24-stage frequency divider and oscillator
Rev. 8 - 3 December 2021
Product data sheet

1. General description

The HEF4521B consists of a chain of 24 toggle flip-flops with an overriding asynchronous master reset input (MR), and an input circuit that allows three modes of operation. The single inverting stage (A2 to Y2) functions as: a crystal oscillator, an input buffer for an external oscillator or in combination with A1 as an RC oscillator. The crystal oscillator operates in Low-power mode when pins $\mathrm{V}_{\mathrm{SS} 1}$ and $\mathrm{V}_{\mathrm{DD} 1}$ are supplied via external resistors.

Each flip-flop divides the frequency of the previous flip-flop by two, consequently the HEF4521B counts up to $2^{24}=16777216$. The counting advances on the HIGH-to-LOW transition of the clock (A2). The outputs from each of the last seven stages $\left(2^{18}\right.$ to $\left.2^{24}\right)$ are available for additional flexibility.

It operates over a recommended V_{DD} power supply range of 3 V to 15 V referenced to V_{SS} (usually ground). Unused inputs must be connected to $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$, or another input

2. Features and benefits

- Wide supply voltage range from 3.0 V to 15.0 V
- CMOS low power dissipation
- High noise immunity
- Low power crystal oscillator operation
- Fully static operation
- $5 \mathrm{~V}, 10 \mathrm{~V}$, and 15 V parametric ratings
- Standardized symmetrical output characteristics
- Complies with JEDEC standard JESD 13-B
- ESD protection:
- HBM JESD22-A114F exceeds 2000 V
- MM JESD22-A115-A exceeds 200 V
- Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

3. Ordering information

Table 1. Ordering information

Type number					Package
	Temperature range	Name	Description	Version	
HEF4521BT	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1	

4. Functional diagram

Fig. 1. Functional diagram

Fig. 2. Schematic diagram of clock input circuitry

Nexperia

Fig. 3. Logic diagram

5. Pinning information

5.1. Pinning

Fig. 4. Pin configuration for SOT109-1 (SO16)

5.2. Pin description

Table 2. Pin description

Symbol	Pin	Description
MR	2	master reset input
V SS1	3	ground supply voltage 1
VDD1	5	supply voltage 1
Y1, Y2	7,4	external oscillator connection
V $_{\text {SS }}$	8	ground supply voltage
A1, A2	9,6	external oscillator connection
Q18, Q19, Q20, Q21, Q22, Q23, Q24	$10,11,12,13,14,15,1$	output
VDD	16	supply voltage

6. Count capacity

Table 3. Count capacity

Output	Count capacity
Q18	$2^{18}=262144$
Q19	$2^{19}=524288$
Q20	$2^{20}=1048576$
Q21	$2^{21}=2097152$
Q22	$2^{22}=4194304$
Q23	$2^{23}=8388608$
Q24	$2^{24}=16777216$

7. Functional test

A test function has been included to reduce the test time required to test all 24 counter stages. This test function divides the counter into three 8-stage sections by connecting $\mathrm{V}_{\mathrm{SS} 1}$ to V_{DD} and $\mathrm{V}_{\mathrm{DD} 1}$ to $V_{\text {Ss. }} 255$ counts are loaded into each of the 8 -stage sections in parallel via A2 (connected to Y2). All flip-flops are now at a HIGH level. The counter is now returned to the normal 24-stage in series configuration by connecting $\mathrm{V}_{\mathrm{SS} 1}$ to V_{SS} and $\mathrm{V}_{\mathrm{DD} 1}$ to V_{DD}. Entering one more pulse into input A 2 causes the counter to ripple from an all HIGH state to an all LOW state.

Table 4. Functional test sequence
$H=$ HIGH voltage level; L = LOW voltage level; $\downarrow=$ HIGH to LOW transition.

Inputs		Control terminals			OutputsQ18 to Q24	Remarks
MR	A2	Y2	$\mathbf{V}_{\text {SS } 1}$	$\mathrm{V}_{\mathrm{DD} 1}$		
H	L	L	$V_{D D}$	$\mathrm{V}_{\text {SS }}$	L	Counter is in three 8-stage sections in parallel mode; A2 and Y2 are interconnected (Y 2 is now input); counter is reset by MR.
L	[1]	[1]	$V_{\text {DD }}$	$V_{S S}$	H	
L	L	L	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	H	$\mathrm{V}_{\mathrm{SS} 1}$ is connected to V_{SS}.
L	H	L	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	H	The input A2 is made HIGH.
L	H	L	$\mathrm{V}_{\text {S }}$	$V_{D D}$	H	$V_{D D 1}$ is connected to $V_{D D} ; Y 2$ is now made floating and becomes an output; the device is now in the 2^{24} mode.
L	\downarrow		$\mathrm{V}_{\text {SS }}$	V_{DD}	L	Counter ripples from an all HIGH state to an all LOW state.

