

IP4856CX25/C

SD 3.0-compliant memory card integrated dual level translator with EMI filter and ESD protection Rev. 3 — 13 December 2019 Product

Product data sheet

1. General description

The device is an SD 3.0-compliant 6-bit bidirectional dual voltage level translator. It is designed to interface between a memory card operating at 1.8 V or 2.9 V signal levels and a host with a fixed nominal supply voltage of 1.7 V to 3.6 V. The device supports SD 3.0, SDR104, SDR50, DDR50, SDR25, SDR12 and SD 2.0 high-speed (50 MHz) and default-speed (25 MHz) modes. The device has an integrated voltage selectable low dropout regulator to supply the card-side I/Os, built-in EMI filters and robust ESD protections (IEC 61000-4-2, level 4).

2. Features and benefits

- Supports up to 208 MHz clock rate
- Feedback channel for clock synchronization
- SD 3.0 specification-compliant voltage translation to support SDR104, SDR50, DDR50, SDR25, SDR12, high-speed and default-speed modes
- 100 mA low dropout voltage regulator to supply the card-side I/Os
- · Low power consumption by push-pull output stage with break-before-make architecture
- Integrated pull-up and pull-down resistors: no external resistors required
 - Integrated EMI filters suppress higher harmonics of digital I/Os
- Integrated 8 kV ESD protection according to IEC 61000-4-2, level 4 on card side
- Level shifting buffers keep ESD stress away from the host (zero-clamping concept)
- 25-ball WLCSP; pitch 0.4 mm

3. Applications

- Smartphone
- Mobile handsets
- Digital cameras
- Tablet PCs
- Laptop computers
- SD, MMC or microSD card readers

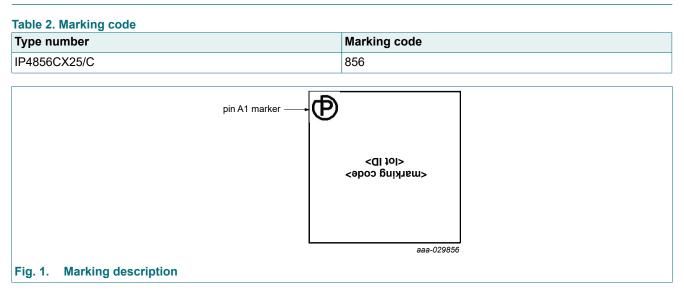
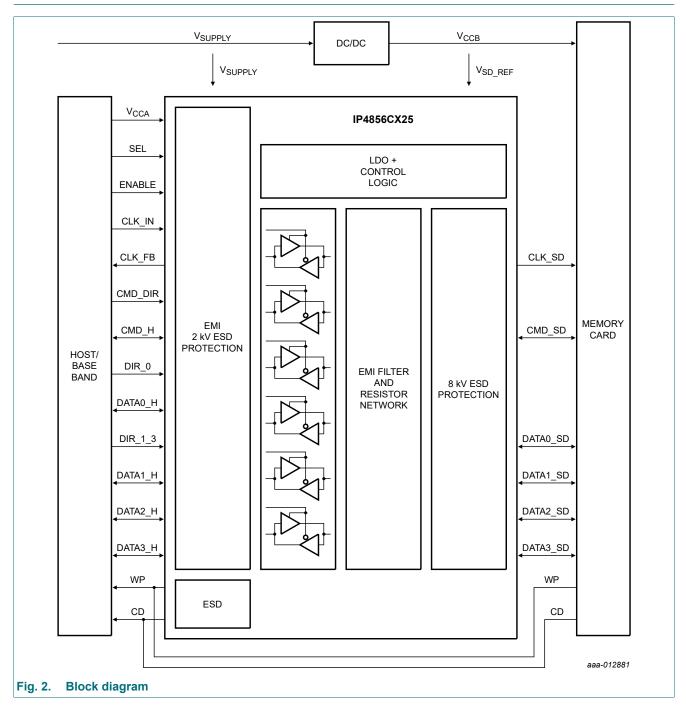
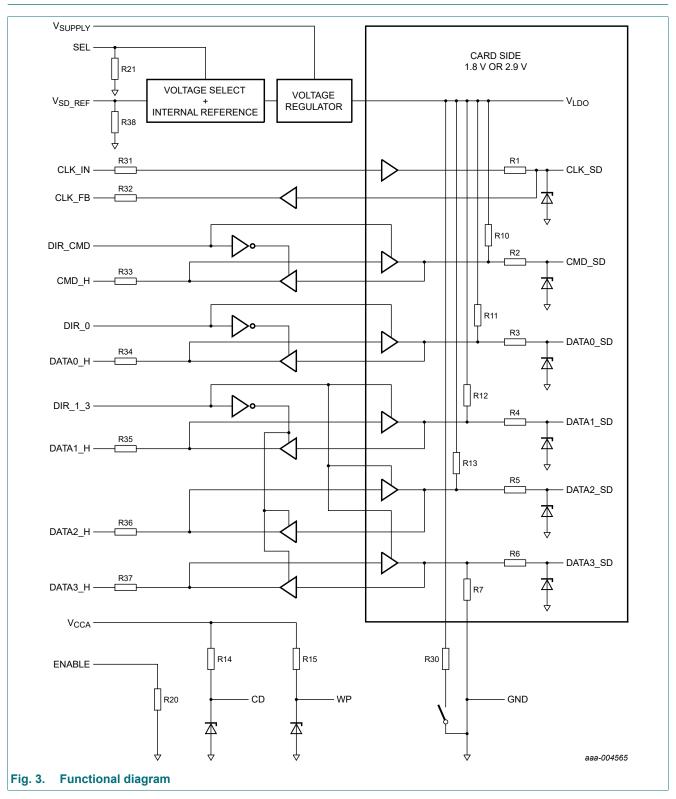

