ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

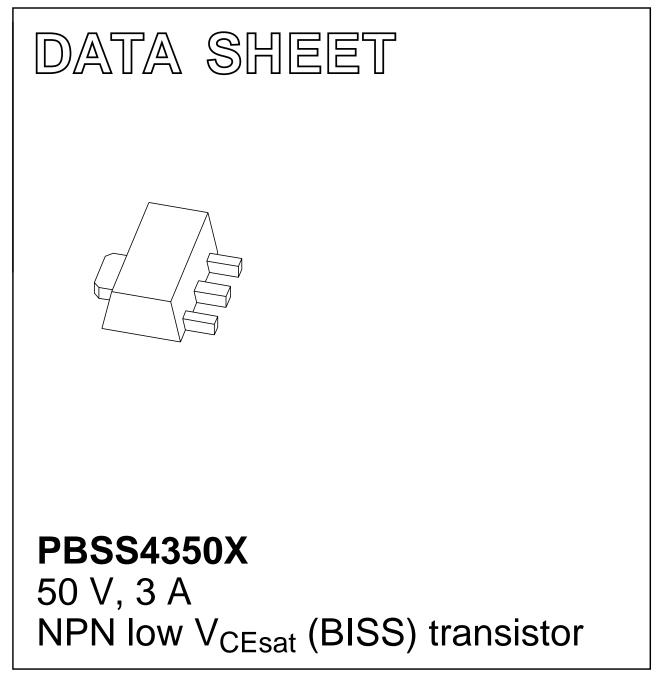
Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:


- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

DISCRETE SEMICONDUCTORS

Product specification Supersedes data of 2003 Nov 21 2004 Nov 04

HILIP

PBSS4350X

50 V, 3 A NPN low V_{CEsat} (BISS) transistor

FEATURES

- SOT89 (SC-62) package
- Low collector-emitter saturation voltage V_{CEsat}
- High collector current capability: I_C and I_{CM}
- Higher efficiency leading to less heat generation
- Reduced printed-circuit board requirements.

APPLICATIONS

- Power management
 - DC/DC converters
 - Supply line switching
 - Battery charger
 - LCD backlighting.
- Peripheral drivers
 - Driver in low supply voltage applications (e.g. lamps and LEDs).
 - Inductive load driver (e.g. relays, buzzers and motors).

DESCRIPTION

NPN low V_{CEsat} transistor in a SOT89 plastic package. PNP complement: PBSS5350X.

MARKING

TYPE NUMBER	MARKING CODE
PBSS4350X	S43

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MAX.	UNIT
V _{CEO}	collector-emitter voltage	50	V
I _C	collector current (DC)	3	А
I _{CM}	peak collector current	5	А
R _{CEsat}	equivalent on-resistance	130 mΩ	

PINNING

PIN	DESCRIPTION	
1	emitter	
2	collector	
3	base	

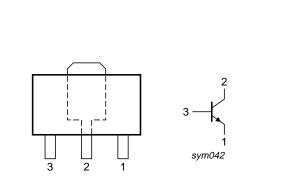
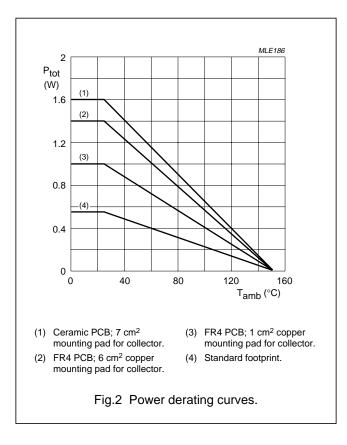


Fig.1 Simplified outline (SOT89) and symbol.

PBSS4350X

ORDERING INFORMATION

TYPE NUMBER	PACKAGE			
TIFE NOMBER	NAME	DESCRIPTION	VERSION	
PBSS4350X	SC-62	C-62 plastic surface mounted package; collector pad for good heat transfer; 3 leads		

