

NUP1301 Ultra low capacitance ESD protection array Rev. 01 – 11 May 2009

Product data sheet

1. Product profile

1.1 General description

Ultra low capacitance ElectroStatic Discharge (ESD) protection array in a small SOT23 (TO-236AB) Surface-Mounted Device (SMD) plastic package designed to protect one signal line in rail-to-rail configuration from the damage caused by ESD and other transients.

1.2 Features

- ESD protection of one signal line (rail-to-rail configuration)
- Ultra low diode capacitance: C_d = 0.6 pF
- Very low reverse leakage current: ≤ 30 nA
- ESD protection up to 30 kV
- IEC 61000-4-2; level 4 (ESD)
- IEC 61000-4-5 (surge); I_{PP} = 11 A at t_p = 8/20 μs
- AEC-Q101 qualified

1.3 Applications

- Telecommunication networks
- Video line protection
- Microcontroller protection
- I²C-bus protection
- Antenna power supply
- Analog audio
- Class-D amplifier

1.4 Quick reference data

Table 1. Quick reference data

 $T_{amb} = 25 \circ C$ unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Per diode						
V _{RRM}	repetitive peak reverse voltage		-	-	80	V
C _d	diode capacitance	f = 1 MHz; V _R = 0 V	-	0.6	0.75	pF
I _R	reverse current	V _R = 80 V	-	-	100	nA

nexperia

Ultra low capacitance ESD protection array

2. Pinning information

Symbol GND	Description ground	Simplified outline	Graphic symbol
-	ground		
V _{CC}	supply voltage		3
I/O	input/output		
			I/O input/output

3. Ordering information

Table 3. Ordering information					
Type number Package					
	Name	Description	Version		
NUP1301	-	plastic surface-mounted package; 3 leads	SOT23		

4. Marking

Type number	Marking code ^[1]
NUP1301	LJ*

- * = p: made in Hong Kong
- * = t: made in Malaysia
- * = W: made in China

5. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
Per diode					
V _{RRM}	repetitive peak reverse voltage		-	80	V
V _R	reverse voltage		-	80	V
I _F	forward current		<u>[1]</u> _	215	mA
I _{FRM}	repetitive peak forward current	$t_p \leq 1 \text{ ms; } \delta \leq 0.25$	-	500	mA

NUP1301_1 Product data sheet

Ultra low capacitance ESD protection array

Symbol	Parameter	Conditions	Min	Мах	Unit
I _{FSM}	non-repetitive peak	square wave	[2]		
forward current	forward current	t _p = 1 μs	-	4	А
		t _p = 1 ms	-	1	А
		t _p = 1 s	-	0.5	А
Per device	e				
P _{PP}	peak pulse power	t _p = 8/20 μs	<u>[3][4]</u>	220	W
I _{PP}	peak pulse current	t _p = 8/20 μs	<u>[3][4]</u>	11	А
P _{tot}	total power dissipation	$T_{amb} \le 25 \ ^{\circ}C$	<u>[5][6]</u>	250	mW
Tj	junction temperature		-	150	°C
T _{amb}	ambient temperature		-55	+150	°C
T _{stg}	storage temperature		-65	+150	°C

Table 5. Limiting values ...continued

In accordance with the Absolute Maximum Rating System (IEC 60134).

[1] Pulse test: $t_p \le 300 \ \mu s$; $\delta \le 0.02$.

[2] $T_j = 25 \ ^{\circ}C$ prior to surge.

- [3] Non-repetitive current pulse 8/20 µs exponential decay waveform according to IEC 61000-4-5.
- [4] Measured from pin 3 to pins 1 and 2 (pins 1 and 2 are connected).
- [5] Single diode loaded.

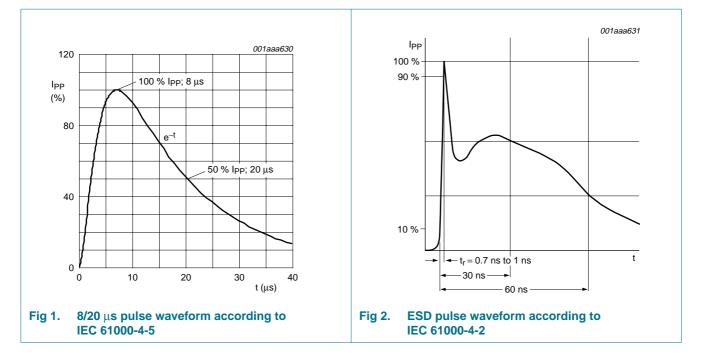
[6] Device mounted on an FR4 Printed-Circuit Board (PCB), single-sided copper, tin-plated and standard footprint.