4. Ordering information

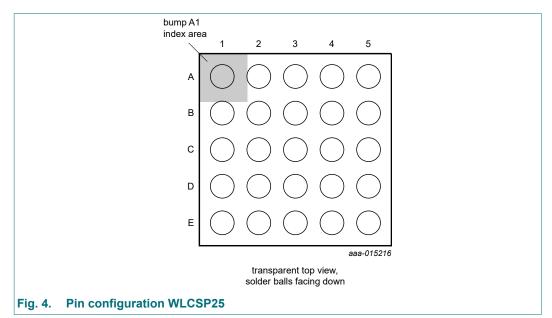
Table 1. Ordering information


Type number	Package	
	Name	Description
IP4856CX25/C	WLCSP25	wafer level chip-size package with back side coating; 25 bumps (5 x 5); typical size: 2.05 mm x 2.05 mm x 0.51 mm

nexperia


5. Marking

6. Block diagram



7. Functional diagram

8. Pinning information

8.1. Pinning

Table 3. Pin allocation table

Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol		
A1	DATA2_H	A2	DIR_CMD	A3	DIR_0	A4	V _{SUPPLY}	A5	DATA2_SD		
B1	DATA3_H	B2	SEL	B3	V _{CCA}	B4	V _{LDO}	B5	DATA3_SD		
C1	CLK_IN	C2	ENABLE	C3	GND	C4	$V_{SD_{REF}}$	C5	CLK_SD		
D1	DATA0_H	D2	CMD_H	D3	CD	D4	CMD_SD	D5	DATA0_SD		
E1	DATA1_H	E2	CLK_FB	E3	DIR_1_3	E4	WP	E5	DATA1_SD		

8.2. Pin description

Table 4. Pin description

Symbol[1]	Pin	Type[2]	Description
DATA2_H	A1	I/O	data 2 input or output on host side
DIR_CMD	A2	I	direction control input for command
DIR_0	A3	I	direction control input for data 0
V _{SUPPLY}	A4	S	supply voltage (from battery or regulator)
DATA2_SD	A5	I/O	data 2 input or output on memory card side
DATA3_H	B1	I/O	data 3 input or output on host side
SEL	B2	I	card side I/O voltage level select
V _{CCA}	B3	S	supply voltage from host side
V _{LDO}	B4	0	internal supply decoupling
DATA3_SD	B5	I/O	data 3 input or output on memory card side
CLK_IN	C1	I	clock signal input on host side
ENABLE	C2	I	device enable input
GND	C3	S	supply ground

IP4856CX25_C

Symbol[1]	Pin	Type[2]	Description
V_{SD_REF}	C4	I	reference voltage for the internal voltage regulator
CLK_SD	C5	0	clock signal output on memory card side
DATA0_H	D1	I/O	data 0 input or output on host side
CMD_H	D2	I/O	command input or output on host side
CD	D3	0	card detect switch biasing output
CMD_SD	D4	I/O	command input or output on memory card side
DATA0_SD	D5	I/O	data 0 input or output on memory card side
DATA1_H	E1	I/O	data 1 input or output on host side
CLK_FB	E2	0	clock feedback output on host side
DIR_1_3	E3	1	direction control input for data 1, data 2, data 3
WP	E4	0	write protect switch biasing output
DATA1_SD	E5	I/O	data 1 input or output on memory card side

[1] The pin names relate particularly to SD memory cards, but also apply to microSD and MMC memory cards.

[2] I = input, O = output, I/O = input and output, S = power supply.

9. Functional description

9.1. Level translator

The bidirectional level translator shifts the data between the I/O supply levels of the host and the memory card. Dedicated direction control signals determine if a command and data signals are transferred from the memory card to the host (card read mode) or from the host to the memory card (card write mode). The voltage translator has to support several clock and data transfer rates at the signaling levels specified in the SD 3.0 standard specification.

