

PMEG4010ESB

40 V, 1 A low VF MEGA Schottky barrier rectifier

27 November 2015

Product data sheet

1. General description

Planar Maximum Efficiency General Application (MEGA) Schottky barrier rectifier with an integrated guard ring for stress protection in a leadless ultra small DSN1006-2 (SOD993) Surface-Mounted Device (SMD) package.

2. Features and benefits

Average forward current: I_{F(AV)} ≤ 1 A

Reverse voltage: V_R ≤ 40 V

Low forward voltage, typical: $V_F = 510 \text{ mV}$ Low reverse current, typical: $I_R = 13 \mu\text{A}$

Package height typ. 270 μm

3. Applications

- Low voltage rectification
- High efficiency DC-to-DC conversion
- Switch mode power supply
- Low power consumption applications
- Ultra high-speed switching
- · LED backlight for mobile application

4. Quick reference data

Table 1. Quick reference data

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{F(AV)}	average forward current	δ = 0.5 ; f = 20 kHz; $T_{sp} \le$ 140 °C; square wave	-	-	1	Α
V _R	reverse voltage	T _j = 25 °C	-	-	40	V
V _F	forward voltage	I_F = 1 A; t_p ≤ 300 μs; δ ≤ 0.02 ; T_j = 25 °C	-	510	610	mV
I _R	reverse current	$V_R = 20 \text{ V}; t_p \le 3 \text{ ms}; \delta \le 0.3 ;$ $T_j = 25 \text{ °C}$	-	2.1	6	μA
		$V_R = 40 \text{ V}; t_p \le 3 \text{ ms}; \delta \le 0.3 ;$ $T_j = 25 \text{ °C}$	-	13	40	μΑ

40 V, 1 A low VF MEGA Schottky barrier rectifier

5. Pinning information

Table 2. Pinning information

Pin	Symbol	Description	Simplified outline	Graphic symbol
1	K	cathode[1]		1 - 1 - 2
2	А	anode	1 2	sym001
			Transparent top view DSN1006-2 (SOD993)	

^[1] The marking bar indicates the cathode.

6. Ordering information

Table 3. Ordering information

Type number	Package					
	Name	Description	Version			
PMEG4010ESB	DSN1006-2	DSN1006-2, leadless ultra small package; 2 terminals; body 1.0 x 0.6 x 0.27 mm	SOD993			

7. Marking

Table 4. Marking codes

Type number	Marking code
PMEG4010ESB	4E

40 V, 1 A low VF MEGA Schottky barrier rectifier

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V _R	reverse voltage	T _j = 25 °C		-	40	V
I _F	forward current	T _{sp} ≤ 135 °C; δ = 1		-	1.4	Α
I _{F(AV)}	average forward current	δ = 0.5 ; f = 20 kHz; $T_{amb} \le$ 105 °C; square wave	[1]	-	1	A
		$\bar{\delta}$ = 0.5 ; f = 20 kHz; $T_{sp} \le$ 140 °C; square wave		-	1	A
I _{FRM}	repetitive peak forward current	$t_p \le 1 \text{ ms}; \ \delta \le 0.25$		-	4	Α
I _{FSM}	non-repetitive peak forward current	t_p = 8 ms; $T_{j(init)}$ = 25 °C; square wave		-	10	А
P _{tot}	total power dissipation	T _{amb} ≤ 25 °C	[2]	-	0.525	W
			[3]	-	1	W
			[1]	-	1.78	W
Tj	junction temperature			-	150	°C
T _{amb}	ambient temperature			-55	150	°C
T _{stg}	storage temperature			-65	150	°C

- [1] Device mounted on a ceramic Printed-Circuit Board (PCB), Al_2O_3 , standard footprint.
- [2] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint.
- Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for anode and cathode 1 cm² each.