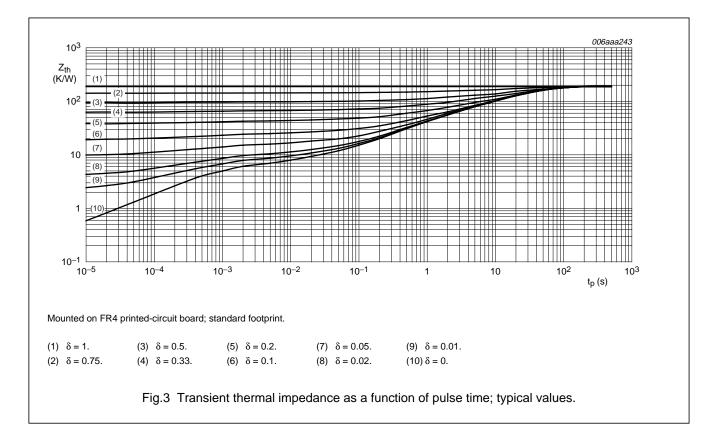

LIMITING VALUES

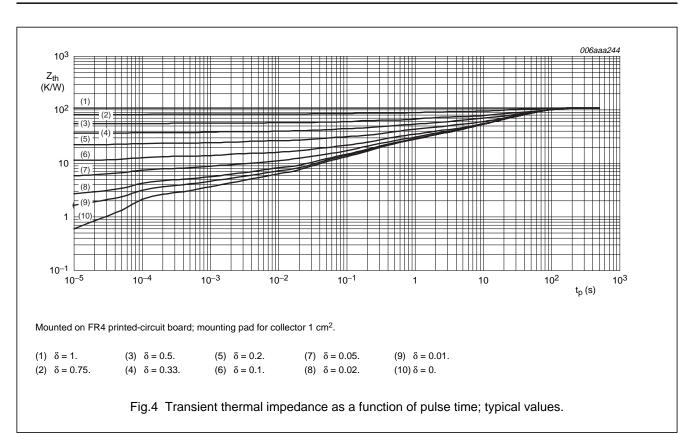
In accordance with the Absolute Maximum Rating System (IEC 60134).

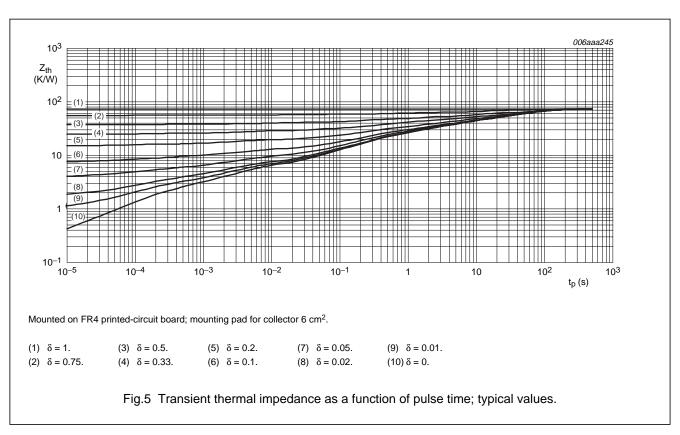
SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter	-	50	V
V _{CEO}	collector-emitter voltage	open base	_	50	V
V _{EBO}	emitter-base voltage	open collector	_	5	V
I _C	collector current (DC)	note 4	_	3	A
I _{CM}	peak collector current	limited by T _{j(max)}	-	5	A
I _B	base current (DC)		_	0.5	A
P _{tot}	total power dissipation	$T_{amb} \le 25 \ ^{\circ}C$			
		note 1	_	550	mW
		note 2	_	1	W
		note 3	_	1.4	W
		note 4	_	1.6	W
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		-	150	°C
T _{amb}	ambient temperature		-65	+150	°C

Notes

- 1. Device mounted on a FR4 printed-circuit board; single-sided copper; tin-plated; standard footprint.
- 2. Device mounted on a FR4 printed-circuit board; single-sided copper; tin-plated; mounting pad for collector 1 cm².
- 3. Device mounted on a FR4 printed-circuit board; single-sided copper; tin-plated; mounting pad for collector 6 cm².
- 4. Device mounted on a ceramic printed-circuit board 7 cm², single-sided copper, tin-plated.


