

N-channel 25 V 1.15 m Ω logic level MOSFET in LFPAK using NextPower technology

Rev. 1 — 2 May 2011

Product data sheet

1. Product profile

1.1 General description

Logic level enhancement mode N-channel MOSFET in LFPAK package. This product is designed and qualified for use in a wide range of industrial, communications and domestic equipment.

1.2 Features and benefits

- High reliability Power SO8 package, qualified to 175°C
- Optimised for 4.5V Gate drive utilising NextPower Superjunction technology

1.3 Applications

- DC-to-DC converters
- Lithium-ion battery protection
- Load switching

1.4 Quick reference data

Table 1. Quick reference data

- Ultra low QG, QGD and QOSS for high system efficiencies at low and high loads
- Ultra low Rdson and low parasitic inductance
- Power OR-ing
- Server power supplies
- Sync rectifier

Table 1.	Quick reference data					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DS}	drain-source voltage	25 °C ≤ T _j ≤ 175 °C	-	-	25	V
I _D	drain current	T_{mb} = 25 °C; V_{GS} = 10 V; see <u>Figure 1</u>	<u>[1]</u> _	-	100	A
P _{tot}	total power dissipation	T _{mb} = 25 °C; see Figure 2	-	-	215	W
Tj	junction temperature		-55	-	175	°C
Static cha	aracteristics					
R _{DSon} drain-source on-state resistance	drain-source on-state resistance	V _{GS} = 4.5 V; I _D = 25 A; T _j = 25 °C; see <u>Figure 12</u>	-	1.2	1.5	mΩ
		V _{GS} = 10 V; I _D = 25 A; T _j = 25 °C; see <u>Figure 12</u>	-	0.95	1.15	mΩ

N-channel 25 V 1.15 m Ω logic level MOSFET in LFPAK using

Table 1.	Quick reference data	continued				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Dynamic	characteristics					
Q_{GD}	gate-drain charge	$\label{eq:VGS} \begin{array}{l} V_{GS} = 4.5 \ \text{V;} \ \text{I}_{D} = 25 \ \text{A;} \\ V_{DS} = 12 \ \text{V;} \ \text{see} \ \underline{\text{Figure 14}}; \\ \text{see} \ \underline{\text{Figure 15}} \end{array}$	-	11	-	nC
Q _{G(tot)}	total gate charge	V_{GS} = 4.5 V; I_D = 25 A; V_{DS} = 12 V; see <u>Figure 15</u> ; see <u>Figure 14</u>	-	39	-	nC

[1] Continuous current is limited by package.

2. Pinning information

Table 2.Pinning information

Pin	Symbol	Description	Simplified outline	Graphic symbol
1	S	source		5
2	S	source	mb	
3	S	source		
4	G	gate	Q	
mb	D	mounting base; connected to drain	$\begin{array}{c} \hline \\ \hline \\ 1 \\ 2 \\ 3 \\ 4 \\ \end{array}$	mbb076 S
			SOT669 (LFPAK; Power-SO8)	

3. Ordering information

Table 3. Ordering information						
Type number	Package					
	Name	Description	Version			
PSMN1R1-25YLC	LFPAK; Power-SO8	plastic single-ended surface-mounted package; 4 leads	SOT669			