9. Thermal characteristics

Table 6. Thermal characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
R _{th(j-a)} thermal resistance from junction to ambient		in free air	[1][2]	-	-	240	K/W
		[1][3]	-	-	125	K/W	
		[1][4]	-	-	70	K/W	
$R_{th(j-sp)}$	thermal resistance from junction to solder point		[5]	-	-	15	K/W

- [1] For Schottky barrier diodes thermal runaway has to be considered, as in some applications the reverse power losses P_R are a significant part of the total power losses.
- [2] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint.
- [3] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for anode and cathode 1 cm² each.
- [4] Device mounted on a ceramic PCB, Al₂O₃, standard footprint.
- [5] Soldering point of anode tab.

PMEG4010ESB

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserved

40 V, 1 A low VF MEGA Schottky barrier rectifier

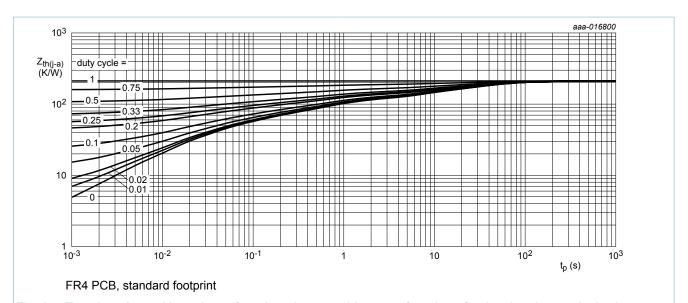
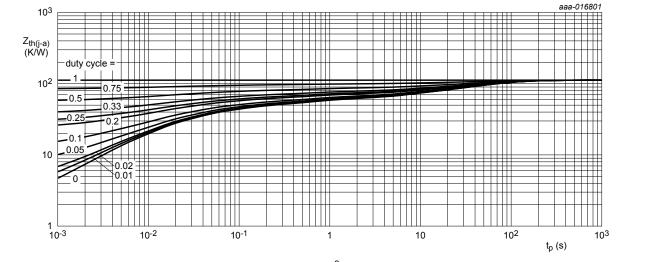
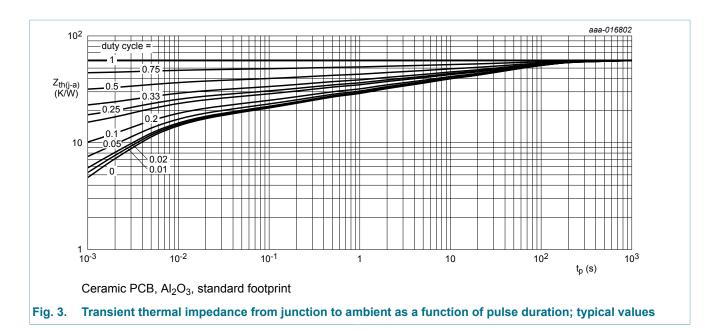



Fig. 1. Transient thermal impedance from junction to ambient as a function of pulse duration; typical values



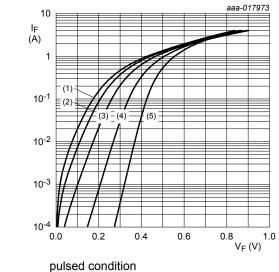
FR4 PCB, mounting pad for anode and cathode 1 cm² each

Fig. 2. Transient thermal impedance from junction to ambient as a function of pulse duration; typical values