Table 6.ESD maximum ratings

Symbol	Parameter	Conditions		Min	Max	Unit
V _{ESD}	electrostatic discharge voltage	IEC 61000-4-2 (contact discharge)	<u>[1][2]</u>	-	30	kV
		machine model		-	400	V
		MIL-STD-883 (human body model)		-	10	kV

[1] Device stressed with ten non-repetitive ESD pulses.

[2] Measured from pin 3 to pins 1 and 2 (pins 1 and 2 are connected).


Table 7. ESD standards compliance

Standard	Conditions
IEC 61000-4-2; level 4 (ESD)	> 15 kV (air); > 8 kV (contact)
MIL-STD-883; class 3B (human body model)	> 8 kV

Nexperia

NUP1301

Ultra low capacitance ESD protection array

6. Thermal characteristics

Table 8.	Thermal characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Per devie	e					
R _{th(j-a)}	thermal resistance from junction to ambient	in free air	<u>[1][2]</u> _	-	500	K/W
R _{th(j-sp)}	thermal resistance from junction to solder point		-	-	360	K/W

[1] Single diode loaded.

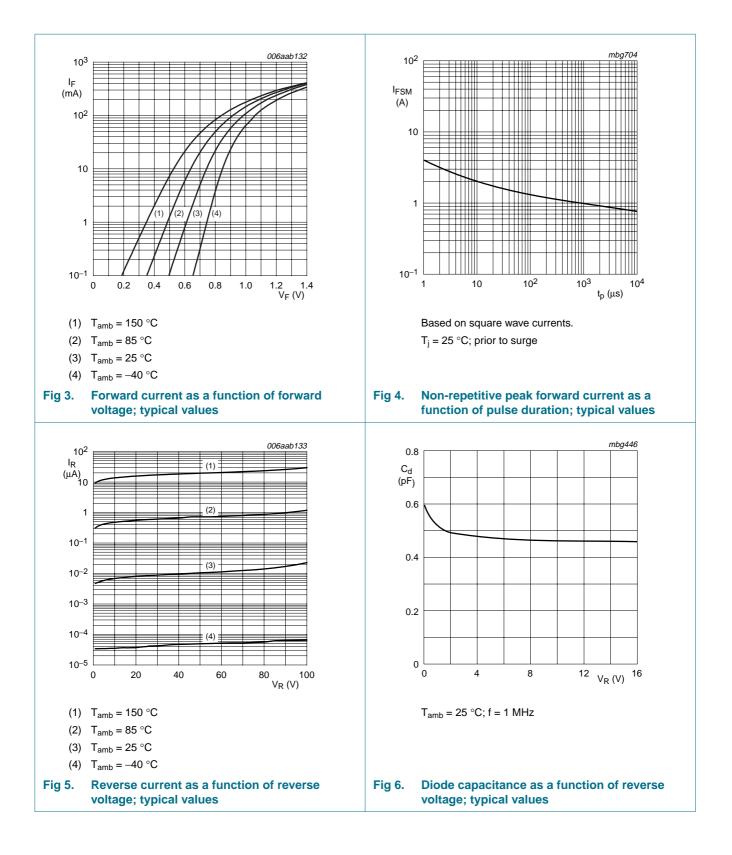
[2] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint.

Ultra low capacitance ESD protection array

7. Characteristics

Table 9. T _{amb} = 25	Electrical characteristics °C unless otherwise specifie					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Per diode	9					
V _{BR}	breakdown voltage	I _R = 100 μA	100	-	-	V
V _F	forward voltage		<u>[1]</u>			
		I _F = 1 mA	-	-	715	mV
		I _F = 10 mA	-	-	855	mV
		I _F = 50 mA	-	-	1	V
		I _F = 150 mA	-	-	1.25	V
I _R	reverse current					
		V _R = 25 V	-	-	30	nA
		V _R = 80 V	-	-	100	nA
		V _R = 25 V; T _j = 150 °C	-	-	25	μA
		V _R = 80 V; T _j = 150 °C	-	-	35	μΑ
C _d	diode capacitance	$f = 1 \text{ MHz}; V_R = 0 \text{ V}$	-	0.6	0.75	pF
Per devic	e					
V _{CL}	clamping voltage	I _{PP} = 1 A	[2][3]	-	3	V
		I _{PP} = 11 A	[2][3]	-	20	V

 $\label{eq:point} \begin{tabular}{ll} \end{tabular} \end{tabular} \begin{tabular}{ll} \end{tabular} 1 \end{tabular} \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{ll} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{ll} \end{tabular} \end{tabular}$