[1] 255 pulses are clocked into A2, Y2. The counter advances on the LOW to HIGH transition.

8. Limiting values

Table 5. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DD}	supply voltage		-0.5	+18	V
I_{K}	input clamping current	$\mathrm{V}_{\mathrm{I}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{I}}>\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$	-	± 10	mA
$\mathrm{~V}_{\mathrm{I}}$	input voltage		-0.5	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
I_{OK}	output clamping current	$\mathrm{V}_{\mathrm{O}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$	-	± 10	mA
$\mathrm{I}_{\mathrm{I} / \mathrm{O}}$	input/output current		-	± 10	mA
I_{DD}	supply current	to any supply terminal	-	± 100	mA
$\mathrm{~T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	ambient temperature		-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\text {amb }}-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-	500	mW
P	power dissipation	per output	-	100	mW

9. Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$V_{\text {DD }}$	supply voltage		3	-	15	V
V_{1}	input voltage		0	-	$\mathrm{V}_{\text {DD }}$	V
$\mathrm{T}_{\text {amb }}$	ambient temperature	in free air	-40	-	+85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	input transition rise and fall rate	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$	-	-	3.75	$\mu \mathrm{s} / \mathrm{V}$
		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$	-	-	0.5	$\mu \mathrm{s} / \mathrm{V}$
		$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$	-	-	0.08	$\mu \mathrm{s} / \mathrm{V}$

10. Static characteristics

Table 7. Static characteristics
$V_{S S}=0 V ; V_{I}=V_{S S}$ or $V_{D D}$ unless otherwise specified.

Symbol	Parameter	Conditions	V_{DD}	$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\text {amb }}=+85^{\circ} \mathrm{C}$		Unit
				Min	Max	Min	Max	Min	Max	
V_{IH}	HIGH-level input voltage	$\mid \mathrm{l}_{\mathrm{O}} \mathrm{l}<1 \mu \mathrm{~A}$	5 V	3.5	-	3.5	-	3.5	-	V
			10 V	7.0	-	7.0	-	7.0	-	V
			15 V	11.0	-	11.0	-	11.0	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mid \mathrm{l}_{\mathrm{O}} \mathrm{l}<1 \mu \mathrm{~A}$	5 V	-	1.5	-	1.5	-	1.5	V
			10 V	-	3.0	-	3.0	-	3.0	V
			15 V	-	4.0	-	4.0	-	4.0	V
V_{OH}	HIGH-level output voltage	$\mid \mathrm{lol}<1 \mu \mathrm{~A}$	5 V	4.95	-	4.95	-	4.95	-	V
			10 V	9.95	-	9.95	-	9.95	-	V
			15 V	14.95	-	14.95	-	14.95	-	V
$\mathrm{V}_{\text {OL }}$	LOW-level output voltage	$\mid \mathrm{lol}$ < $1 \mu \mathrm{~A}$	5 V	-	0.05	-	0.05	-	0.05	V
			10 V	-	0.05	-	0.05	-	0.05	V
			15 V	-	0.05	-	0.05	-	0.05	V
IOH	HIGH-level output current	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	5 V	-	-1.7	-	-1.4	-	-1.1	mA
		$\mathrm{V}_{\mathrm{O}}=4.6 \mathrm{~V}$	5 V	-	-0.52	-	-0.44	-	-0.36	mA
		$\mathrm{V}_{\mathrm{O}}=9.5 \mathrm{~V}$	10 V	-	-1.3	-	-1.1	-	-0.9	mA
		$\mathrm{V}_{\mathrm{O}}=13.5 \mathrm{~V}$	15 V	-	-3.6	-	-3.0	-	-2.4	mA
loL	LOW-level output current	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$	5 V	0.52	-	0.44	-	0.36	-	mA
		$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$	10 V	1.3	-	1.1	-	0.9	-	mA
		$\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V}$	15 V	3.6	-	3.0	-	2.4	-	mA
1	input leakage current		15 V	-	± 0.3	-	± 0.3	-	± 1.0	$\mu \mathrm{A}$
I_{DD}	supply current	$\mathrm{I}_{\mathrm{O}}=0 \mathrm{~A}$	5 V	-	20	-	20	-	150	$\mu \mathrm{A}$
			10 V	-	40	-	40	-	300	$\mu \mathrm{A}$
			15 V	-	80	-	80	-	600	$\mu \mathrm{A}$
Cl_{1}	input capacitance		-	-	-	-	7.5	-	-	pF

