

PSMN7R0-100ES

N-channel 100V 6.8 $\mbox{m}\Omega$ standard level MOSFET in I2PAK.

Rev. 03 — 23 February 2010

Product data sheet

1. Product profile

1.1 General description

Standard level N-channel MOSFET in I2PAK package qualified to 175C. This product is designed and qualified for use in a wide range of industrial, communications and domestic equipment.

1.2 Features and benefits

- High efficiency due to low switching and conduction losses
- Suitable for standard level gate drive

1.3 Applications

- DC-to-DC converters
- Load switching

- Motor control
- Server power supplies

1.4 Quick reference data

Table 1. Quick reference

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V_{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C		-	-	100	V
I_D	drain current	T_{mb} = 25 °C; V_{GS} = 10 V; see <u>Figure 1</u>	[1]	-	-	100	Α
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>		-	-	269	W
Tj	junction temperature			-55	-	175	°C
Avalanc	he ruggedness						
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	V_{GS} = 10 V; $T_{j(init)}$ = 25 °C; I_D = 100 A; V_{sup} ≤ 100 V; unclamped; R_{GS} = 50 Ω		-	-	315	mJ
Dynamic	characteristics						
Q_{GD}	gate-drain charge	V_{GS} = 10 V; I_D = 25 A; V_{DS} = 50 V; see <u>Figure 15</u> and <u>14</u>		-	36	-	nC
Q _{G(tot)}	total gate charge	V_{GS} = 10 V; I_D = 25 A; V_{DS} = 50 V; see Figure 14 and 15		-	125	-	nC

Table 1. Quick reference

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static c	haracteristics					
R _{DSon}	drain-source on-state resistance	$V_{GS} = 10 \text{ V}; I_D = 15 \text{ A};$ $T_j = 100 \text{ °C}; \text{ see } \frac{\text{Figure } 12}{}$	-	-	12	mΩ
		$V_{GS} = 10 \text{ V}; I_D = 15 \text{ A};$ $T_j = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 13}{}$	-	5.4	6.8	mΩ

^[1] Continuous current is limited by package

2. Pinning information

Table 2. Pinning information

Pin	Symbol	Description	Simplified outline	Graphic symbol
1	G	gate		
2	D	drain	mb	D
3	S	source		
mb		mounting base; connected to drain		mbb076 S
			SOT226 (I2PAK)	

3. Ordering information

Table 3. Ordering information

Type number	Package				
	Name	Description	Version		
PSMN7R0-100ES	I2PAK	plastic single-ended package (I2PAK); TO-262	SOT226		

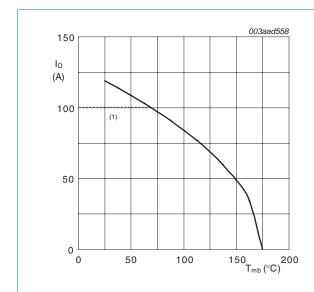
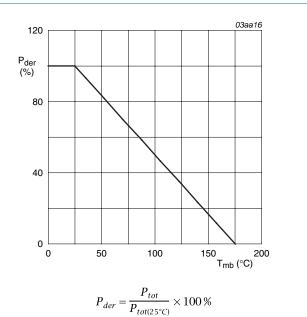
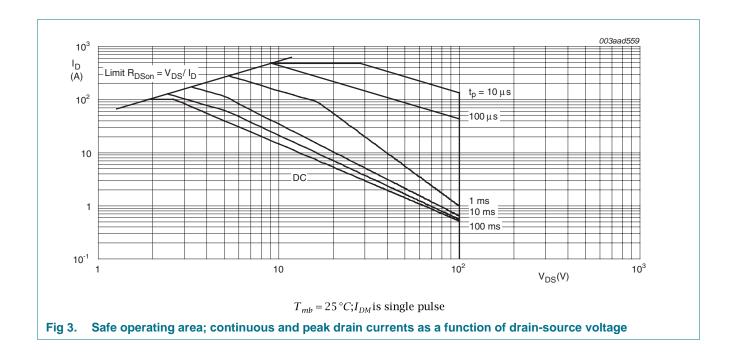

4. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).