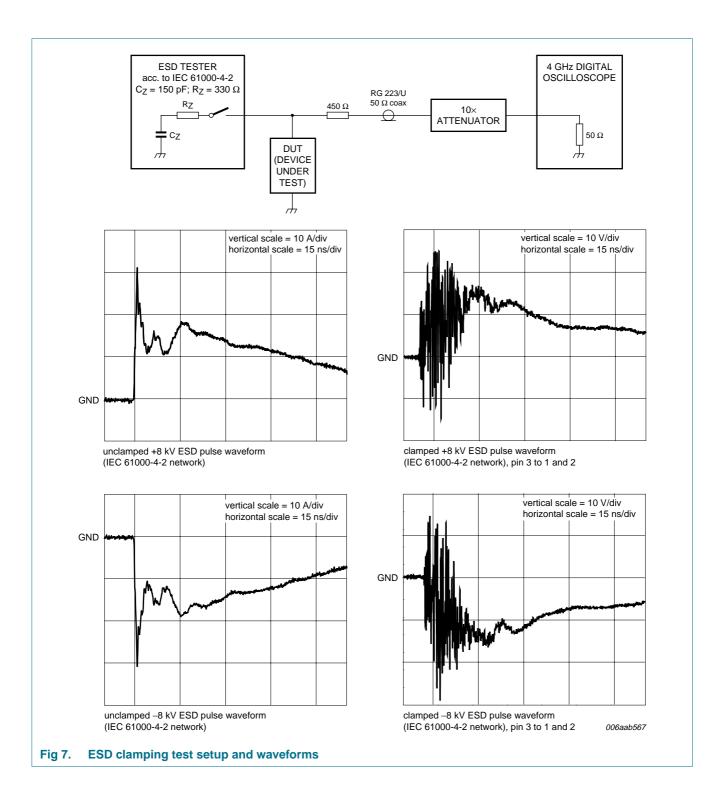

[2] Non-repetitive current pulse 8/20 µs exponential decay waveform according to IEC 61000-4-5.

[3] Measured from pin 3 to pins 1 and 2 (pins 1 and 2 are connected).

Nexperia

NUP1301

Ultra low capacitance ESD protection array

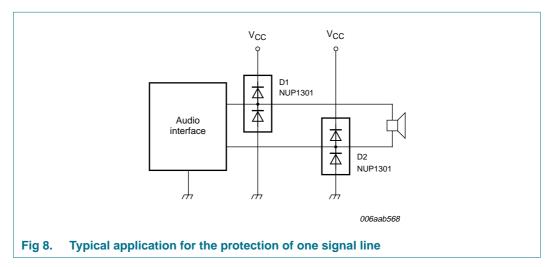


NUP1301_1

Nexperia

NUP1301

Ultra low capacitance ESD protection array



NUP1301_1

Ultra low capacitance ESD protection array

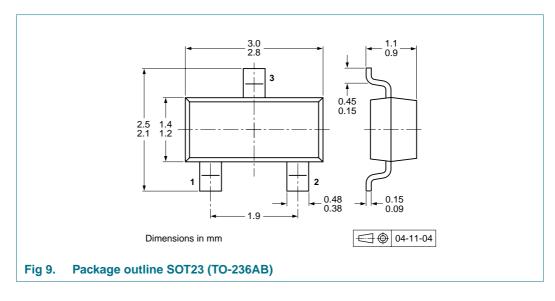
8. Application information

Protection of a single (high-speed) data line in rail-to-rail configuration. The protected data line is connected to pin 3. Pin 1 is connected to ground (GND) and pin 2 is connected to the supply rail (supply voltage V_{CC} .) When the transient voltage exceeds the forward voltage drop of one diode, the transient is directed either to the supply rail or to GND. The advantages of these solutions are: low line capacitance (0.6 pF typically), fast response time, and low clamping voltage.

Circuit board layout and protection device placement:

Circuit board layout is critical for the suppression of ESD, Electrical Fast Transient (EFT) and surge transients. The following guidelines are recommended:

- 1. Place the NUP1301 as close to the input terminal or connector as possible.
- 2. The path length between the NUP1301 and the protected line should be minimized.
- 3. Keep parallel signal paths to a minimum.
- 4. Avoid running protected conductors in parallel with unprotected conductors.
- 5. Minimize all Printed-Circuit Board (PCB) conductive loops including power and ground loops.
- 6. Minimize the length of the transient return path to ground.
- 7. Avoid using shared transient return paths to a common ground point.
- 8. Ground planes should be used whenever possible. For multilayer PCBs, use ground vias.