4/14

40 V, 1 A low VF MEGA Schottky barrier rectifier

10. Characteristics

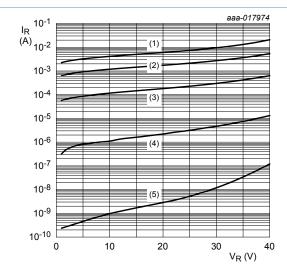

Table 7. Characteristics

Parameter	Conditions	Min	Тур	Max	Unit
reverse breakdown voltage	I_R = 1 mA; t_p = 300 µs; δ = 0.02 ; T_j = 25 °C	40	-	-	V
forward voltage	$I_F = 1 \text{ mA}; t_p \le 300 \mu\text{s}; \delta \le 0.02 ;$ $T_j = 25 ^{\circ}\text{C}$	-	205	-	mV
	I_F = 10 mA; $t_p \le 300$ μs; $δ \le 0.02$; T_j = 25 °C	-	270	-	mV
	I_F = 100 mA; t_p ≤ 300 μs; δ ≤ 0.02 ; T_j = 25 °C	-	340	385	mV
	I_F = 200 mA; $t_p \le 300 \ \mu s$; $\delta \le 0.02$; T_j = 25 °C	-	370	-	mV
	I_F = 500 mA; t_p ≤ 300 μs; δ ≤ 0.02 ; T_j = 25 °C	-	430	495	mV
	I_F = 700 mA; $t_p \le 300$ μs; $δ \le 0.02$; T_j = 25 °C	-	465	-	mV
	I_F = 1 A; t_p ≤ 300 μs; δ ≤ 0.02 ; T_j = 25 °C	-	510	610	mV
reverse current	$V_R = 5 \text{ V}; t_p \le 3 \text{ ms}; \delta \le 0.3 ; T_j = 25 \text{ °C}$	-	0.8	-	μA
	$V_R = 10 \text{ V}; t_p \le 3 \text{ ms}; \delta \le 0.3 ;$ $T_j = 25 \text{ °C}$	-	1	4	μA
	$V_R = 20 \text{ V}; t_p \le 3 \text{ ms}; \delta \le 0.3 ;$ $T_i = 25 ^{\circ}\text{C}$	-	2.1	6	μA
	reverse breakdown voltage forward voltage	$ \begin{array}{l} \text{reverse breakdown } \\ \text{voltage} \\ \end{array} \begin{array}{l} I_R = 1 \text{ mA; } t_p = 300 \mu \text{s; } \delta = 0.02 \text{ ; } \\ T_j = 25 \text{ °C} \\ \end{array} \\ \end{array} \\ \begin{array}{l} I_F = 1 \text{ mA; } t_p \leq 300 \mu \text{s; } \delta \leq 0.02 \text{ ; } \\ T_j = 25 \text{ °C} \\ \end{array} \\ \begin{array}{l} I_F = 10 \text{ mA; } t_p \leq 300 \mu \text{s; } \delta \leq 0.02 \text{ ; } \\ T_j = 25 \text{ °C} \\ \end{array} \\ \begin{array}{l} I_F = 100 \text{ mA; } t_p \leq 300 \mu \text{s; } \delta \leq 0.02 \text{ ; } \\ T_j = 25 \text{ °C} \\ \end{array} \\ \begin{array}{l} I_F = 200 \text{ mA; } t_p \leq 300 \mu \text{s; } \delta \leq 0.02 \text{ ; } \\ T_j = 25 \text{ °C} \\ \end{array} \\ \begin{array}{l} I_F = 200 \text{ mA; } t_p \leq 300 \mu \text{s; } \delta \leq 0.02 \text{ ; } \\ T_j = 25 \text{ °C} \\ \end{array} \\ \begin{array}{l} I_F = 700 \text{ mA; } t_p \leq 300 \mu \text{s; } \delta \leq 0.02 \text{ ; } \\ T_j = 25 \text{ °C} \\ \end{array} \\ \begin{array}{l} I_F = 700 \text{ mA; } t_p \leq 300 \mu \text{s; } \delta \leq 0.02 \text{ ; } \\ T_j = 25 \text{ °C} \\ \end{array} \\ \begin{array}{l} I_F = 1 \text{ A; } t_p \leq 300 \mu \text{s; } \delta \leq 0.02 \text{ ; } \\ T_j = 25 \text{ °C} \\ \end{array} \\ \begin{array}{l} I_F = 10 \text{ V; } t_p \leq 3 \text{ ms; } \delta \leq 0.3 \text{ ; } T_j = 25 \text{ °C} \\ \end{array} \\ \begin{array}{l} V_R = 5 \text{ V; } t_p \leq 3 \text{ ms; } \delta \leq 0.3 \text{ ; } \\ T_j = 25 \text{ °C} \\ \end{array} \\ \begin{array}{l} V_R = 20 \text{ V; } t_p \leq 3 \text{ ms; } \delta \leq 0.3 \text{ ; } \end{array} \\ \end{array} \\ \begin{array}{l} I_F = 200 \text{ V; } t_p \leq 3 \text{ ms; } \delta \leq 0.3 \text{ ; } \end{array} \\ \begin{array}{l} I_F = 10 \text{ V; } I_F \leq 3 \text{ ms; } \delta \leq 0.02 \text{ ; } \\ I_F = 10 \text{ V; } I_F \leq 3 \text{ ms; } \delta \leq 0.02 \text{ ; } \\ I_F = 20 \text{ °C} \\ \end{array} \\ \begin{array}{l} I_F = 10 \text{ V; } I_F \leq 3 \text{ ms; } \delta \leq 0.02 \text{ ; } \\ I_F = 20 \text{ °C} \\ \end{array} \\ \begin{array}{l} I_F = 10 \text{ V; } I_F \leq 3 \text{ ms; } \delta \leq 0.02 \text{ ; } \\ I_F = 20 \text{ °C} \\ \end{array} \\ \begin{array}{l} I_F = 10 \text{ V; } I_F \leq 3 \text{ ms; } \delta \leq 0.02 \text{ ; } \\ I_F = 20 \text{ °C} \\ \end{array} \\ \begin{array}{l} I_F = 10 \text{ V; } I_F \leq 3 \text{ ms; } \delta \leq 0.02 \text{ ; } \\ I_F = 20 \text{ °C} \\ \end{array} \\ \begin{array}{l} I_F = 10 \text{ V; } I_F \leq 3 \text{ ms; } \delta \leq 0.02 \text{ ; } \\ I_F = 20 \text{ °C} \\ \end{array} \\ \begin{array}{l} I_F = 10 \text{ V; } I_F \leq 3 \text{ ms; } \delta \leq 0.02 \text{ ; } \\ I_F = 20 \text{ °C} \\ \end{array} \\ \begin{array}{l} I_F = 10 \text{ V; } I_F \leq 3 \text{ ms; } \delta \leq 0.02 \text{ ; } \\ I_F = 20 \text{ °C} \\ \end{array} \\ \begin{array}{l} I_F = 10 \text{ V; } I_F \leq 3 \text{ ms; } \delta \leq 0.02 \text{ ; } \\ I_F = 10 \text{ °C} \\ \end{array} \\ \begin{array}{l} I_F = 10 \text{ °C} \\ I_F = 1$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c} \text{reverse breakdown} \\ \text{voltage} \\ \end{array} \begin{array}{c} I_R = 1 \text{ mA; } t_p = 300 \mu \text{s; } \delta = 0.02 \text{ ;} \\ T_j = 25 \text{ °C} \\ \end{array} \\ \end{array} \begin{array}{c} I_F = 1 \text{ mA; } t_p \leq 300 \mu \text{s; } \delta \leq 0.02 \text{ ;} \\ T_j = 25 \text{ °C} \\ \end{array} \\ \begin{array}{c} I_F = 10 \text{ mA; } t_p \leq 300 \mu \text{s; } \delta \leq 0.02 \text{ ;} \\ T_j = 25 \text{ °C} \\ \end{array} \\ \end{array} \begin{array}{c} - 270 \\ I_F = 100 \text{ mA; } t_p \leq 300 \mu \text{s; } \delta \leq 0.02 \text{ ;} \\ T_j = 25 \text{ °C} \\ \end{array} \\ \begin{array}{c} I_F = 100 \text{ mA; } t_p \leq 300 \mu \text{s; } \delta \leq 0.02 \text{ ;} \\ T_j = 25 \text{ °C} \\ \end{array} \\ \end{array} \begin{array}{c} - 340 \\ I_F = 200 \text{ mA; } t_p \leq 300 \mu \text{s; } \delta \leq 0.02 \text{ ;} \\ T_j = 25 \text{ °C} \\ \end{array} \\ \begin{array}{c} I_F = 500 \text{ mA; } t_p \leq 300 \mu \text{s; } \delta \leq 0.02 \text{ ;} \\ T_j = 25 \text{ °C} \\ \end{array} \begin{array}{c} - 430 \\ \end{array} \\ \end{array} \\ \begin{array}{c} I_F = 700 \text{ mA; } t_p \leq 300 \mu \text{s; } \delta \leq 0.02 \text{ ;} \\ T_j = 25 \text{ °C} \\ \end{array} \\ \begin{array}{c} I_F = 1 \text{ A; } t_p \leq 300 \mu \text{s; } \delta \leq 0.02 \text{ ;} \\ T_j = 25 \text{ °C} \\ \end{array} \begin{array}{c} - 510 \\ \end{array} \\ \end{array} \\ \begin{array}{c} F_T = 25 \text{ °C} \\ \end{array} \\ \end{array} \\ \begin{array}{c} I_F = 1 \text{ A; } t_p \leq 300 \mu \text{s; } \delta \leq 0.02 \text{ ;} \\ T_j = 25 \text{ °C} \\ \end{array} \begin{array}{c} - 510 \\ \end{array} \\ \end{array} \\ \begin{array}{c} I_F = 25 \text{ °C} \\ \end{array} \\ \end{array} \\ \begin{array}{c} I_F = 1 \text{ A; } t_p \leq 300 \mu \text{s; } \delta \leq 0.02 \text{ ;} \\ T_j = 25 \text{ °C} \\ \end{array} \begin{array}{c} - 510 \\ \end{array} \\ \end{array} \\ \begin{array}{c} I_F = 25 \text{ °C} \\ \end{array} \\ \begin{array}{c} I$	$ \begin{array}{c} \text{reverse breakdown} \\ \text{voltage} \\ \end{array} \begin{array}{c} I_R = 1 \text{ mA; } t_p = 300 \mu \text{s; } \delta = 0.02 ; \\ T_j = 25 ^\circ \text{C} \\ \end{array} \\ \end{array} \begin{array}{c} I_F = 1 \text{ mA; } t_p \leq 300 \mu \text{s; } \delta \leq 0.02 ; \\ T_j = 25 ^\circ \text{C} \\ \end{array} \\ \end{array} \begin{array}{c} I_F = 10 \text{ mA; } t_p \leq 300 \mu \text{s; } \delta \leq 0.02 ; \\ T_j = 25 ^\circ \text{C} \\ \end{array} \\ \end{array} \begin{array}{c} I_F = 10 \text{ mA; } t_p \leq 300 \mu \text{s; } \delta \leq 0.02 ; \\ T_j = 25 ^\circ \text{C} \\ \end{array} \\ \end{array} \begin{array}{c} I_F = 100 \text{ mA; } t_p \leq 300 \mu \text{s; } \delta \leq 0.02 ; \\ T_j = 25 ^\circ \text{C} \\ \end{array} \\ \end{array} \begin{array}{c} I_F = 200 \text{ mA; } t_p \leq 300 \mu \text{s; } \delta \leq 0.02 ; \\ T_j = 25 ^\circ \text{C} \\ \end{array} \begin{array}{c} I_F = 500 \text{ mA; } t_p \leq 300 \mu \text{s; } \delta \leq 0.02 ; \\ T_j = 25 ^\circ \text{C} \\ \end{array} \begin{array}{c} I_F = 500 \text{ mA; } t_p \leq 300 \mu \text{s; } \delta \leq 0.02 ; \\ T_j = 25 ^\circ \text{C} \\ \end{array} \begin{array}{c} I_F = 700 \text{ mA; } t_p \leq 300 \mu \text{s; } \delta \leq 0.02 ; \\ T_j = 25 ^\circ \text{C} \\ \end{array} \begin{array}{c} I_F = 700 \text{ mA; } t_p \leq 300 \mu \text{s; } \delta \leq 0.02 ; \\ T_j = 25 ^\circ \text{C} \\ \end{array} \begin{array}{c} I_F = 1 \text{ A; } t_p \leq 300 \mu \text{s; } \delta \leq 0.02 ; \\ T_j = 25 ^\circ \text{C} \\ \end{array} \begin{array}{c} I_F = 1 \text{ A; } t_p \leq 300 \mu \text{s; } \delta \leq 0.02 ; \\ I_F = 10 \text{ V; } t_p \leq 3 \text{ ms; } \delta \leq 0.3 ; \\ I_F = 25 ^\circ \text{C} \\ \end{array} \begin{array}{c} I_F = 10 $