11. Dynamic characteristics

Table 8. Dynamic characteristics
$V_{S S}=0 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C}$ unless otherwise specified; for test circuit see Fig. 6.

Symbol	Parameter	Conditions	V_{DD}	Extrapolation formula[1]	Min	Typ	Max	Unit
$\mathrm{t}_{\text {PHL }}$	HIGH to LOW propagation delay	A2 to Q18; see Fig. 5	5 V	$923 \mathrm{~ns}+(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	950	1900	ns
			10 V	$339 \mathrm{~ns}+(0.23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	350	700	ns
			15 V	$212 \mathrm{~ns}+(0.16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	220	440	ns
		Qn to $\mathrm{Qn}+1$; see Fig. 5	5 V	$13 \mathrm{~ns}+(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	40	80	ns
			10 V	$4 \mathrm{~ns}+(0.23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	15	30	ns
			15 V	$2 \mathrm{~ns}+(0.16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	10	20	ns
		MR to Qn	5 V	$93 \mathrm{~ns}+(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	120	240	ns
			10 V	$44 \mathrm{~ns}+(0.23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	55	110	ns
			15 V	$32 \mathrm{~ns}+(0.16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	40	80	ns
		A1 to Y1; see Fig. 5	5 V	$63 \mathrm{~ns}+(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	90	180	ns
			10 V	$24 \mathrm{~ns}+(0.23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	35	70	ns
			15 V	$17 \mathrm{~ns}+(0.16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	25	50	ns
$\mathrm{t}_{\text {PLH }}$	LOW to HIGH propagation delay	A2 to Q18; see Fig. 5	5 V	$923 \mathrm{~ns}+(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	950	1900	ns
			10 V	$339 \mathrm{~ns}+(0.23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	350	700	ns
			15 V	$212 \mathrm{~ns}+(0.16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	220	440	ns
		Qn to $\mathrm{Qn}+1$; see Fig. 5	5 V	$13 \mathrm{~ns}+(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	40	80	ns
			10 V	$4 \mathrm{~ns}+(0.23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	15	30	ns
			15 V	$2 \mathrm{~ns}+(0.16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	10	20	ns
		A1 to Y1; see Fig. 5	5 V	$33 \mathrm{~ns}+(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	60	120	ns
			10 V	$19 \mathrm{~ns}+(0.23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	30	60	ns
			15 V	$12 \mathrm{~ns}+(0.16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	20	40	ns
t_{t}	transition time	Qn; see Fig. 5	5 V	$10 \mathrm{~ns}+(1.00 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	60	120	ns
			10 V	$9 \mathrm{~ns}+(0.42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	30	60	ns
			15 V	$6 \mathrm{~ns}+(0.28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	20	40	ns
t_{w}	pulse width	A2 HIGH; minimum width; see Fig. 5	5 V		80	40	-	ns
			10 V		40	20	-	ns
			15 V		30	15	-	ns
		MR HIGH; minimum width; see Fig. 5	5 V		70	35	-	ns
			10 V		40	20	-	ns
			15 V		30	15	-	ns
$\mathrm{t}_{\text {rec }}$	recovery time	MR; see Fig. 5	5 V		+20	-10	-	ns
			10 V		+15	-5	-	ns
			15 V		15	0	-	ns
$f_{\max }$	maximum frequency	A1; see Fig. 5	5 V		6	12	-	MHz
			10 V		12	25	-	MHz
			15 V		17	35	-	MHz

[1] The typical values of the propagation delay and transition times are calculated from the extrapolation formulas shown (C_{L} in pF).

