

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com, http://www.nexperia.com)

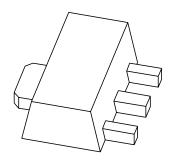
Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.


If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

DISCRETE SEMICONDUCTORS

DATA SHEET

PBSS5330X 30 V, 3 A PNP low V_{CEsat} (BISS) transistor

Product data sheet Supersedes data of 2003 Nov 28 2004 Nov 03

30 V, 3 A PNP low V_{CEsat} (BISS) transistor

PBSS5330X

FEATURES

- SOT89 (SC-62) package
- Low collector-emitter saturation voltage V_{CEsat}
- High collector current capability: I_C and I_{CM}
- Higher efficiency leading to less heat generation
- Reduced printed-circuit board requirements.

APPLICATIONS

- Power management
 - DC/DC converters
 - Supply line switching
 - Battery charger
 - LCD backlighting.
- · Peripheral drivers
 - Driver in low supply voltage applications (e.g. lamps and LEDs)
 - Inductive load driver (e.g. relays, buzzers and motors).

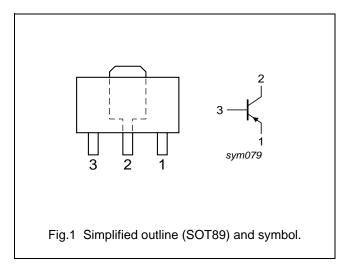
DESCRIPTION

PNP low V_{CEsat} transistor in a SOT89 plastic package.

MARKING

TYPE NUMBER	MARKING CODE ⁽¹⁾
PBSS5330X	*1S

Note


- 1. * = p: Made in Hong Kong.
 - * = t: Made in Malaysia.
 - * = W: Made in China.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MAX.	UNIT
V _{CEO}	collector-emitter voltage	-30	V
I _C	collector current (DC)	-3	Α
I _{CM}	peak collector current	-5	Α
R _{CEsat}	equivalent on-resistance 107 m		mΩ

PINNING

PIN	DESCRIPTION	
1	emitter	
2	collector	
3	base	

ORDERING INFORMATION

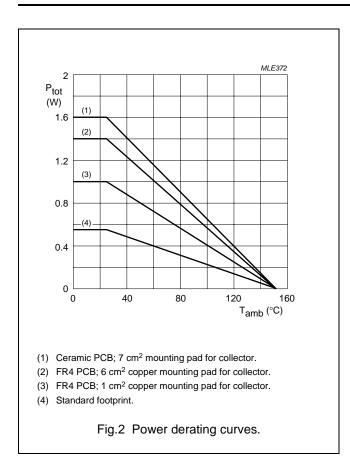
TYPE NUMBER		PACKAGE	
TIFE NOWIBER	NAME DESCRIPTION		VERSION
PBSS5330X	SC-62	plastic surface mounted package; collector pad for good heat transfer; 3 leads	SOT89

30 V, 3 A PNP low V_{CEsat} (BISS) transistor

PBSS5330X

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).


SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter	_	-30	V
V_{CEO}	collector-emitter voltage	open base	_	-30	V
V _{EBO}	emitter-base voltage	open collector	_	-6	٧
I _C	collector current (DC)	note 4	_	-3	Α
I _{CM}	peak collector current	limited by T _{j(max)}	_	- 5	Α
I _B	base current (DC)		_	-0.5	Α
P _{tot}	total power dissipation	T _{amb} ≤ 25 °C			
		note 1	_	550	mW
		note 2	_	1	W
		note 3	_	1.4	W
		note 4	_	1.6	W
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		_	150	°C
T _{amb}	ambient temperature		-65	+150	°C

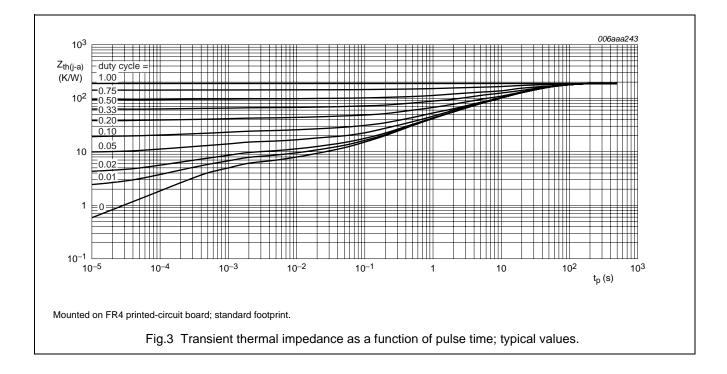
Notes

- 1. Device mounted on a FR4 printed-circuit board; single-sided copper; tin-plated; standard footprint.
- 2. Device mounted on a FR4 printed-circuit board; single-sided copper; tin-plated; mounting pad for collector 1 cm².
- 3. Device mounted on a FR4 printed-circuit board; single-sided copper; tin-plated; mounting pad for collector 6 cm².
- 4. Device mounted on a ceramic printed-circuit board 7 cm², single-sided copper, tin-plated.