Product data sheet 27 November 2015 5 / 14

40 V, 1 A low VF MEGA Schottky barrier rectifier

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		$V_R = 40 \text{ V}; t_p \le 3 \text{ ms}; \delta \le 0.3 ;$ $T_j = 25 \text{ °C}$	-	13	40	μΑ
C _d	diode capacitance	V _R = 1 V; f = 1 MHz; T _j = 25 °C	-	75	-	pF
		V _R = 10 V; f = 1 MHz; T _j = 25 °C	-	22	-	pF
t _{rr}	reverse recovery time	$I_F = 0.5 \text{ A}; I_R = 0.5 \text{ A}; I_{R(meas)} = 0.1 \text{ A};$ $T_j = 25 \text{ °C}$	-	2.9	-	ns


(1)
$$T_i = 150 \, ^{\circ}C$$

(2)
$$T_i = 125 \, ^{\circ}C$$

(3)
$$T_i = 85 \, ^{\circ}C$$

(4)
$$T_j = 25 \,^{\circ}\text{C}$$

(5) $T_i = -40 \,^{\circ}\text{C}$

Fig. 4. Forward current as a function of forward voltage; typical values

pulsed condition

(1)
$$T_i = 150 \, ^{\circ}C$$

(2)
$$T_i = 125 \,{}^{\circ}\text{C}$$

(3)
$$T_i = 85 \, ^{\circ}C$$

(4)
$$T_i = 25 \, ^{\circ}C$$

(5)
$$T_i = -40 \, ^{\circ}C$$

Fig. 5. Reverse current as a function of reverse voltage; typical values

40 V, 1 A low VF MEGA Schottky barrier rectifier

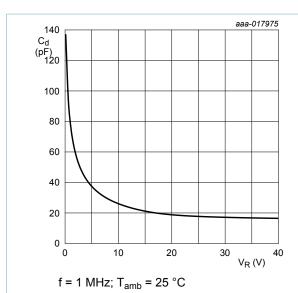
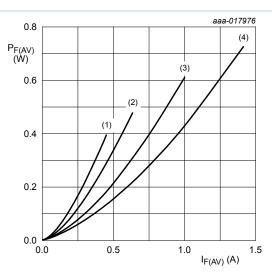
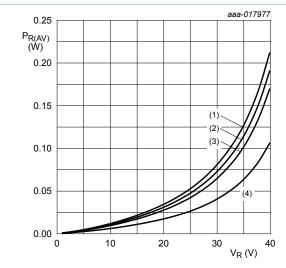



Fig. 6. Diode capacitance as a function of reverse voltage; typical values

 $T_j = 150 \,^{\circ}\text{C}$


 $(1) \delta = 0.1$

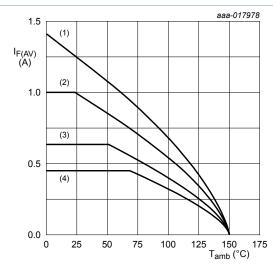
(2) $\delta = 0.2$

 $(3) \delta = 0.5$

 $(4) \delta = 1$

Fig. 7. Average forward power dissipation as a function of average forward current; typical values

 $T_j = 125 \,{}^{\circ}\text{C}$


 $(1) \delta = 1$

 $(2) \delta = 0.9$

 $(3) \delta = 0.8$

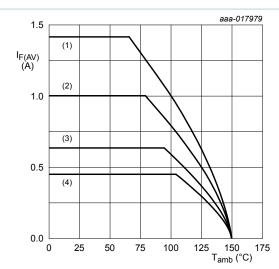
 $(4) \delta = 0.5$

Fig. 8. Average reverse power dissipation as a function of reverse voltage; typical values