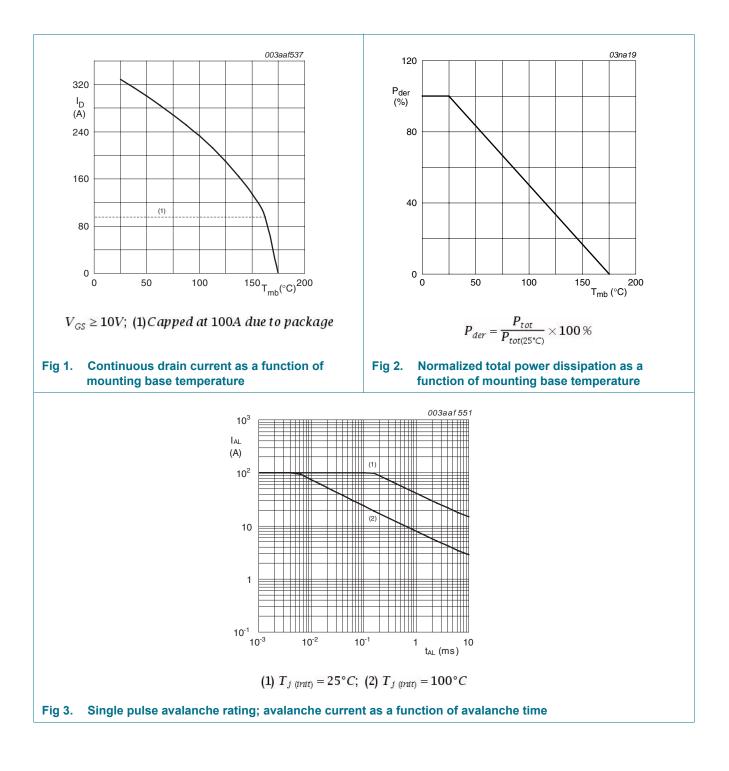
4. Marking

Table 4. Marking codes	
Type number	Marking code ^[1]
PSMN1R1-25YLC	1C125L

[1] % = placeholder for manufacturing site code.

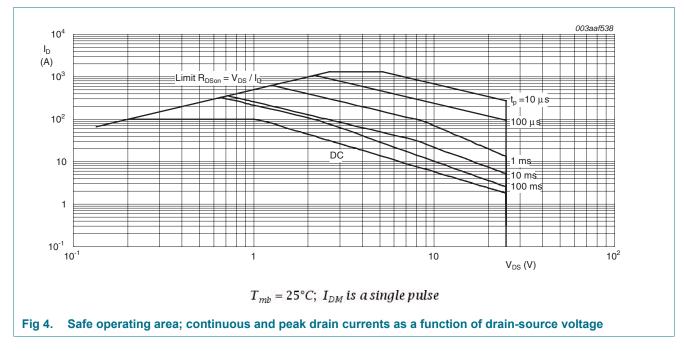
N-channel 25 V 1.15 m Ω logic level MOSFET in LFPAK using

5. Limiting values

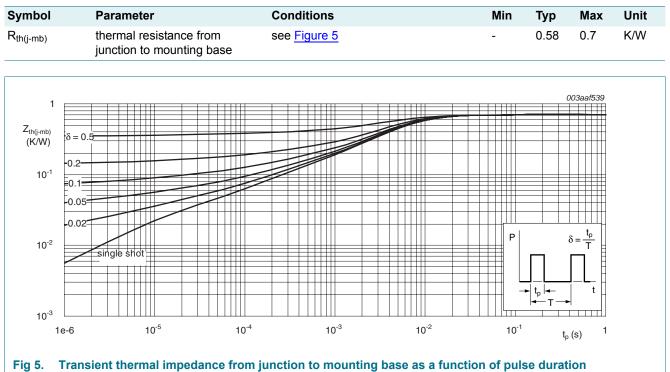

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Мах	Unit
V _{DS}	drain-source voltage	25 °C ≤ T _j ≤ 175 °C	-	25	V
V _{DGR}	drain-gate voltage	25 °C ≤ T _j ≤ 175 °C; R _{GS} = 20 kΩ	-	25	V
V _{GS}	gate-source voltage		-20	20	V
I _D	drain current	V_{GS} = 10 V; T_{mb} = 25 °C; see <u>Figure 1</u> [1]	-	100	А
		V_{GS} = 10 V; T_{mb} = 100 °C; see <u>Figure 1</u> [1]	-	100	А
I _{DM}	peak drain current	pulsed; t _p ≤ 10 µs; T _{mb} = 25 °C; see <u>Figure 4</u>	-	1318	А
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	215	W
T _{stg}	storage temperature		-55	175	°C
Tj	junction temperature		-55	175	°C
$T_{sld(M)}$	peak soldering temperature		-	260	°C
V _{ESD}	electrostatic discharge voltage	MM (JEDEC JESD22-A115)	810	-	V
Source-drai	n diode				
I _S	source current	T _{mb} = 25 °C	-	100	А
I _{SM}	peak source current	pulsed; $t_p \le 10 \ \mu s$; $T_{mb} = 25 \ ^{\circ}C$	-	1318	А
Avalanche r	uggedness				
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	$ V_{GS} = 10 \text{ V}; \text{T}_{j(init)} = 25 ^{\circ}\text{C}; \text{I}_{\text{D}} = 100 \text{ A}; \\ V_{sup} \leq 25 \text{ V}; \text{ unclamped}; \text{R}_{\text{GS}} = 50 \Omega; \\ see \underline{\text{Figure 3}} $	-	253	mJ
				-	-


[1] Continuous current is limited by package.