PBSS4350X

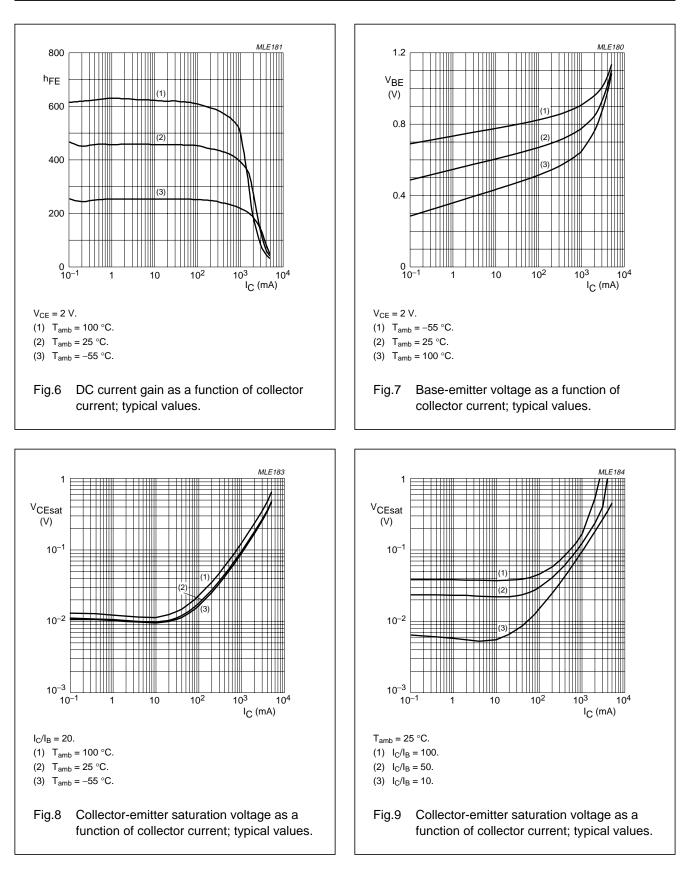

THERMAL CHARACTERISTICS


SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th(j-a)}	thermal resistance from junction to ambient	in free air		
		note 1	225	K/W
		note 2	125	K/W
		note 3	90	K/W
		note 4	80	K/W
R _{th(j-s)}	thermal resistance from junction to soldering point		16	K/W

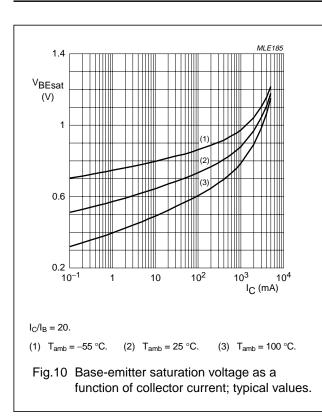
Notes

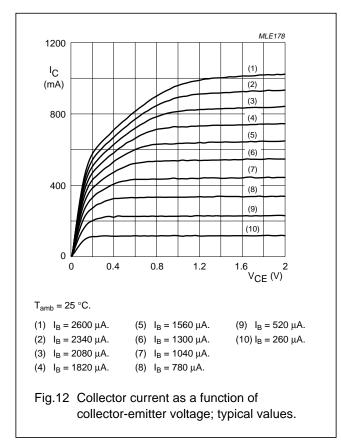
- 1. Device mounted on a FR4 printed-circuit board; single-sided copper; tin-plated; standard footprint.
- 2. Device mounted on a FR4 printed-circuit board; single-sided copper; tin-plated; mounting pad for collector 1 cm².
- 3. Device mounted on a FR4 printed-circuit board; single-sided copper; tin-plated; mounting pad for collector 6 cm².
- 4. Device mounted on a ceramic printed-circuit board 7 cm², single-sided copper, tin-plated.

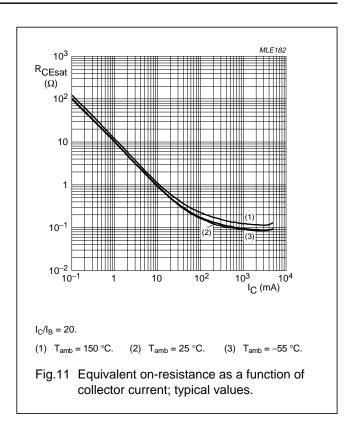
PBSS4350X

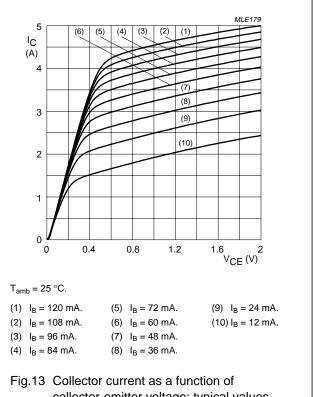

CHARACTERISTICS

 T_{amb} = 25 °C unless otherwise specified.