FR4 PCB, standard footprint

T_i = 150 °C

(1) δ = 1; DC


(2) $\delta = 0.5$; f = 20 kHz

(3) δ = 0.2; f = 20 kHz

(4) $\delta = 0.1$; f = 20 kHz

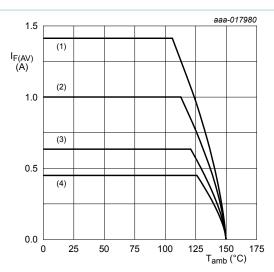
Fig. 9. Average forward current as a function of ambient temperature; typical values

40 V, 1 A low VF MEGA Schottky barrier rectifier

FR4 PCB, mounting pad for anode and cathode 1

cm² each

T_j = 150 °C


(1) δ = 1; DC

(2) δ = 0.5; f = 20 kHz

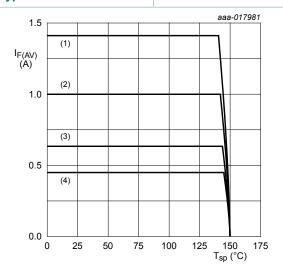
(3) $\delta = 0.2$; f = 20 kHz

(4) δ = 0.1; f = 20 kHz

Fig. 10. Average forward current as a function of ambient temperature; typical values

Ceramic PCB, Al₂O₃, standard footprint

T_i = 150 °C


(1) $\delta = 1$ (DC)

(2) δ = 0.5; f = 20 kHz

(3) $\delta = 0.2$; f = 20 kHz

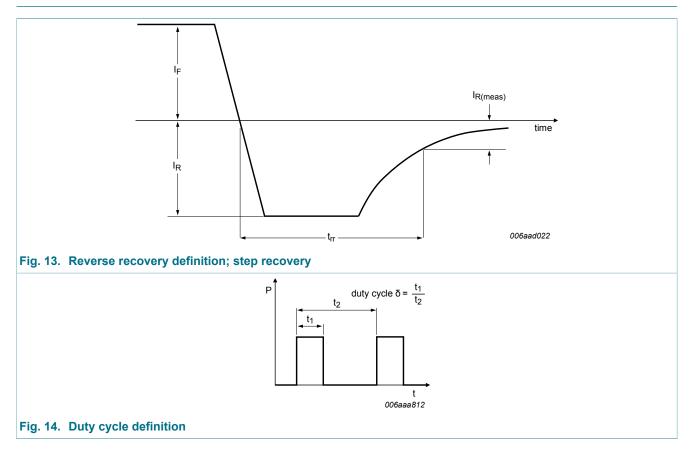
(4) δ = 0.1; f = 20 kHz

Fig. 11. Average forward current as a function of ambient temperature; typical values

T_i = 150 °C

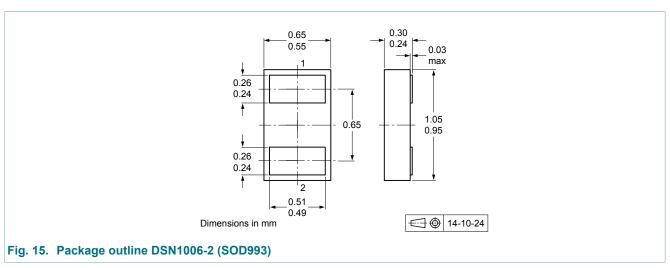
(1) $\delta = 1$ (DC)

(2) $\delta = 0.5$; f = 20 kHz


(3) $\delta = 0.2$; f = 20 kHz

(4) $\delta = 0.1$; f = 20 kHz

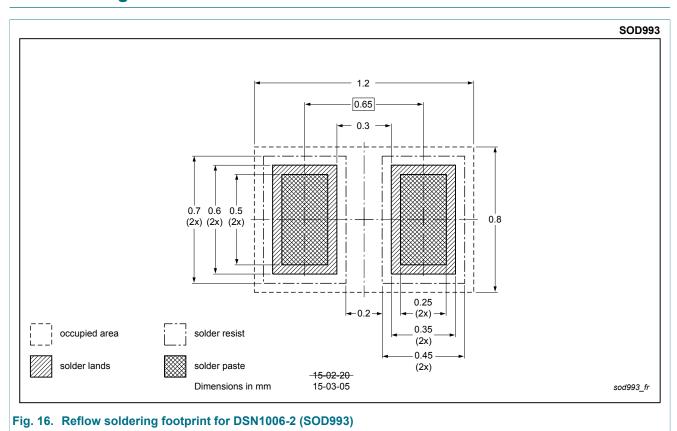
Fig. 12. Average forward current as a function of solder point temperature; typical values


