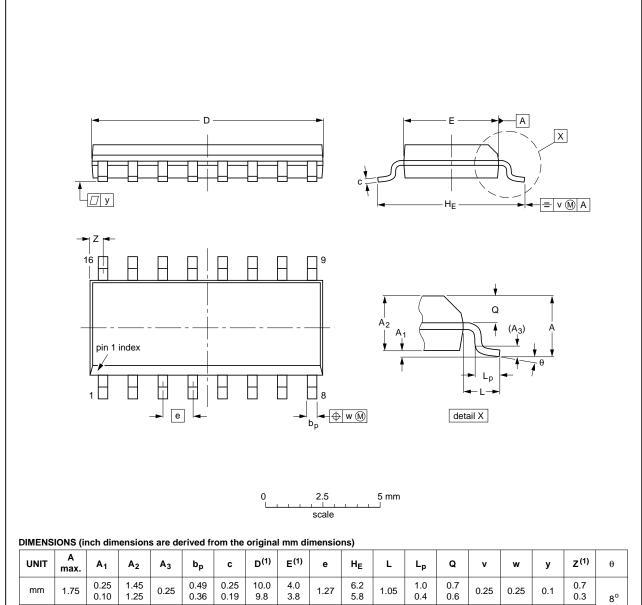
Table 10. Test data


Supply voltage	Input	Load	
V_{DD}	VI	t _r , t _f	CL
5 V to 15 V	V _{SS} or V _{DD}	≤ 20 ns	50 pF

12. Application information

Some examples of applications for the HEF4017B-Q100 are:

- Decade counter with decimal decoding
- 1 out of n decoding counter (when cascaded)
- Sequential controller
- Timer


<u>Figure 11</u> shows a technique for extending the number of decoded output states for the HEF4017B-Q100. Decoded outputs are sequential within each stage and from stage to stage, with no dead time (except propagation delay).

13. Package outline

SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	ø	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	10.0 9.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01		0.0100 0.0075		0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016		0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

	OUTLINE	REFERENCES				EUROPEAN	ISSUE DATE
VERSION	VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
	SOT109-1	076E07	MS-012				99-12-27 03-02-19
١							

Fig 12. Package outline SOT109-1 (SO16)

HEF4017B_Q100

All information provided in this document is subject to legal disclaimers.

14. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
HEF4017B_Q100 v.1	20140604	Product data sheet	-	-

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

HEF4017B-Q100

5-stage Johnson decade counter

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

17. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information
4	Functional diagram 2
5	Pinning information
5.1	Pinning
5.2	Pin description 4
6	Functional description 4
7	Limiting values 6
8	Recommended operating conditions 6
9	Static characteristics 7
10	Dynamic characteristics 8
11	Waveforms
12	Application information
13	Package outline
14	Revision history
15	Legal information
15.1	Data sheet status
15.2	Definitions
15.3	Disclaimers
15.4	Trademarks17
16	Contact information
17	Contents

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Counter ICs category:

Click to view products by Nexperia manufacturer:

Other Similar products are found below:

CD4018BE CD4033BE CD4060BE NLV14040BDR2G NLV14017BDG 74VHC163FT 74HCT4040BQ-Q100X 74VHC161FT(BJ)

74VHC163FT(BJ) 74HC393D.652 74HCT4040D.653 74HC191D.652 74HC160D,652 74HC390DB,118 74HC163PW.112

74HC191PW.112 74HC393DB.118 74HC4024D.652 74HCT193DB.112 74HCT390DB.112 74HC193PW.112 74HC390D.652

74HC4017PW.112 74HC4020DB.112 74HC4020PW.112 74HC4040DB.112 74HC4040PW.112 74HC4060DB.112 74HC4520D.112

74HCT393DB.112 74HCT6323AD.112 74LV393D.112 74LV393PW.112 74LV4060D.112 74LV4060DB.112 74LV4060PW.112

74LVC161D.112 74LVC161PW.112 XD74LS90 XD74LS93 CD4017BE XD74LS161 XD74LS192 XD74LS193 CD4060BE XD4553

XD74LS163 XD74LS190 XD40192 CD4040BE