30 V, 3 A PNP low V_{CEsat} (BISS) transistor

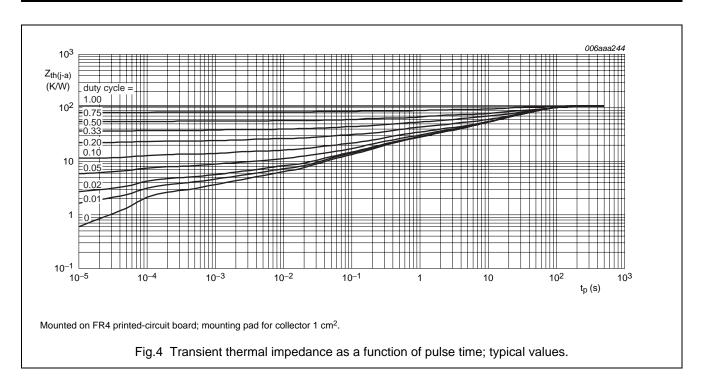
PBSS5330X

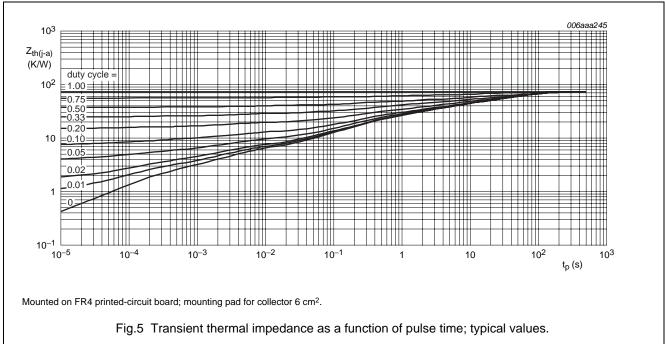
30 V, 3 A PNP low V_{CEsat} (BISS) transistor


PBSS5330X

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th(j-a)}	thermal resistance from junction to ambient	in free air		
		note 1	225	K/W
		note 2	125	K/W
		note 3	90	K/W
		note 4	80	K/W
R _{th(j-s)}	thermal resistance from junction to soldering point		16	K/W


Notes


- 1. Device mounted on a FR4 printed-circuit board; single-sided copper; tin-plated; standard footprint.
- 2. Device mounted on a FR4 printed-circuit board; single-sided copper; tin-plated; mounting pad for collector 1 cm².
- 3. Device mounted on a FR4 printed-circuit board; single-sided copper; tin-plated; mounting pad for collector 6 cm².
- 4. Device mounted on a ceramic printed-circuit board 7 cm², single-sided copper, tin-plated.

30 V, 3 A PNP low V_{CEsat} (BISS) transistor

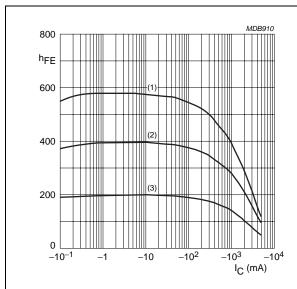
PBSS5330X

30 V, 3 A PNP low V_{CEsat} (BISS) transistor

PBSS5330X

CHARACTERISTICS

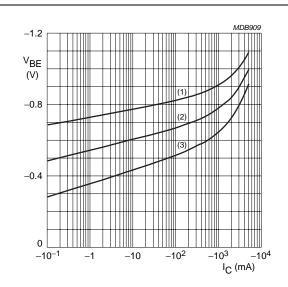
 T_{amb} = 25 °C unless otherwise specified.