40 V, 1 A low VF MEGA Schottky barrier rectifier

11. Test information

The current ratings for the typical waveforms are calculated according to the equations: $I_{F(AV)} = I_M \times \delta$ with I_M defined as peak current, $I_{RMS} = I_{F(AV)}$ at DC, and $I_{RMS} = I_M \times \sqrt{\delta}$ with I_{RMS} defined as RMS current.

12. Package outline


PMEG4010ESB

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserved

40 V, 1 A low VF MEGA Schottky barrier rectifier

13. Soldering

14. Mounting

SOD993 is an ultra small Discretes Silicon No-leads (DSN) package allowing maximized utilization of the package area for active silicon. Due to the special product design, Nexperia investigated the board assembly process parameters. In order to have an optimum soldering quality, Nexperia advises following the assembly recommendations explained in AN11689.

40 V, 1 A low VF MEGA Schottky barrier rectifier

15. Revision history

Table 8. Revision history

Data sheet ID	Release date	Data sheet status	Change notice	Supersedes
PMEG4010ESB v.3	20151127	Product data sheet	-	PMEG4010ESB v.2
Modifications:	Added section "Mou	unting"		
PMEG4010ESB v.2	20150624	Product data sheet	-	PMEG4010ESB v.1
PMEG4010ESB v.1	20150512	Preliminary data sheet	-	-

40 V, 1 A low VF MEGA Schottky barrier rectifier

16. Legal information

16.1 Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

16.2 Definitions

Preview — The document is a preview version only. The document is still subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the

PMEG4010ESB

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserved

40 V, 1 A low VF MEGA Schottky barrier rectifier

grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of nonautomotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

40 V, 1 A low VF MEGA Schottky barrier rectifier

17. Contents

1	General description	1
2	Features and benefits	1
3	Applications	1
4	Quick reference data	1
5	Pinning information	2
6	Ordering information	2
7	Marking	2
8	Limiting values	3
9	Thermal characteristics	3
10	Characteristics	5
11	Test information	9
12	Package outline	9
13	Soldering	10
14	Mounting	10
15	Revision history	11
16	Legal information	12
16.1	Data sheet status	12
16.2	Definitions	12
16.3	Disclaimers	12
16.4	Trademarks	13

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 27 November 2015

[©] Nexperia B.V. 2017. All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Schottky Diodes & Rectifiers category:

Click to view products by Nexperia manufacturer:

Other Similar products are found below:

MA4E2039 D1FH3-5063 MBR10100CT-BP MBR1545CT MMBD301M3T5G RB160M-50TR RB551V-30 BAS16E6433HTMA1 BAT
54-02LRH E6327 NSR05F40QNXT5G NTE555 JANS1N6640 SB07-03C-TB-H SK310-T SK32A-LTP SK33A-TP SK34B-TP SS3003CHTL-E GA01SHT18 CRS10I30A(TE85L,QM MA4E2501L-1290 MBRA140TRPBF MBRB30H30CT-1G SB007-03C-TB-E SK32A-TP
SK33B-TP SK35A-TP SK38B-TP NRVBM120LT1G NTE505 NTSB30U100CT-1G SS15E-TP VS-6CWQ10FNHM3 ACDBA1100LR-HF
ACDBA1200-HF ACDBA140-HF ACDBA2100-HF ACDBA3100-HF CDBQC0530L-HF CDBQC0240LR-HF ACDBA340-HF
ACDBA260LR-HF ACDBA1100-HF SK310B-TP MA4E2502L-1246 MA4E2502H-1246 NRVBM120ET1G NSR01L30MXT5G NTE573
NTE6081