PSMN1R1-25YLC

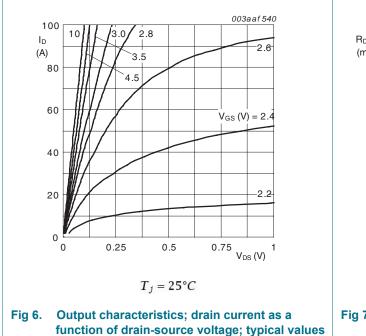

PSMN1R1-25YLC

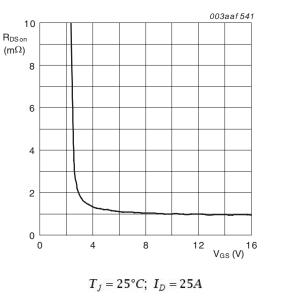
N-channel 25 V 1.15 m Ω logic level MOSFET in LFPAK using

6. Thermal characteristics

Table 6.Thermal characteristics

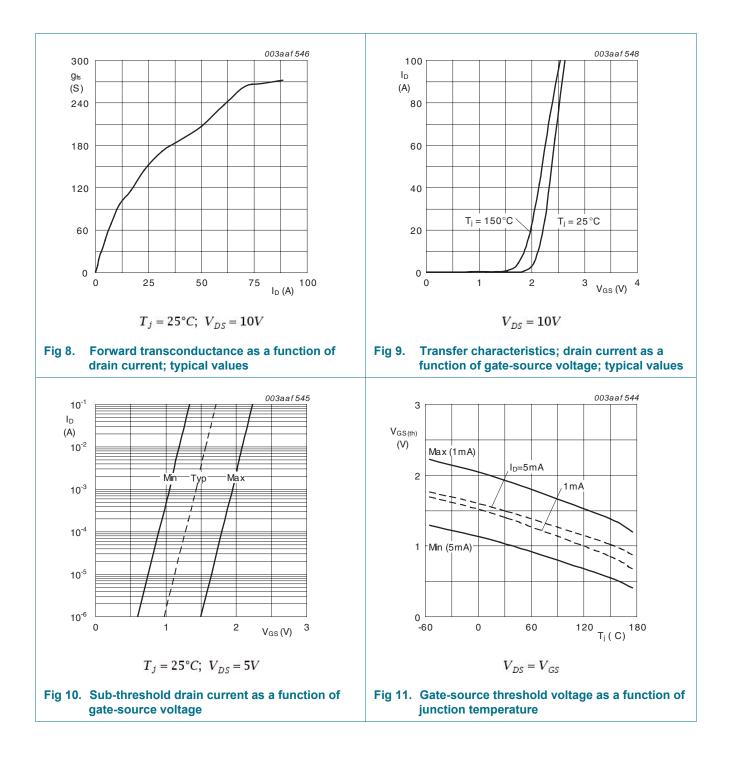
N-channel 25 V 1.15 m Ω logic level MOSFET in LFPAK using