Table 9. Dynamic power dissipation P_{D}
P_{D} can be calculated from the formulas shown. $V_{S S}=0 \mathrm{~V} ; t_{r}=t_{f} \leq 20 \mathrm{~ns} ; T_{\text {amb }}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	V_{DD}	Typical formula for $\mathrm{P}_{\mathrm{D}}(\mu \mathrm{W})$	where:
P_{D}	dynamic power dissipation	5 V	$\mathrm{P}_{\mathrm{D}}=1200 \times \mathrm{f}_{\mathrm{i}}+\Sigma\left(\mathrm{f}_{\mathrm{o}} \times \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz , $\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz , $\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF , $V_{D D}=$ supply voltage in V , $\Sigma\left(C_{L} \times f_{0}\right)=$ sum of the outputs.
		10 V	$\mathrm{P}_{\mathrm{D}}=5100 \times \mathrm{f}_{\mathrm{i}}+\Sigma\left(\mathrm{f}_{\mathrm{o}} \times \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	
		15 V	$P_{D}=13050 \times f_{i}+\sum\left(f_{0} \times C_{L}\right) \times V_{D D}{ }^{2}$	

11.1. Waveforms and test circuit

a. Pulse widths, maximum frequency, recovery and transition times, and A2 to Qn propagation delays

b. A1 to $\mathrm{Y} 1, \mathrm{MR}$ to Qn , and Qn to $\mathrm{Qn}+1$ propagation delays

Measurement points are given in Table 10.
The logic levels V_{OH} and V_{OL} are typical output voltage levels that occur with the output load.
Fig. 5. Waveforms showing measurement of dynamic characteristics
Table 10. Measurement points

Supply voltage	Input	Output
\mathbf{V}_{DD}	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{M}}$
5 V to 15 V	$0.5 \mathrm{~V}_{\mathrm{DD}}$	$0.5 \mathrm{~V}_{\mathrm{DD}}$

a. Input waveforms

b. Test circuit

Test data is given in Table 11.
Definitions for test circuit:
$C_{L}=$ Load capacitance including jig and probe capacitance;
$R_{T}=$ Termination resistance should be equal to output impedance Z_{o} of the pulse generator.
Fig. 6. Test circuit for measuring switching times
Table 11. Test data

Supply	Input	Load	
\mathbf{V}_{DD}	$\mathbf{V}_{\mathbf{I}}$	$\mathbf{t}_{\mathbf{r}}, \mathbf{t}_{\mathbf{f}}$	\mathbf{C}_{L}
5 V to 15 V	$\mathrm{~V}_{\mathrm{SS}}$ or V_{DD}	$\leq 20 \mathrm{~ns}$	50 pF

12. Application information

(1) Optional for low power operation.

For typical characteristics of this crystal oscillator, see Table 12.
Fig. 7. Crystal oscillator circuit

24-stage frequency divider and oscillator
Table 12. Typical characteristics for crystal oscillator

Parameter	$\mathbf{5 0 0} \mathbf{~ k H z}$ circuit	$\mathbf{5 0} \mathbf{k H z}$ circuit	Unit
Crystal characteristics	500	50	kHz
Resonance frequency	S	N	-
Crystal cut	1	6.2	$\mathrm{k} \Omega$
Equivalent resistance; R_{S}	47	750	$\mathrm{k} \Omega$
External resistor/capacitor values	82	pF	
R_{O}	20	82	pF
C_{T}	20		
C_{S}			

$f \approx \frac{1}{2.3 \times R_{\mathrm{TC}} \times \mathrm{C}} ; R_{\mathrm{S}} \geq 2 \mathrm{R}_{\mathrm{TC}}$, where:
f is in $H z, R$ is in Ω, and C is in F.
$R_{S}+R_{\mathrm{TC}}<\frac{V_{\mathrm{IL}(\max)}}{l_{I}}$, where:
$\mathrm{V}_{\mathrm{IL}(\max)}=$ maximum input voltage LOW;
$I_{1}=$ input leakage current.
Fig. 8. RC oscillator circuit

$V_{D D}=10 \mathrm{~V}$; The test circuit is shown in Fig. 8.
(1) $\mathrm{R}_{\mathrm{TC}} ; \mathrm{C}=1 \mathrm{nF} ; \mathrm{R}_{\mathrm{S}}$ » $2 \mathrm{R}_{\mathrm{TC}}$.
(2) $\mathrm{C} ; \mathrm{R}_{\mathrm{TC}}=56 \mathrm{k} \Omega ; \mathrm{R}_{\mathrm{S}}=120 \mathrm{k} \Omega$.