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _{CBO}	collector-base cut-off current	$V_{CB} = -30 \text{ V}; I_E = 0 \text{ A}$	_	_	-100	nA
		$V_{CB} = -30 \text{ V}; I_E = 0 \text{ A}; T_j = 150 ^{\circ}\text{C}$	_	_	-50	μΑ
I _{CES}	collector-emitter cut-off current	$V_{CE} = -30 \text{ V}; V_{BE} = 0 \text{ V}$	_	_	-100	nA
I _{EBO}	emitter-base cut-off current	$V_{EB} = -5 \text{ V}; I_C = 0 \text{ A}$	_	_	-100	nA
h _{FE}	DC current gain	V _{CE} = -2 V				
		$I_{C} = -0.1 \text{ A}$	200	_	_	
		$I_{\rm C} = -0.5 {\rm A}$	200	_	_	
		$I_{C} = -1 \text{ A}$; note 1	175	_	450	
		$I_{C} = -2 \text{ A}$; note 1	140	_	_	
		$I_{\rm C} = -3$ A; note 1	100	_	_	
V _{CEsat}	collector-emitter saturation	$I_C = -0.5 \text{ A}; I_B = -50 \text{ mA}$	_	_	-70	mV
	voltage	$I_C = -1 \text{ A}; I_B = -50 \text{ mA}$	_	_	-130	mV
		$I_C = -2 \text{ A}; I_B = -100 \text{ mA}$	_	_	-240	mV
		$I_C = -3 \text{ A}$; $I_B = -300 \text{ mA}$; note 1	_	_	-320	mV
R _{CEsat}	equivalent on-resistance	$I_C = -3 \text{ A}$; $I_B = -300 \text{ mA}$; note 1	_	80	107	mΩ
V _{BEsat}	base-emitter saturation voltage	$I_C = -2 \text{ A}; I_B = -100 \text{ mA}$	_	_	-1.1	V
		$I_C = -3 \text{ A}$; $I_B = -300 \text{ mA}$; note 1	_	_	-1.2	V
V _{BEon}	base-emitter turn-on voltage	$V_{CE} = -2 \text{ V}; I_{C} = -1 \text{ A}$	-1.0	_	_	V
f _T	transition frequency	$I_C = -100 \text{ mA}; V_{CE} = -5 \text{ V};$ f = 100 MHz	100	-	-	MHz
C _c	collector capacitance	$V_{CB} = -10 \text{ V}; I_E = i_e = 0 \text{ A}; f = 1 \text{ MHz}$	_	_	45	pF

Note

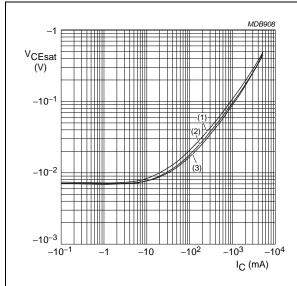
^{1.} Pulse test: $t_p \leq 300~\mu s;~\delta \leq 0.02.$

30 V, 3 A PNP low V_{CEsat} (BISS) transistor


PBSS5330X

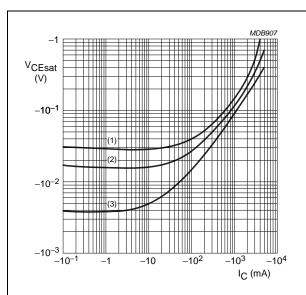
 $V_{CE} = -2 V$.

- (1) $T_{amb} = 100 \, ^{\circ}C$.
- (2) $T_{amb} = 25 \, ^{\circ}C$.
- (3) $T_{amb} = -55 \, ^{\circ}C$.


Fig.6 DC current gain as a function of collector current; typical values.

 $V_{CE} = -2 \text{ V}.$

- (1) $T_{amb} = -55 \, ^{\circ}C$.
- (2) T_{amb} = 25 °C.
- (3) $T_{amb} = 100 \, ^{\circ}C$.


Fig.7 Base-emitter voltage as a function of collector current; typical values.

 $I_{\rm C}/I_{\rm B} = 20.$

- (1) $T_{amb} = 100 \, ^{\circ}C$.
- (2) $T_{amb} = 25 \, ^{\circ}C$.
- (3) $T_{amb} = -55 \, ^{\circ}C$.

Fig.8 Collector-emitter saturation voltage as a function of collector current; typical values.

 T_{amb} = 25 °C.

- (1) $I_C/I_B = 100$.
- (2) $I_C/I_B = 50$.
- (3) $I_C/I_B = 10$.

Fig.9 Collector-emitter saturation voltage as a function of collector current; typical values.

30 V, 3 A PNP low V_{CEsat} (BISS) transistor

PBSS5330X

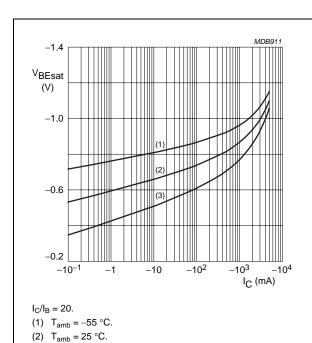


Fig.10 Base-emitter saturation voltage as a function of collector current; typical values.

(3) $T_{amb} = 100 \, ^{\circ}C$.