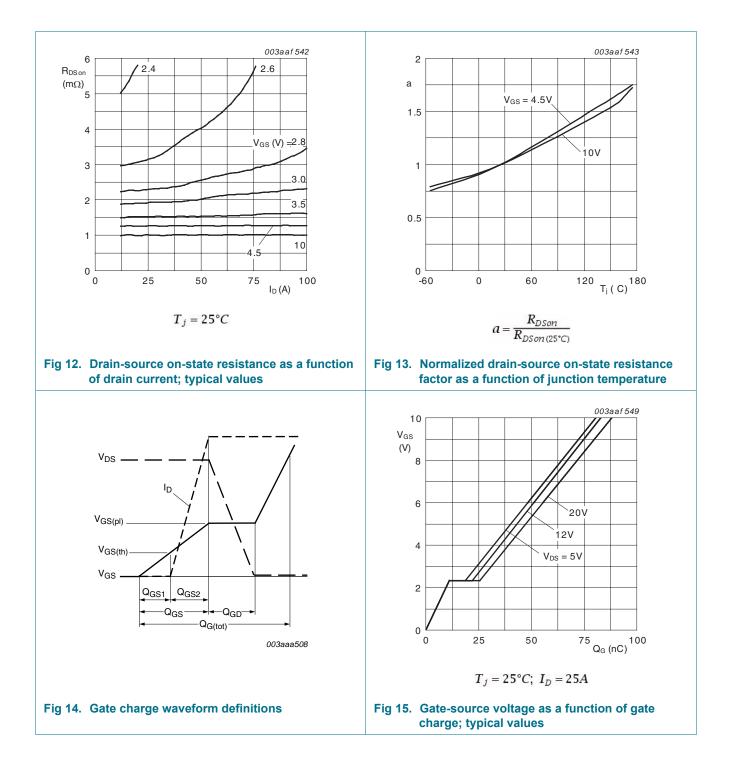

7. Characteristics

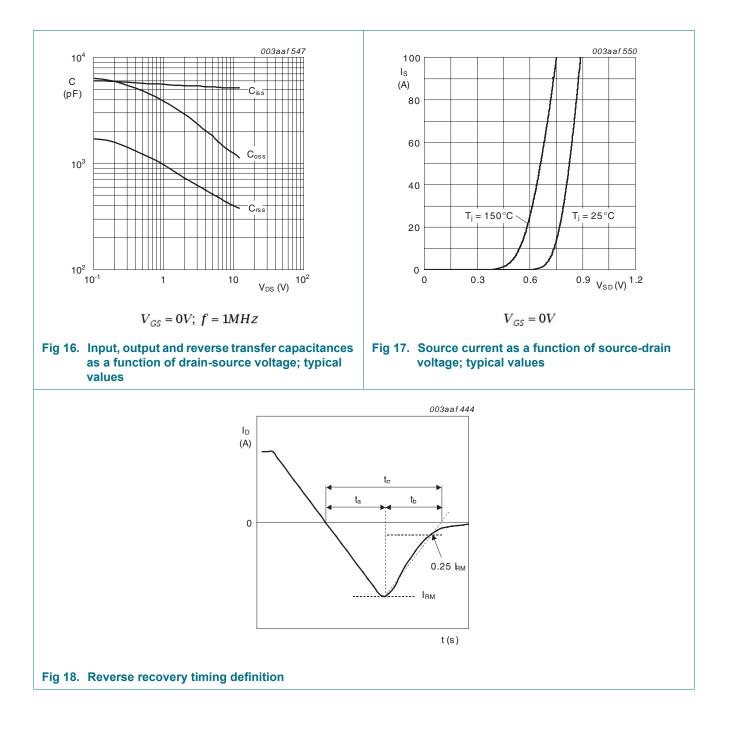

rameter ics in-source akdown voltage e-source threshold rage in leakage current	Conditions $I_D = 250 \ \mu A; \ V_{GS} = 0 \ V; \ T_j = 25 \ ^C$ $I_D = 250 \ \mu A; \ V_{GS} = 0 \ V; \ T_j = -55 \ ^C$ $I_D = 1 \ mA; \ V_{DS} = V_{GS}; \ T_j = 25 \ ^C;$ see Figure 10; see Figure 11 $I_D = 10 \ mA; \ V_{DS} = V_{GS}; \ T_j = 150 \ ^C$ $I_D = 1 \ mA; \ V_{DS} = V_{GS}; \ T_j = -55 \ ^C$	Min 25 22.5 1.05 0.5	Typ 1.43	Max - - 1.95	Unit V V V
in-source akdown voltage e-source threshold age	$I_{D} = 250 \ \mu\text{A}; \ V_{GS} = 0 \ V; \ T_{j} = -55 \ ^{\circ}\text{C}$ $I_{D} = 1 \ \text{mA}; \ V_{DS} = V_{GS}; \ T_{j} = 25 \ ^{\circ}\text{C};$ see <u>Figure 10</u> ; see <u>Figure 11</u> $I_{D} = 10 \ \text{mA}; \ V_{DS} = V_{GS}; \ T_{j} = 150 \ ^{\circ}\text{C}$	22.5 1.05	-	-	V
akdown voltage e-source threshold age	$I_{D} = 250 \ \mu\text{A}; \ V_{GS} = 0 \ V; \ T_{j} = -55 \ ^{\circ}\text{C}$ $I_{D} = 1 \ \text{mA}; \ V_{DS} = V_{GS}; \ T_{j} = 25 \ ^{\circ}\text{C};$ see <u>Figure 10</u> ; see <u>Figure 11</u> $I_{D} = 10 \ \text{mA}; \ V_{DS} = V_{GS}; \ T_{j} = 150 \ ^{\circ}\text{C}$	22.5 1.05	-	-	V
age	$I_{D} = 1 \text{ mA}; V_{DS} = V_{GS}; T_{j} = 25 \text{ °C};$ see <u>Figure 10</u> ; see <u>Figure 11</u> $I_{D} = 10 \text{ mA}; V_{DS} = V_{GS}; T_{j} = 150 \text{ °C}$	1.05			-
age	see <u>Figure 10</u> ; see <u>Figure 11</u> $I_D = 10 \text{ mA}; V_{DS} = V_{GS}; T_j = 150 \text{ °C}$		1.43	1.95	
in leakage current	,	05			v
in leakage current	In = 1 mA: Vns = Vns: Ti = -55 °C	0.0	-	-	V
in leakage current	b , bo oo, j	-	-	2.25	V
	V_{DS} = 25 V; V_{GS} = 0 V; T_j = 25 °C	-	-	1	μA
	V_{DS} = 25 V; V_{GS} = 0 V; T_j = 150 °C	-	-	100	μA
e leakage current	V_{GS} = 16 V; V_{DS} = 0 V; T_j = 25 °C	-	-	100	nA
	V _{GS} = -16 V; V _{DS} = 0 V; T _j = 25 °C	-	-	100	nA
	V _{GS} = 4.5 V; I _D = 25 A; T _j = 25 °C; see <u>Figure 12</u>	-	1.2	1.5	mΩ