9. Test information

9.1 Quality information

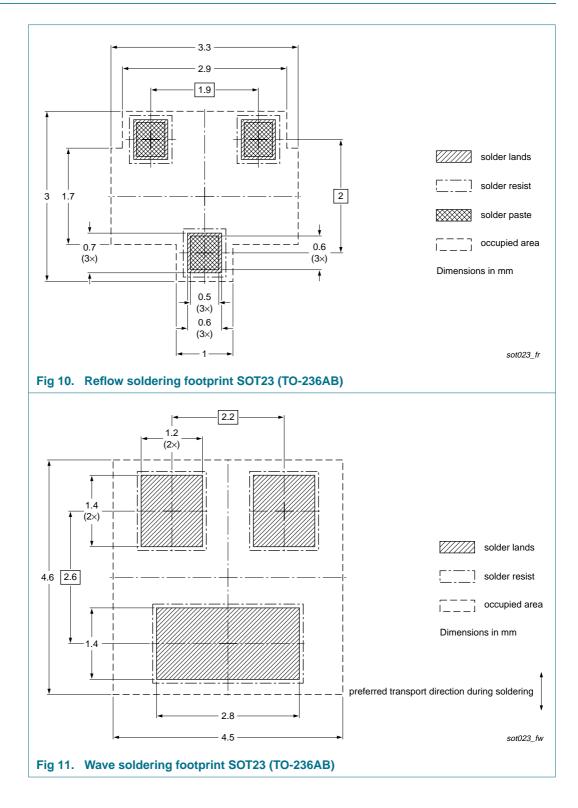
This product has been qualified in accordance with the Automotive Electronics Council (AEC) standard *Q101* - *Stress test qualification for discrete semiconductors*, and is suitable for use in automotive applications.

Ultra low capacitance ESD protection array

10. Package outline

11. Packing information

Table 10. Packing methods


The indicated -xxx are the last three digits of the 12NC ordering code.[1]

Type number	Package	Description	Packing	quantity
			3000	10000
NUP1301	SOT23	4 mm pitch, 8 mm tape and reel	-215	-235

[1] For further information and the availability of packing methods, see <u>Section 15</u>.

Ultra low capacitance ESD protection array

12. Soldering

Ultra low capacitance ESD protection array

13. Revision history

Table 11. Revision history							
Document ID	Release date	Data sheet status	Change notice	Supersedes			
NUP1301_1	20090511	Product data sheet	-	-			

Ultra low capacitance ESD protection array

14. Legal information

14.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

14.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

14.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nexperia.com/profile/terms</u>, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by Nexperia. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

14.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

15. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

NUP1301_1 Product data sheet

Ultra low capacitance ESD protection array

16. Contents

1	Product profile 1
1.1	General description
1.2	Features
1.3	Applications 1
1.4	Quick reference data
2	Pinning information 2
3	Ordering information 2
4	Marking 2
5	Limiting values 2
6	Thermal characteristics 4
7	Characteristics 5
8	Application information 8
9	Test information 8
9.1	Quality information 8
10	Package outline 9
11	Packing information9
12	Soldering 10
13	Revision history 11
14	Legal information 12
14.1	Data sheet status 12
14.2	Definitions 12
14.3	Disclaimers
14.4	Trademarks 12
15	Contact information 12
16	Contents 13

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ESD Suppressors / TVS Diodes category:

Click to view products by Nexperia manufacturer:

Other Similar products are found below :

60KS200C D12V0H1U2WS-7 D18V0L1B2LP-7B 82356050220 D5V0M5U6V-7 NTE4902 P4KE27CA P6KE11CA P6KE39CA-TP P6KE8.2A SA110CA SA60CA SA64CA SMBJ12CATR SMBJ8.0A SMLJ30CA-TP ESD101-B1-02ELS E6327 ESD112-B1-02EL E6327 ESD119B1W01005E6327XTSA1 ESD5V0L1B02VH6327XTSA1 ESD7451N2T5G 19180-510 CPDT-5V0USP-HF 3.0SMCJ33CA-F 3.0SMCJ36A-F HSPC16701B02TP D3V3Q1B2DLP3-7 D55V0M1B2WS-7 DESD5V0U1BL-7B DRTR5V0U4SL-7 SCM1293A-04SO ESD200-B1-CSP0201 E6327 ESD203-B1-02EL E6327 SM12-7 SMF8.0A-TP SMLJ45CA-TP CEN955 W/DATA 82350120560 82356240030 VESD12A1A-HD1-GS08 CPDUR5V0R-HF CPDUR24V-HF CPDQC5V0U-HF CPDQC5V0USP-HF CPDQC5V0-HF D1213A-01LP4-7B D1213A-02WL-7 ESDLIN1524BJ-HQ 5KP100A 5KP15A