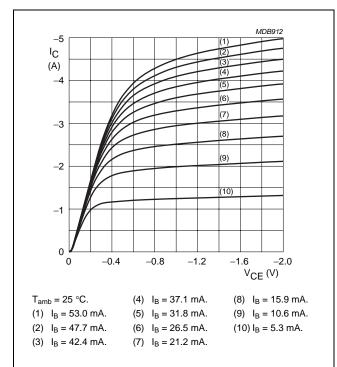
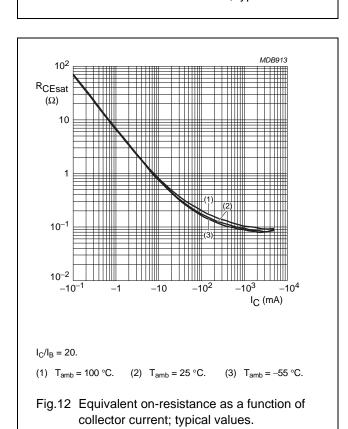
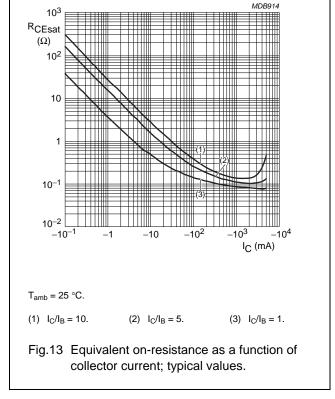
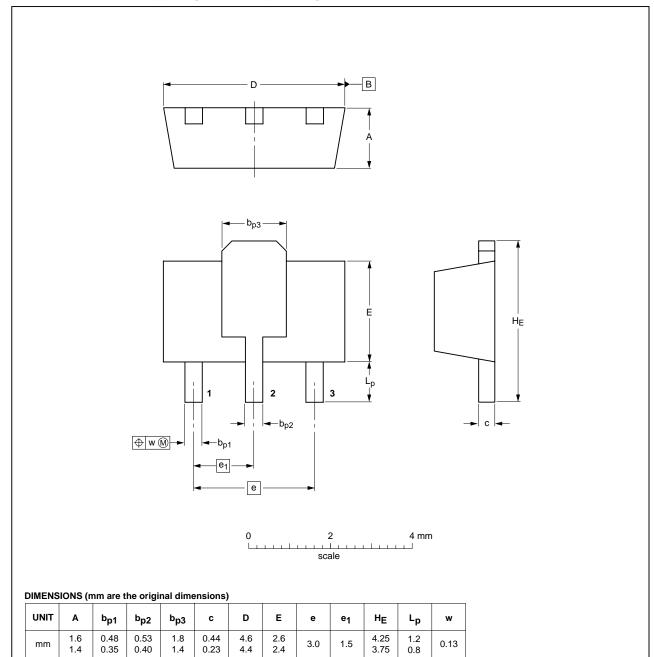




Fig.11 Collector current as a function of

collector-emitter voltage; typical values.


30 V, 3 A PNP low V_{CEsat} (BISS) transistor

PBSS5330X

PACKAGE OUTLINE

Plastic surface-mounted package; collector pad for good heat transfer; 3 leads

SOT89

OUTLINE	OUTLINE REFERENCES		EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT89		TO-243	SC-62			-04-08-03- 06-03-16

30 V, 3 A PNP low V_{CEsat} (BISS) transistor

PBSS5330X

DATA SHEET STATUS

DOCUMENT STATUS ⁽¹⁾	PRODUCT STATUS ⁽²⁾	DEFINITION
Objective data sheet	Development	This document contains data from the objective specification for product development.
Preliminary data sheet	Qualification	This document contains data from the preliminary specification.
Product data sheet	Production	This document contains the product specification.

Notes

- 1. Please consult the most recently issued document before initiating or completing a design.
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

DISCLAIMERS

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions

above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

2004 Nov 03

NXP Semiconductors

Customer notification

This data sheet was changed to reflect the new company name NXP Semiconductors, including new legal definitions and disclaimers. No changes were made to the technical content, except for package outline drawings which were updated to the latest version.

Contact information

For additional information please visit: http://www.nxp.com
For sales offices addresses send e-mail to: salesaddresses@nxp.com

© NXP B.V. 2009

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

 Printed in The Netherlands
 R75/03/pp12
 Date of release: 2004 Nov 03
 Document order number: 9397 750 13888

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Nexperia manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460
2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM
2N5769 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E
US6T6TR NJL0281DG 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E IMZ2AT108 UMX21NTR MCH6102-TL-E
NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13
NTE15 NTE16001