Table 5. Supported modes	Table	5. Su	oported	modes
--------------------------	-------	-------	---------	-------

Bus speed mode	Signal level (V)	Clock rate (MHz)	Data rate (MB/s)
Default-speed	3.3	25	12.5
High-speed	3.3	50	25
SDR12	1.8	25	12.5
SDR25	1.8	50	25
SDR50	1.8	100	50
SDR104	1.8	208	104
DDR	1.8	50	50

9.2. Enable and direction control

The pin ENABLE enables/disables the internal Low DropOut (LDO) regulator and is used to put the host-side and card-side I/O drivers into high-ohmic (3-state) mode.

		Host side		Memory card	side	
Pin			Function	Pin	Function	
Pin ENABLE	= HIGH and V _c	_{CA} ≥ 1.62 V				
DIR_CMD	Н	CMD_H	input	CMD_SD	output	
	L	CMD_H	output	CMD_SD	input	
DIR_0	Н	DATA0_H	input	DATA0_SD	output	
	L	DATA0_H	output	DATA0_SD	input	
DIR_1_3	Н	DATA1_H	input	DATA1_SD	output	
		DATA2_H		DATA2_SD		
		DATA3_H		DATA3_SD		
	L	DATA1_H	output	DATA1_SD	input	
		DATA2_H		DATA2_SD		
		DATA3_H		DATA3_SD		
-	-	CLK_IN	input	CLK_SD	output	
-	-	CLK_FB	output	-	-	
Pin ENABLE	= LOW or V _{CC}	₄ ≤ 0.8 V				
DIR_CMD	X	CMD_H	high-ohmic	CMD_SD	high-ohmic	
DIR_0	X	DATA0_H	high-ohmic	DATA0_SD	high-ohmic	
DIR_1_3	X	DATA1_H	high-ohmic	DATA1_SD	high-ohmic	
		DATA2_H		DATA2_SD	7	
		DATA3_H		DATA3_SD		
-	-	CLK_IN	input	CLK_SD	high-ohmic	
-	-	CLK_IN	high-ohmic	-	-	

Table 6. I/O function control signal truth table

[1] H = HIGH; L = LOW; X = don't care

9.3. Integrated voltage regulator

The low dropout voltage regulator delivers supply voltage for the voltage translators and the cardside input/output stages. It has to support 1.8 V and 3 V signaling modes as stipulated in the SD 3.0 specification. The switching time between the two output voltage modes is compliant with SD 3.0 specification. Depending on the signaling level at pin SEL, the regulator delivers 1.8 V (SEL = HIGH) or 2.9 V (SEL = LOW, V_{SD REF} < 1 V). For card supply voltage, see <u>Section 9.4</u>.

Table 7. SD card side voltage level control signal truth table

Input Out		Output	utput						
SEL[1]	V _{SD_REF} [1]	V _{LDO}	Pin[2]	Function					
Н	Х	1.8 V	DATA0_SD to DATA3_SD, CLK_SD	low supply voltage level (1.8 V typical)					
L	< 1 V	2.9 V	DATA0_SD to DATA3_SD, CLK_SD	high supply voltage level (2.9 V typical)					
	> 1.5 V	V_{SD_REF}	DATA0_SD to DATA3_SD, CLK_SD	supply voltage level based on $V_{\mbox{SD}_{\mbox{REF}}}$					

[1] H = HIGH; L = LOW; X = don't care.

[2] Host-side pins are not influenced by SEL.

An external capacitor is needed between the regulator output pin V_{LDO} and ground for proper operation of the integrated voltage regulator. See <u>Table 9</u> for recommended capacitance and equivalent series resistance. It is recommended to place the capacitor close to the V_{LDO} pin and maintain short connections to both, to the V_{LDO} and to the ground.

9.4. Memory card voltage tracking (reference select)

The device can track the memory card supply via pin V_{SD_REF}. This allows achieving optimum interoperability by perfectly matching input/output levels between voltage translator and memory card in the 3 V signaling mode. Therefore, the voltage regulator aims to follow the reference voltage provided at input V_{SD_REF} directly. If tracking of the memory card supply is not desired, connect pin V_{SD_REF} to ground so the voltage regulator refers to an integrated voltage reference. For 1.8 V (SEL = HIGH) signaling, the voltage regulator is referred to the internal reference which is independent of the voltage at V_{SD_REF}.

9.5. Feedback clock channel

The clock is transmitted from the host to the memory card side. The voltage translator and the Printed-Circuit Board (PCB) tracks introduce some amount of delay. It reduces timing margin for data read back from memory card, especially at higher data rates. Therefore, a feedback path is provided to compensate the delay. The reasoning behind this approach is the fact that the clock is always delivered by the host, while the data in the timing critical read mode comes from the card.