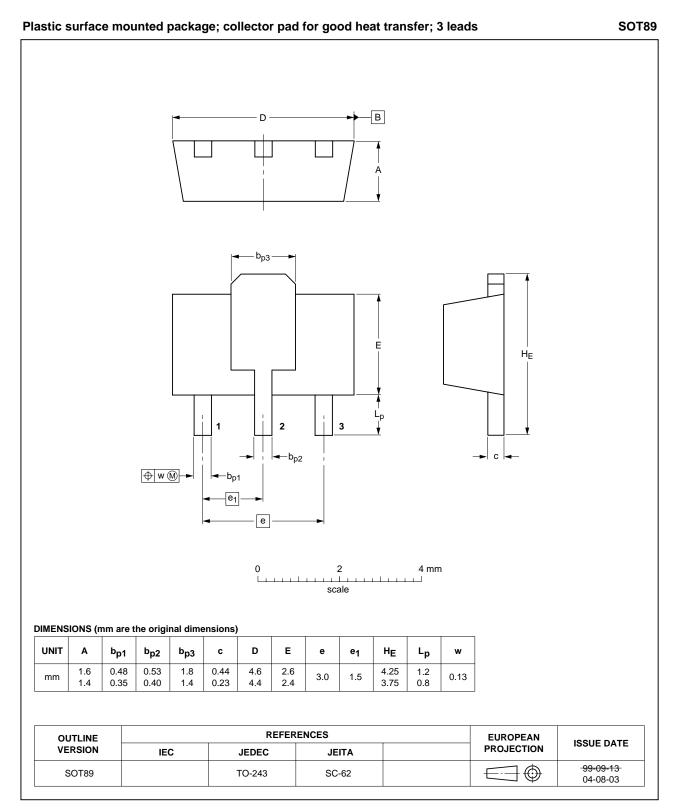

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _{CBO}	collector-base cut-off current	V _{CB} = 50 V; I _E = 0 A	-	_	100	nA
		$V_{CB} = 50 \text{ V}; \text{ I}_{E} = 0 \text{ A}; \text{ T}_{j} = 150 ^{\circ}\text{C}$	-	_	50	μA
I _{CES}	collector-emitter cut-off current	$V_{CE} = 50 \text{ V}; V_{BE} = 0 \text{ V}$	-	_	100	nA
I _{EBO}	emitter-base cut-off current	V _{EB} = 5 V; I _C = 0 A	-	-	100	nA
h _{FE}	DC current gain	V _{CE} = 2 V				
		I _C = 0.1 A	300	_	_	
		$I_{\rm C} = 0.5 {\rm A}$	300	_	_	
		I _C = 1 A; note 1	300	_	700	
		I _C = 2 A; note 1	200	_	_	
		I _C = 3 A; note 1	100	_	_	
V _{CEsat}	collector-emitter saturation	I _C = 0.5 A; I _B = 50 mA	_	_	80	mV
	voltage	I _C = 1 A; I _B = 50 mA	_	_	160	mV
		I _C = 2 A; I _B = 100 mA	-	_	280	mV
		I _C = 2 A; I _B = 200 mA; note 1	_	_	260	mV
		I _C = 3 A; I _B = 300 mA; note 1	-	_	370	mV
R _{CEsat}	equivalent on-resistance	I _C = 2 A; I _B = 200 mA; note 1	_	100	130	mΩ
V _{BEsat}	base-emitter saturation voltage	I _C = 2 A; I _B = 100 mA	_	_	1.1	V
		I _C = 3 A; I _B = 300 mA; note 1	-	_	1.2	V
V _{BEon}	base-emitter turn-on voltage	V _{CE} = 2 V; I _C = 1 A	1.1	_	_	V
f _T	transition frequency	$I_{C} = 100 \text{ mA}; V_{CE} = 5 \text{ V}; f = 100 \text{ MHz}$	100	_	_	MHz
C _c	collector capacitance	$V_{CB} = 10 \text{ V}; \text{ I}_{E} = \text{i}_{e} = 0 \text{ A}; \text{ f} = 1 \text{ MHz}$	-	_	25	pF


Note


1. Pulse test: $t_p \le 300 \ \mu s; \ \delta \le 0.02$.



PBSS4350X



collector-emitter voltage; typical values.

PBSS4350X

PACKAGE OUTLINE

DATA SHEET STATUS

LEVEL	DATA SHEET STATUS ⁽¹⁾	PRODUCT STATUS ⁽²⁾⁽³⁾	DEFINITION
1	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
11	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- 3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products including circuits, standard cells, and/or software described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors – a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2004

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

R75/03/pp12

Date of release: 2004 Nov 04

Document order number: 9397 750 13883

SCA76

Let's make things better.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Nexperia manufacturer:

Other Similar products are found below :

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM 2N5769 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E US6T6TR NJL0281DG 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E IMZ2AT108 UMX21NTR MCH6102-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13 NTE15 NTE16001