Fig. 9. Oscillator frequency as a function of $R_{T C}$ and C

$g_{\mathrm{fs}}=\mathrm{d}_{\mathrm{io}} / \mathrm{d}_{\mathrm{vi}}$ with v_{o} constant (see Fig. 11).

Fig. 10. Test setup for measuring forward transconductance

For test setup, see Fig. 14.
Fig. 12. Voltage gain V_{0} / V_{I} as a function of supply voltage

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
$\mathrm{s}=$ observed standard deviation.
(1) Average +2 s
(2) Average
(3) Average -2s

Fig. 11. Typical forward transconductance g_{fs} as a function of the supply voltage

For test setup, see Fig. 14.
Fig. 13. Supply current as a function of supply voltage

Fig. 14. Test setup for measuring the voltage gain and supply current graphs

13. Package outline

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.8 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	8°
inches	0.069	$\begin{array}{\|l\|} 0.010 \\ 0.004 \end{array}$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0100 \\ 0.0075 \\ \hline \end{array}$	$\begin{aligned} & 0.39 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.05	$\begin{aligned} & 0.244 \\ & 0.228 \end{aligned}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.020 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN
	IEC	JEDEC	JEITA		
SOT109-1	$076 E 07$	MS-012		$-99-12-27$	

Fig. 15. Package outline SOT109-1 (SO16)

14. Abbreviations

Table 13. Abbreviations

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model

15. Revision history

Table 14. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
HEF4521B v. 8	20211203	Product data sheet	-	HEF4521B v. 7
Modifications:	- The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia. - Legal texts have been adapted to the new company name where appropriate. - Section 2 updated. - Section 14 added.			
HEF4521B v. 7	20160330	Product data sheet	-	HEF4521B v. 6
Modifications:	- Type number HEF4521BP (SOT38-4) removed.			
HEF4521B v. 6	20111121	Product data sheet	-	HEF4521B v. 5
Modifications:	- Section Applications removed - Table 4: added references to Table note [1] and [2] - Table 7: I_{OH} minimum values changed to maximum - Fig. 11: space between "2" and "s" removed in figure notes [1] and [3]			
HEF4521B v. 5	20091105	Product data sheet	-	HEF4521B v. 4
HEF4521B v. 4	20090421	Product data sheet	-	HEF4521B_CNV v. 3
HEF4521B_CNV v. 3	19950101	Product specification	-	HEF4521B_CNV v. 2
HEF4521B_CNV v. 2	19950101	Product specification	-	-

16. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term 'short data sheet' is explained in section "Definitions".
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.
Short data sheet - A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification - The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes - Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal
injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data - The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.
Applications - Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.
Export control - This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products - Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.
Translations - A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.
Contents

1. General description 1
2. Features and benefits 1
3. Ordering information1
4. Functional diagram 2
5. Pinning information 4
5.1. Pinning 4
5.2. Pin description 4
6. Count capacity 4
7. Functional test 5
8. Limiting values 5
9. Recommended operating conditions. 6
10. Static characteristics 6
11. Dynamic characteristics 7
11.1. Waveforms and test circuit 8
12. Application information 9
13. Package outline 12
14. Abbreviations 13
15. Revision history 13
16. Legal information 14
© Nexperia B.V. 2021. All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multipliers/Dividers category:
Click to view products by Nexperia manufacturer:

Other Similar products are found below :
74AHC1G4210GWH AD632ADZ AD632AHZ AD632BHZ AD834JNZ AD835ANZ ADL5391ACPZ-R7 AD835ARZ-REEL7 AD835ARZ AD834JRZ AD633TRZ-EP AD633TRZ-EP-R7 MC100EP32MNR4G PDW05758 PDW07691-T PDW07691 W/P 5 pcs PDW06399-T PDW08323 PDW08324 74AHC1G4212GW-Q10H 74AHC1G4210GW-Q10H 74AHC1G4214GW-Q10H 74AHC1G4215GW-Q10H

HEF4521BT,653 MC100EP32DG MC100EP32DTG MC100EP33DG MC100EP33DTG MC10EP32DG MC10EP32DTG MC10EP32DTR2 MC10EP33DG MC10EP33DTG MC14521BDG MC14521BDR2G NB3N3020DTG MC10EP32DR2G CD4521BM96 CD4527BE SN7497N SN74LS292N SN74LS294N MC100EP33DTR2G MC100EP32DTR2G 74AHC1G4212GWH 74AHC1G4214GWH PDW07069 PDW06984 CD4089BE CD4089BNSR