9.6. EMI filter

All input/output driver stages are equipped with EMI filters to reduce interferences towards sensitive mobile communication.

9.7. ESD protection

The device has robust ESD protections on all memory card pins as well as on the V_{SD_REF} and V_{SUPPLY} pins. The architecture prevents any stress for the host: the voltage translator discharges any stress to supply ground.

Pins Write Protect (WP) and Card Detection (CD) might be pulled down by the memory card which has to be detected by the host. Both signals must be HIGH if no card is inserted. Therefore the pins are equipped with International Electrotechnical Commission (IEC) system-level ESD protections and pull-up resistors connected to the host supply V_{CCA} .

© Nexperia B.V. 2019. All rights reserved

10. Limiting values

Table 8. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage	4 ms transient; on pin V _{SUPPLY}		-0.5	4.6	V
		4 ms transient; on pin V _{CCA}		-0.5	4.6	V
VI	input voltage	4 ms transient at I/O pins		-0.5	4.6	V
P _{tot}	total power dissipation	T _{amb} = -40 °C to 85 °C		-	1000	mW
T _{stg}	storage temperature			-55	150	°C
T _{amb}	ambient temperature			-40	85	°C
V _{ESD}	electrostatic discharge voltage	IEC 61000-4-2, level 4; all memory card-side pins, V_{SUPPLY},V_{SD_REF},WP and CD to ground; contact discharge	[1]	-8	8	kV
		IEC 61000-4-2, level 4; all memory card-side pins, V_{SUPPLY},V_{SD_REF},WP and CD to ground; air discharge	[1]	-15	15	kV
I _{lu(IO)}	input/output latch-up current	JESD78B: -0.5 x V _{CC} < V _I < 1.5 x V _{CC} ; T _j < 125 °C		-100	100	mA

[1] All system level test are performed with the application-specific capacitors connected to the supply pins V_{SUPPLY}, V_{LDO} and V_{CCA}.

11. Recommended operating conditions

Table 9. O	perating conditions						
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{CC}	supply voltage	on pin V_{SUPPLY}	[1]	2.8	-	3.6	V
		on pin V _{CCA}		1.7	-	V _{SUPPLY}	V
VI	input voltage	host side	[2]	-0.3	-	V _{CCA} + 0.3	V
		memory card side		-0.3	-	V _{O(reg)} + 0.3	V
C _{ext}	external capacitance	recommended capacitor at pin V_{LDO}		-	1.0	-	μF
		recommended capacitor at pin $V_{\mbox{SUPPLY}}$		-	0.1	-	μF
		recommended capacitor at pin $V_{\mbox{\scriptsize CCA}}$		-	0.1	-	μF
ESR	equivalent series resistance	at pin V_{LDO}		0	-	50	mΩ

[1] By minimum value the device is still fully functional, but the voltage on pin V_{LDO} might drop below the recommended memory card supply voltage.

[2] The voltage must not exceed 3.6 V.

Table 10. Integrated resistors

 T_{amb} = 25 °C; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
R _{pd}	pull-down resistance	R7		272	470	668	kΩ
		R30		70	100	130	Ω
		R20; R21; R38		200	350	500	kΩ
R _{pu}	pull-up resistance	R10		10.5	15	19.5	kΩ
		R11 to R13		49	70	91	kΩ
		R14 and R15		70	100	130	kΩ
R _s	series resistance	card side; R1 to R6	[1]	12	15	18	Ω
		host side; R31 to R37	[1]	18	22.5	27	Ω

[1] Guaranteed by design and characterization

12. Static characteristics

Table 11. Static characteristics

At recommended operating conditions; $T_{amb} = -40$ °C to 85 °C; voltages are referenced to GND (ground = 0 V); $C_{ext} = 1 \ \mu F$ at pin V_{LDO} ; unless otherwise specified.