Symbol	Parameter	Conditions		Min	Max	Unit
V_{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C		-	100	V
V_{DGR}	drain-gate voltage	$T_j \le 175$ °C; $T_j \ge 25$ °C; $R_{GS} = 20$ kΩ		-	100	V
V_{GS}	gate-source voltage			-20	20	V
I _D	drain current	V _{GS} = 10 V; T _{mb} = 100 °C; see <u>Figure 1</u>		-	85	Α
		$V_{GS} = 10 \text{ V}; T_{mb} = 25 \text{ °C}; \text{ see } \frac{\text{Figure 1}}{}$	<u>[1]</u>	-	100	Α
I _{DM}	peak drain current	$t_p \le 10 \mu\text{s}; \text{ pulsed}; T_{mb} = 25 ^{\circ}\text{C}; \text{ see } \underline{\text{Figure 3}}$		-	475	Α
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>		-	269	W
T _{stg}	storage temperature			-55	175	°C
Tj	junction temperature			-55	175	°C
$T_{sld(M)}$	peak soldering temperature			-	260	°C
Source-dr	ain diode					
Is	source current	T _{mb} = 25 °C;	<u>[1]</u>	-	100	Α
I _{SM}	peak source current	$t_p \le 10 \ \mu s$; pulsed; $T_{mb} = 25 \ ^{\circ}C$		-	475	Α
Avalanche	e ruggedness					
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	V_{GS} = 10 V; $T_{j(init)}$ = 25 °C; I_D = 100 A; $V_{sup} \le$ 100 V; unclamped; R_{GS} = 50 Ω		-	315	mJ
		•				

[1] Continuous current is limited by package



 $V_{GS} \ge 10 \text{ V}$; (1) capped at 100 A due to package.

Fig 1. Continuous drain current as a function of mounting base temperature

g 2. Normalized total power dissipation as a function of mounting base temperature

5. Thermal characteristics

Table 5. Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-mb)}$	thermal resistance from junction to mounting base	see Figure 4	-	0.3	0.56	K/W
$R_{th(j-a)}$	thermal resistance from junction to ambient	vertical in free air	-	60	-	K/W

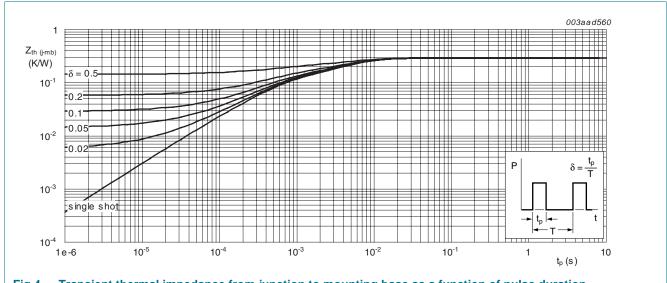


Fig 4. Transient thermal impedance from junction to mounting base as a function of pulse duration