	V_{GS} = 4.5 V; I _D = 25 A; T _j = 150 °C; see Figure 13; see Figure 12	-	-	2.45	mΩ
	V _{GS} = 10 V; I _D = 25 A; T _j = 25 °C;	-	0.95	1.15	mΩ
	V _{GS} = 10 V; I _D = 25 A; T _j = 150 °C;	-	-	1.8	mΩ
te resistance	f = 1 MHz	_	1.1	2.2	Ω
Il gate charge	$I_D = 25 \text{ A}; V_{DS} = 12 \text{ V}; V_{GS} = 10 \text{ V};$ see Figure 14; see Figure 15	-	83	-	nC
	I_D = 25 A; V_{DS} = 12 V; V_{GS} = 4.5 V; see Figure 15; see Figure 14	-	39	-	nC
	I_D = 0 A; V_{DS} = 0 V; V_{GS} = 10 V	-	75	-	nC
e-source charge	I _D = 25 A; V _{DS} = 12 V; V _{GS} = 4.5 V;	-	11	-	nC
	see Figure 14; see Figure 15	-	8.2	-	nC
st-threshold		-	2.9	-	nC
•		_	11	-	nC
e-source plateau	I_D = 25 A; V_{DS} = 12 V; see <u>Figure 14</u> ; see Figure 15	-	2.3	-	V
•		_	5287	_	pF
-	$T_j = 25 \text{ °C}; \text{ see } \frac{\text{Figure 16}}{16}$	_		-	pF
erse transfer		-	406	-	pF
	$V_{-0} = 12 V_{1} P_{1} = 0.5 O_{1} V_{-1} = 4.5 V_{1}$		35		20
•		-		-	ns
		-		-	ns
· ·		-		-	ns
time		-	36	-	ns
	All information provided in this document is subject to legal disclaimers.		© Nexpe	ria B.V. 2017.	All rights res
	e leakage current in-source on-state istance te resistance ristics al gate charge e-source charge e-source charge e-threshold e-source charge e-drain charge e-drain charge e-drain charge e-drain charge e-source plateau tage ut capacitance put capacitance erse transfer pacitance n-on delay time e time h-off delay time time	e leakage current $\frac{V_{GS} = 16 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 ^{\circ}\text{C}}{V_{GS} = -16 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 ^{\circ}\text{C}}$ $\frac{V_{GS} = -16 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 ^{\circ}\text{C}}{V_{GS} = -16 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 ^{\circ}\text{C}};$ see Figure 12 $V_{GS} = 4.5 \text{ V}; I_D = 25 \text{ A}; T_j = 150 ^{\circ}\text{C};$ see Figure 13; see Figure 12 $V_{GS} = 10 \text{ V}; I_D = 25 \text{ A}; T_j = 25 ^{\circ}\text{C};$ see Figure 13; see Figure 12 $V_{GS} = 10 \text{ V}; I_D = 25 \text{ A}; T_j = 150 ^{\circ}\text{C};$ see Figure 13; see Figure 12 $V_{GS} = 10 \text{ V}; I_D = 25 \text{ A}; T_j = 150 ^{\circ}\text{C};$ see Figure 13; see Figure 12 te resistance f = 1 MHz $\frac{I_D = 25 \text{ A}; V_{DS} = 12 \text{ V}; V_{GS} = 10 \text{ V};$ see Figure 14; see Figure 15 $I_D = 25 \text{ A}; V_{DS} = 12 \text{ V}; V_{GS} = 4.5 \text{ V};$ see Figure 15; see Figure 14 $I_D = 0 \text{ A}; V_{DS} = 0 \text{ V}; V_{GS} = 4.5 \text{ V};$ see Figure 14; see Figure 15 $\frac{I_D = 25 \text{ A}; V_{DS} = 12 \text{ V}; V_{GS} = 4.5 \text{ V};$ see Figure 14; see Figure 15 $\frac{I_D = 25 \text{ A}; V_{DS} = 12 \text{ V}; V_{GS} = 4.5 \text{ V};$ see Figure 14; see Figure 15 $\frac{I_D = 25 \text{ A}; V_{DS} = 12 \text{ V}; V_{GS} = 4.5 \text{ V};$ see Figure 14; see Figure 15 $\frac{I_D = 25 \text{ A}; V_{DS} = 12 \text{ V}; \text{ V}; \text{ Se} = 4.5 \text{ V};$ see Figure 14; see Figure 15 $\frac{I_D = 25 \text{ A}; V_{DS} = 12 \text{ V}; \text{ V}; \text{ Se} = 10 \text{ V};$ see Figure 15 $\frac{I_D = 25 \text{ A}; V_{DS} = 12 \text{ V}; \text{ V}; \text{ Se} = 4.5 \text{ V};$ see Figure 14; see Figure 15 $\frac{I_D = 25 \text{ A}; V_{DS} = 12 \text{ V}; \text{ Se} = 12 \text{ V}; \text{ Se} = 12 \text{ V}; \text{ Se} = 12 \text{ V};$ see Figure 15 $\frac{I_D = 25 \text{ C}; \text{ Se} \text{ Figure 16}}{\frac{I_D = 25 \text{ C}; \text{ Se} \text{ Figure 16}}{\frac{I_D = 25 \text{ C}; \text{ Se} \text{ Figure 16}}{\frac{I_D = 25 \text{ C}; \text{ Se} \text{ Figure 16}}{\frac{I_D = 25 \text{ C}; \text{ Se} \text{ Figure 16}}{\frac{I_D = 25 \text{ C}; \text{ Se} \text{ Figure 16}}{\frac{I_D = 25 ^{\circ} \text{ C}; \text{ Se} \text{ Figure 16}}{\frac{I_D = 25 ^{\circ} \text{ C}; \text{ Se} \text{ Figure 16}}{\frac{I_D = 25 ^{\circ} \text{ C}; \text{ Se} \text{ Figure 16}}{\frac{I_D = 12 \text{ V}; \text{ R}_L = 0.5 \Omega; \text{ V}_{GS} = 4.5 \text{ V};}{\frac{I_D = 12 \text{ V}; \text{ R}_L = 0.5 \Omega; \text{ V}_{GS} = 4.5 \text{ V};}{I_D = 12 \text{$			