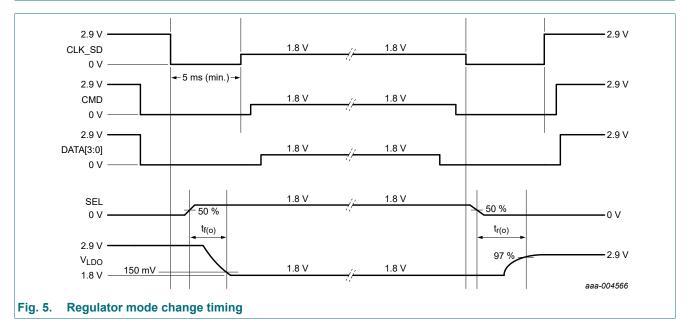
Symbol	Parameter	Conditions		Min	Тур <mark>[1]</mark>	Мах	Unit
Supply v	voltage regulator for card-	side I/O pin: V _{LDO}					
V _{O(reg)}	regulator output voltage	SEL = LOW; V _{SD_REF} < 1 V; V _{SUPPLY} ≥ 2.9 V		2.7	2.9	3.3	V
		SEL = LOW; V _{SD_REF} < 1.5 V; V _{SUPPLY} ≥ V _{SD_REF}		V _{SD_REF} - 0.15	V _{SD_REF}	V _{SD_REF} + 0.15	V
		SEL = HIGH; V _{SUPPLY} ≥ 2.5 V		1.7	1.85	2.0	V
V _{do(reg)}	regulator dropout voltage	SEL = LOW; $V_{SUPPLY} \ge 2.9 V$; $I_O = 50 \text{ mA}$		-	-	150	mV
I _{O(reg)}	regulator output current			-	-	100	mA
Host-sid	le input signals: CMD_H, D	ATA0_H to DATA3_H and CLK_IN					
V _{IH}	HIGH-level input voltage			0.625 x V _{CCA}	-	V _{CCA} + 0.3	V
VIL	LOW-level input voltage			-0.3	-	0.35 x V _{CCA}	V
I _{LI}	input leakage current	V _{CCA} = 1.8 V; ENABLE = LOW	[2]	-	-	1.0	nA
Host-sid	le control signals						
V _{IH}	HIGH-level input voltage	SEL, ENABLE, DIR_0,		$0.625 \times V_{CCA}$	-	V _{CCA} + 0.3	V
V _{IL}	LOW-level input voltage	DIR_1_3 and DIR_CMD		-0.3	-	0.35 x V _{CCA}	V
VIH	HIGH-level input voltage	V _{SD_REF}		1.5	-	3.63	V
V _{IL}	LOW-level input voltage			-0.3	-	1.0	V
Host-sid	e output signals: CLK_FB	, CMD_H and DATA0_H to DATA3_	Н			1	
V _{OH}	HIGH-level output voltage	I _O = 2 mA; V _I = V _{IH} (card side)		0.85 x V _{CCA}	-	-	V
V _{OL}	LOW-level output voltage	I _O = -2 mA; V _I = V _{IL} (card side)		-	-	0.125 x V _{CCA}	V
Card-sid	le input signals: CMD_SD	and DATA0_SD to DATA3_SD					
VIH	HIGH-level input voltage	SEL = LOW (2.9 V interface)		0.625 x V _{O(reg)}	-	V _{O(reg)} + 0.3	V
		SEL = HIGH (1.8 V interface)		0.625 x V _{O(reg)}	-	V _{O(reg)} + 0.3	V
V _{IL}	LOW-level input voltage	SEL = LOW (2.9 V interface)		-0.3	-	0.35 x V _{O(reg)}	V
		SEL = HIGH (1.8 V interface)		-0.3	-	0.35 x V _{O(reg)}	V
Card-sid	le output signal	1		1		1	
CMD_SE	D, DATA0_SD to DATA3_SD	and CLK_SD					
V _{OH}	HIGH-level output voltage	I _O = 4 mA; V _I = V _{IH} (host side); SEL = LOW (2.9 V interface)		0.85 x V _{O(reg)}	-	V _{O(reg)} + 0.3	V
		I _O = 2 mA; V _I = V _{IH} (host side); SEL = HIGH (1.8 V interface)		0.85 x V _{O(reg)}	-	2.0	V
V _{OL}	Low-level output voltage	I _O = -4 mA; V _I = V _{IL} (host side); SEL = LOW (2.9 V interface)		-0.3	-	0.125 x V _{O(reg)}	V
		I _O = -2 mA; V _I = V _{IL} (host side); SEL = HIGH (1.8 V interface)		-0.3	-	0.125 x V _{O(reg)}	V
Bus sign	al equivalent capacitance						-
C _{ch}	channel capacitance	V_I = 0 V; f _i = 1 MHz; V_{SUPPLY} = 3.5 V; V_{CCA} = 1.8 V; host side	[3]	-	3.5	5	pF
		V _I = 0 V; f _i = 1 MHz; V _{SUPPLY} = 3.5 V; V _{CCA} = 1.8 V; card side	[3]	-	5	10	pF

Symbol	Parameter	Conditions		Min	Тур <mark>[1]</mark>	Max	Unit
Current consumption							
I _{CC(stat)}	static supply current	ENABLE = HIGH (active mode); all inputs = HIGH; DIR = LOW; SEL = LOW (2.9 V interface)		-	-	100	μA
		ENABLE = HIGH (active mode); all inputs = HIGH; DIR = LOW; SEL = HIGH (1.8 V interface)		-	-	100	μA
I _{CC(stb)}	standby supply current	ENABLE = LOW (inactive mode)		-	-	1	μA

[1] Typical values are measured at T_{amb} = 25 °C.