6. Characteristics

Table 6. Characteristics

Variety Var	Table 6.	Characteristics					
$ \begin{array}{c} V_{(BR)DSS} \\ V_{GS(Ih)} \\ V_{GS(Ih)} \\ V_{GS(Ih)} \\ V_{OS(Ih)} \\ V_{OS(Ih)$	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Vosition	Static cha	racteristics					
Vosition	V _{(BR)DSS}	drain-source	$I_D = 0.25 \text{ mA}; V_{GS} = 0 \text{ V}; T_j = -55 \text{ °C}$	90	-	-	V
		breakdown voltage	$I_D = 0.25 \text{ mA}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$	100	-	-	V
Description	V _{GS(th)}	gate-source threshold	$I_D = 1 \text{ mA}$; $V_{DS} = V_{GS}$; $T_j = 175 \text{ °C}$; see Figure 10	1	-	-	V
$\begin{array}{c} l_{DSS} & drain leakage current \\ l_{DSS} & drain leakage current \\ l_{DSS} & pate leakage current \\ l_{DSS} & gate leakage current \\ l_{DSS} & gate leakage current \\ l_{DSS} & gate leakage current \\ l_{DSS} & l_{DS} \\ l_{DSS} & l_{DS} & l_{DS} & l_{DS} & l_{DS} & l_{DS} & l_{DS} \\ l_{DSS} & l_{DS} & l_{DS} & l_{DS} & l_{DS} & l_{DS} & l_{DS} \\ l_{DSS} & l_{DS} & l_{DS} & l_{DS} & l_{DS} & l_{DS} \\ l_{DSS} & l_{DS} & l_{DS} & l_{DS} & l_{DS} & l_{DS} \\ l_{DSS} & l_{DS} & l_{DS} & l_{DS} & l_{DS} & l_{DS} \\ l_{DSS} & l_{DS} & l_{DS} & l_{DS} & l_{DS} \\ l_{DS} & l_{DS} & l_{DS} \\ l_{DS} & l_{DS} & l_{DS} & l_{DS} \\ l_{DS} & l_{DS$		voltage		2	3	4	V
$V_{DS} = 100 \text{ V; } V_{OS} = 0 \text{ V; } T_j = 25 \text{ °C} \qquad -0.088 4 \qquad \mu A$ I_{GSS} gate leakage current $V_{GS} = 20 \text{ V; } V_{DS} = 0 \text{ V; } T_j = 25 \text{ °C} \qquad -10 100 nA$ $V_{GS} = 20 \text{ V; } V_{DS} = 0 \text{ V; } T_j = 25 \text{ °C} \qquad -10 100 nA$ $V_{GS} = -20 \text{ V; } V_{DS} = 0 \text{ V; } T_j = 25 \text{ °C} \qquad -10 100 nA$ $V_{GS} = 10 \text{ V; } I_D = 15 \text{ A; } T_j = 100 \text{ °C; see Figure 12} \qquad -12 12 m\Omega$ $V_{GS} = 10 \text{ V; } I_D = 15 \text{ A; } T_j = 175 \text{ °C; see Figure 12} \qquad -15 19 m\Omega$ $V_{GS} = 10 \text{ V; } I_D = 15 \text{ A; } T_j = 175 \text{ °C; see Figure 12} \qquad -15 46.8 m\Omega$ $V_{GS} = 10 \text{ V; } I_D = 15 \text{ A; } T_j = 25 \text{ °C; see Figure 12} \qquad -15 46.8 m\Omega$ $V_{GS} = 10 \text{ V; } I_D = 15 \text{ A; } T_j = 25 \text{ °C; see Figure 13} \qquad -15.4 6.8 m\Omega$ $V_{GS} = 10 \text{ V; } I_D = 15 \text{ A; } T_J = 25 \text{ °C; see Figure 14} \qquad -125 -10.7 \Omega$ $V_{GS} = 10 \text{ V; } I_D = 15 \text{ A; } T_J = 25 \text{ °C; see Figure 14} \qquad -125 -10.7 \Omega$ $V_{GS} = 10 \text{ V; } I_D = 15 \text{ A; } I_D = 25 \text{ A; } V_{DS} = 50 \text{ V; } V_{GS} = 10 \text{ V; see Figure 14} \qquad -125 -10.7 \Omega$ $V_{GS} = 10 \text{ V; } I_D = 10 \text{ A; } V_D = 10 \text{ V; See Figure 15} \qquad -100 -1$			$I_D = 1 \text{ mA}$; $V_{DS} = V_{GS}$; $T_j = -55 \text{ °C}$; see Figure 10	-	-	4.8	V
$ \begin{array}{c} l_{GSS} \\ l_{GSS} $	I _{DSS}	drain leakage current	$V_{DS} = 100 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 125 \text{ °C}$	-	-	150	μΑ