N-channel 25 V 1.15 m Ω logic level MOSFET in LFPAK using

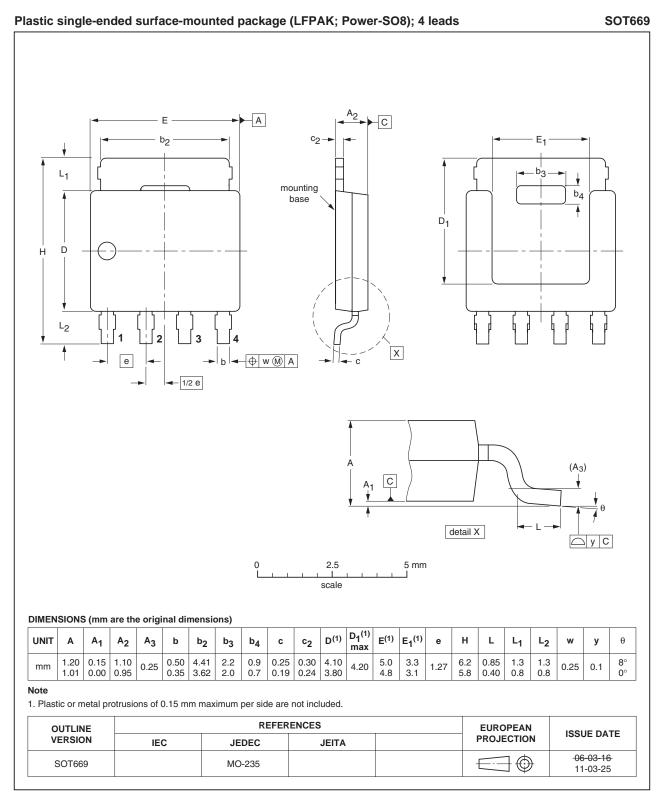
Table 7.	Characteristics continued					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Q _{oss}	output charge	V _{GS} = 0 V; V _{DS} = 12 V; f = 1 MHz; T _j = 25 °C	-	22.6	-	nC
Source-d	rain diode					
V_{SD}	source-drain voltage	I _S = 25 A; V _{GS} = 0 V; T _j = 25 °C; see <u>Figure 17</u>	-	0.8	1.1	V
t _{rr}	reverse recovery time	I _S = 25 A; dI _S /dt = -100 A/μs; V _{GS} = 0 V;	-	43	-	ns
Q _r	recovered charge	V _{DS} = 12 V	-	42	-	nC
t _a	reverse recovery rise time	V _{GS} = 0 V; I _S = 25 A; dI _S /dt = -100 A/µs; V _{DS} = 12 V; see <u>Figure 18</u>	-	25	-	ns
t _b	reverse recovery fall time		-	18	-	ns


Table 7. Characteristics ...continued




PSMN1R1-25YLC

PSMN1R1-25YLC



PSMN1R1-25YLC

N-channel 25 V 1.15 m Ω logic level MOSFET in LFPAK using

8. Package outline

Fig 19. Package outline SOT669 (LFPAK; Power-SO8)

PSMN1R1-25YLC Product data sheet

N-channel 25 V 1.15 m Ω logic level MOSFET in LFPAK using

9. Revision history

Table 8. Revision h	Revision history					
Document ID	Release date	Data sheet status	Change notice	Supersedes		
PSMN1R1-25YLC v.1	20110502	Product data sheet	-	-		

10. Legal information

10.1 Data sheet status

Document status [1] [2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <u>http://www.nexperia.com</u>.

10.2 Definitions

Preview — The document is a preview version only. The document is still subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

10.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

N-channel 25 V 1.15 m Ω logic level MOSFET in LFPAK using

Terms and conditions of commercial sale — Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of

non-automotive qualified products in automotive equipment or applications.

11. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

10.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

N-channel 25 V 1.15 m Ω logic level MOSFET in LFPAK using

12. Contents

1	Product profile1
1.1	General description1
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data1
2	Pinning information2
3	Ordering information2
4	Marking
5	Limiting values
6	Thermal characteristics5
7	Characteristics6
8	Package outline11
9	Revision history12
10	Legal information13
10.1	Data sheet status
10.2	Definitions
10.3	Disclaimers
10.4	Trademarks14
11	Contact information14

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Nexperia manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C IPS70R2K0CEAKMA1 BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 US6M2GTR TK10A80W,S4X(S SSM6P69NU,LF