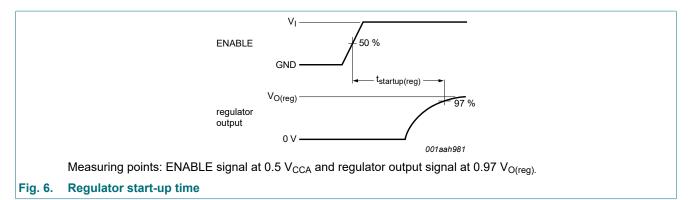
[2] Guaranteed by design and characterization.[3] EMI filter line capacitance per data channel fr

[3] EMI filter line capacitance per data channel from I/O driver to pin; C_{ch} is guaranteed by design.


13. Dynamic characteristics

13.1. Voltage regulator

Table 12. Voltage regulator

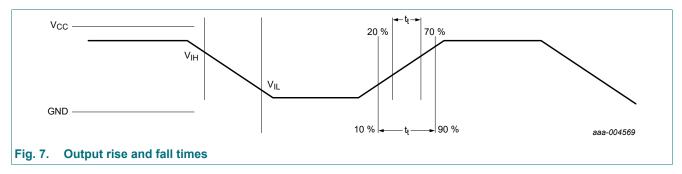

T_{amb} = 25 °C; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Voltage re	gulator output pin: V _{LDO}					
t _{startup(reg)}	regulator start-up time	V _{CCA} = 1.8 V; V _{SUPPLY} = 3.5 V; C _{ext} = 1 μF; <u>Fig. 6</u>	-	-	100	μs
t _{f(0)}	output fall time	$V_{O(reg)}$ = 2.9 V to 1.8 V; SEL = LOW to HIGH; Fig. 5	-	-	1	ms
t _{r(o)}	output rise time	V _{O(reg)} = 1.8 V to 2.9 V; SEL = HIGH to LOW; <u>Fig. 5</u>	-	-	100	μs

IP4856CX25/C

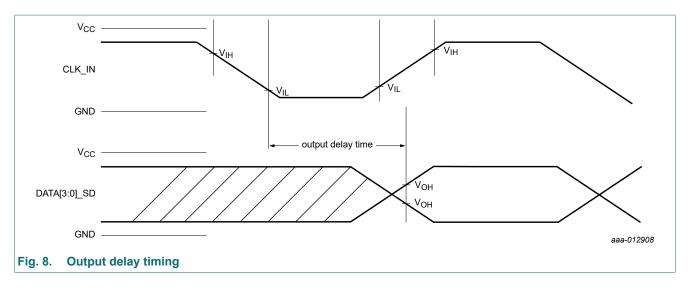
SD 3.0-compliant memory card integrated dual level translator with EMI filter and ESD protection

13.2. Level translator


Table 13. Level translator dynamic characteristics

At recommended operating conditions; V_{CCA} = 1.8 V; T_{amb} = 25 °C; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Host-side	transition times						_
t _r	rise time SEL = HIGH (1.8 V interface) [1] - 0.4		1.0	ns			
t _f	fall time	SEL = HIGH (1.8 V interface)	SEL = HIGH (1.8 V interface) [1] -		0.4	1.0	ns
Card-side	e transition times		I				_
t _r	rise time	SEL = HIGH (1.8 V interface)	[2]	0.4	0.9	1.4	ns
t _f	fall time	SEL = HIGH (1.8 V interface)	[2]	0.4	0.9	1.4	ns
Host-side	to card-side propagation de	lay	I				
DATAx_H	to DATAx_SD, CMD_H to CM	D_SD and CLK_IN to CLK_SD					
t _{pd}	propagation delay	SEL = HIGH (1.8 V interface)		-	2.4	3.5	ns
Host-side	to host-side propagation de	lay					_
CLK_IN to	CLK_FB						
t _{pd}	propagation delay	SEL = HIGH (1.8 V interface)		-	4.8	7.0	ns
Card-side	e to host-side propagation de	lay	I		1		
DATAx_S	D to DATAx_H and CMD_SD to	CMD_H					
t _{pd}	propagation delay	SEL = HIGH (1.8 V interface)		-	2.4	3.5	ns


Transition between V_{OL} = 0.35 x V_{CCA} and V_{OH} = 0.65 x V_{CCA}. Transition between V_{OL} = 0.45 V and V_{OH} = 1.4 V. [1]

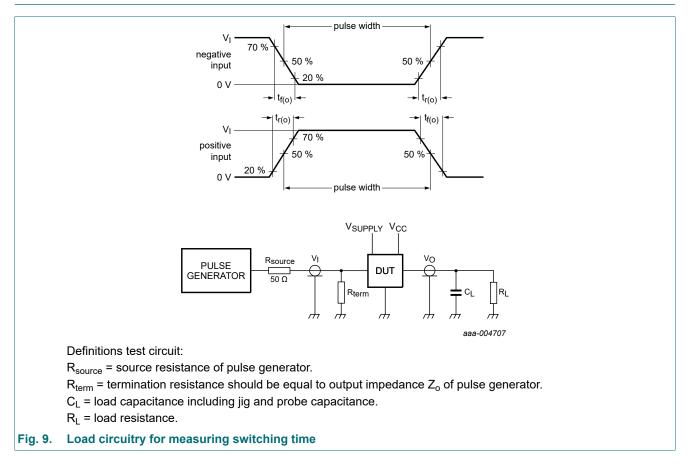
[2]

IP4856CX25/C

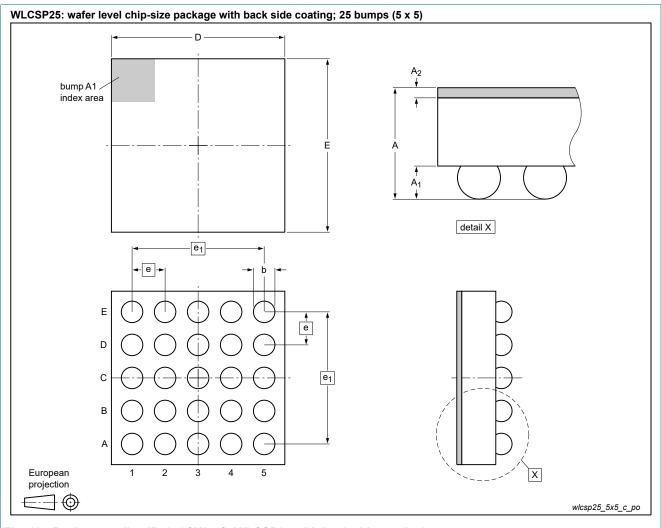
SD 3.0-compliant memory card integrated dual level translator with EMI filter and ESD protection

13.3. ESD characteristics of pin write protect and card detect

Table 14. ESD characteristics of pin write protect and card detect


At recommended operating conditions; $V_{CCA} = 1.8 \text{ V}$; $T_{amb} = 25 \text{ °C}$; unless otherwise specified; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
ESD protection pins: WP and CD							
V _{BR}	breakdown voltage	TLP; I = 1 mA		-	8	-	V
r _{dyn}	dynamic resistance	positive transient	[1]	-	0.5	-	Ω
		negative transient	[1]	-	0.5	-	Ω


[1] TLP according to ANSI/ESD STM5.5.1/IEC 62615 $Z_o = 50 \Omega$; pulse with = 100 ns; rise time = 200 ps: averaging window = 50 ns to 80 ns.

IP4856CX25_C

14. Test information

15. Package outline

Fig. 10. Package outline IP4856CX25/C (WLCSP25 with back side coating)

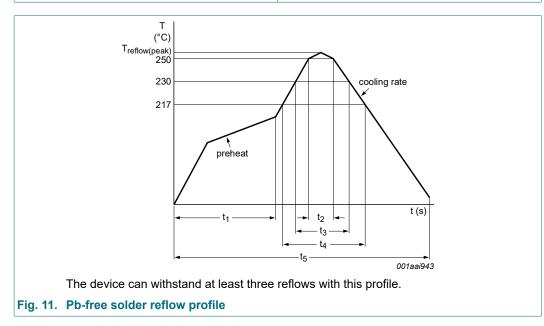
Table 15. Dimensions for Figure 9

Symbol	Min	Тур	Max	Unit
A	0.47	0.51	0.55	mm
A ₁	0.18	0.20	0.22	mm
A ₂	0.03	0.04	0.05	mm
b	0.23	0.25	0.27	mm
D	2.01	2.05	2.09	mm
E	2.01	2.05	2.09	mm
е	-	0.4	-	mm
e ₁	-	1.6	-	mm

16. Design and assembly recommendations

16.1. PCB design guidelines

For optimum performance, use a Non-Solder Mask PCB Design (NSMD), also known as a copperdefinied design, incorporating laser-drilled micro-vias connecting the ground pads to a buried ground-plane layer. This results in the lowest possible ground inductance and provides the best high frequency and ESD performance. For this case, refer to <u>Table 16</u> for the recommended PCB design parameters.


Table 16. Recommended PCB design parameters

Parameter	Value or specification			
PCB pad diameter	250 μm			
Micro-via diameter	100 μm (0.004 inch)			
Solder mask aperture diameter	325 µm			
Copper thickness	20 µm to 40 µm			
Copper finish	AuNi or OSP			
PCB material	FR4			

16.2. PCB assembly guidelines for Pb-free soldering

Table 17. Assembly recommendations

Parameter	Value or specification
Solder screen aperture diameter	290 µm
Solder screen thickness	100 μm (0.004 inch)
Solder paste: Pb-free	SnAg (3 % to 4 % Cu (0.5 % to 0.9 %)
Solder to flux ratio	50 : 50
Solder reflow profile	see <u>Fig. 11</u>

Table 18. Reflow soldering process characteristics

T_{amb} = 25 °C; unless otherwise	specified.
-------------------------------------	------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{reflow(peak)}	peak reflow temperature		230	-	260	°C
t ₁	time 1	soak time	60	-	180	s
t ₂	time 2	time during T ≥ 250 °C	-	-	30	s
t ₃	time 3	time during T ≥ 230 °C	10	-	50	s
t ₄	time 4	time during T ≥ 217 °C	30	-	150	s
t ₅	time 5		-	-	540	s
dT/dt	rate of change of	cooling rate	-	-	-6	°C/s
	temperature	preheat	2.5	-	4.0	°C/s

17. Abbreviations

Table 19. Abbreviations				
Acronym	Description			
DUT	Device Under Test			
EMI	ElectroMagnetic Interface			
ESD	ElectroStatic Discharge			
FR4	Flame Retard 4			
MMC	MultiMedia Card			
NSMD	Non-Solder Mask PCB Design			
OSP	Organic Solderability Preservation			
РСВ	Printed-Circuit Board			
RoHS	Restriction of Hazardous Substances			
SD	Secure Digital			
WLCSP	Wafer-Level Chip-Scale Package			

18. Revision history

Table 20. Revision history						
Data sheet ID	Release date	Data sheet status	Change notice	Supersedes		
IP4856CX25_C v.3	20191213	Product data sheet	-	IP4856CX25_C v.2		
Modifications:	of Nexperia. • Legal texts h	 The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia. Legal texts have been adapted to the new company name where appropriate. Added figure "Marking description" 				
IP4856CX25_C v.2	20141015	Product data sheet	-	IP4856CX25 v.1		
IP4856CX25 v.1	20140602	Preliminary data sheet	-	-		

IP4856CX25_C

19. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

 Please consult the most recently issued document before initiating or completing a design.

- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at <u>https://www.nexperia.com</u>.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nexperia.com/profile/terms</u>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Contents

1. General description	1
2. Features and benefits	1
3. Applications	1
4. Ordering information	1
5. Marking	2
6. Block diagram	3
7. Functional diagram	4
8. Pinning information	5
8.1. Pinning	5
8.2. Pin description	5
9. Functional description	6
9.1. Level translator	6
9.2. Enable and direction control	7
9.3. Integrated voltage regulator	8
9.4. Memory card voltage tracking (reference select).	8
9.5. Feedback clock channel	8
9.6. EMI filter	8
9.7. ESD protection	8
10. Limiting values	9
11. Recommended operating conditions	10
12. Static characteristics	11
13. Dynamic characteristics	12
13.1. Voltage regulator	12
13.2. Level translator	13
13.3. ESD characteristics of pin write protect and car detect	
14. Test information	
15. Package outline	
16. Design and assembly recommendations	
16.1. PCB design guidelines	
16.2. PCB assembly guidelines for Pb-free soldering.	
17. Abbreviations	
18. Revision history	19
19. Legal information	

© Nexperia B.V. 2019. All rights reserved

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 13 December 2019

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Translation - Voltage Levels category:

Click to view products by Nexperia manufacturer:

Other Similar products are found below :

NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT2G NLSX4302EBMUTCG PCA9306FMUTAG MC100EPT622MNG NLSX3014MUTAG NLSV4T244EMUTAG NLSX5011MUTCG NLV9306USG NLVSX4014MUTAG NLSV4T3144MUTAG NLVSX4373MUTAG NB3U23CMNTAG MAX3371ELT+T NLSX3013BFCT1G NLV7WBD3125USG NLSX3012DMR2G 74AVCH1T45FZ4-7 NLVSV1T244MUTBG 74AVC1T45GS-Q100H CLVC16T245MDGGREP MC10H124FNG CAVCB164245MDGGREP CD40109BPWR MC10H350FNG MC10H125FNG MC100EPT21MNR4G MC100EP91DWG NLSV2T244MUTAG NLSX3013FCT1G NLSX5011AMX1TCG PCA9306USG SN74AVCA406LZQSR NLSX4014DTR2G NLSX3018DTR2G LTC1045CSW#PBF LTC1045CN#PBF SY100EL92ZG 74AXP1T34GMH 74AXP1T34GNH PI4ULS3V204LE ADG3245BRUZ-REEL7 ADG3123BRUZ ADG3245BRUZ ADG3246BCPZ ADG3308BCPZ-REEL ADG3233BRJZ-REEL7 ADG3233BRMZ ADG3241BKSZ-500RL7