$V_{GS} = -20 \text{ V; } V_{DS} = 0 \text{ V; } T_j = 25 \text{ °C} \qquad - \qquad 10 \qquad 100 \qquad \text{nA}$ $R_{DSon} \qquad \text{drain-source on-state} \qquad V_{GS} = 10 \text{ V; } I_D = 15 \text{ A; } T_j = 100 \text{ °C; see } \frac{\text{Figure } 12}{\text{Figure } 12} \qquad - \qquad 12 \qquad \text{m}\Omega$ $V_{GS} = 10 \text{ V; } I_D = 15 \text{ A; } T_j = 175 \text{ °C; see } \frac{\text{Figure } 12}{\text{Figure } 13} \qquad - \qquad 5.4 \qquad 6.8 \qquad \text{m}\Omega$ $R_G \qquad \text{internal gate resistance} \qquad f = 1 \text{ MHz} \qquad - \qquad 0.74 \qquad - \qquad \Omega$ $V_{SS} = 10 \text{ V; } I_D = 15 \text{ A; } T_j = 25 \text{ °C; see } \frac{\text{Figure } 13}{\text{Figure } 13} \qquad - \qquad 5.4 \qquad 6.8 \qquad \text{m}\Omega$ $V_{SS} = 10 \text{ V; } I_D = 15 \text{ A; } T_j = 25 \text{ °C; see } \frac{\text{Figure } 13}{\text{Figure } 13} \qquad - \qquad 5.4 \qquad 6.8 \qquad \text{m}\Omega$ $V_{SS} = 10 \text{ V; } I_D = 15 \text{ A; } T_j = 25 \text{ °C; see } \frac{\text{Figure } 13}{\text{Figure } 13} \qquad - \qquad 5.4 \qquad 6.8 \qquad \text{m}\Omega$ $V_{SS} = 10 \text{ V; } I_D = 15 \text{ A; } I_D = 25 \text{ A; } V_D = 50 \text{ V; } V_{SS} = 10 \text{ V; see } \frac{\text{Figure } 14}{\text{Figure } 14} \qquad - \qquad 125 \qquad - \qquad \text{nC}$ $V_{SS} = 10 \text{ V; see } I_D = 25 \text{ A; } V_D = 50 \text{ V; } V_{SS} = 10 \text{ V; see } I_D = 100 \qquad - \qquad 100 \qquad - \qquad \text{nC}$ $V_{SS} = 10 \text{ V; see } I_D = 25 \text{ A; } V_D = 50 \text{ V; } V_S = 10 \text{ V; see } I_D = 100 \qquad - \qquad 100 \qquad - \qquad \text{nC}$ $V_{SS} = 10 \text{ V; see } I_D = 25 \text{ A; } V_D = 50 \text{ V; } V_S = 10 \text{ V; see } I_D = 100 \qquad - \qquad 100 \qquad 100 \qquad - \qquad 100 \qquad 100 \qquad - \qquad 100 \qquad - \qquad 100 \qquad - \qquad 100 \qquad 100 \qquad - \qquad 100 \qquad 100$			$V_{DS} = 100 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	0.08	4	μΑ
$\begin{array}{llllllllllllllllllllllllllllllllllll$	I _{GSS}	gate leakage current	$V_{GS} = 20 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	10	100	nΑ
$ \begin{array}{c} \text{resistance} \\ \text{V}_{GS} = 10 \text{ V; } I_D = 15 \text{ A; } T_j = 175 \text{ °C; see } \frac{\text{Figure } 12}{\text{ISM Poles}} - 15. & 19 & \text{m}\Omega \\ \text{V}_{GS} = 10 \text{ V; } I_D = 15 \text{ A; } T_j = 25 \text{ °C; see } \frac{\text{Figure } 13}{\text{Figure } 13} - 5.4 & 6.8 & \text{m}\Omega \\ \text{R}_G \\ \text{internal gate resistance} \\ \text{(AC)} \\ \\ \hline \textbf{Dynamic characteristics} \\ \\ \text{Q}_{G(tot)} \\ \text{total gate charge} \\ \text{ID}_{D} = 25 \text{ A; } V_{DS} = 50 \text{ V; } V_{GS} = 10 \text{ V; see } \frac{\text{Figure } 14}{\text{Figure } 14} - 125 - 100 - 100 - 100 \\ \text{ID}_{D} = 0 \text{ A; } V_{DS} = 0 \text{ V; } V_{GS} = 10 \text{ V; see } \frac{\text{Figure } 14}{\text{Figure } 15} - 28 - 100 - 100 - 100 \\ \text{ID}_{D} = 25 \text{ A; } V_{DS} = 50 \text{ V; } V_{GS} = 10 \text{ V; see } \frac{\text{Figure } 15}{\text{Figure } 15} - 28 - 100 - 100 - 100 \\ \text{Q}_{GS} \\ \text{ID}_{D} = 25 \text{ A; } V_{DS} = 50 \text{ V; } V_{GS} = 10 \text{ V; see } \frac{\text{Figure } 15}{\text{Figure } 15} - 19.4 - 100 - 100 \\ \text{ID}_{D} = 25 \text{ A; } V_{DS} = 50 \text{ V; } V_{GS} = 10 \text{ V; see } \frac{\text{Figure } 15}{\text{Figure } 15} - 19.4 - 100 - 100 - 100 \\ \text{ID}_{D} = 25 \text{ A; } V_{DS} = 50 \text{ V; } V_{GS} = 10 \text{ V; see } \frac{\text{Figure } 15}{\text{Figure } 15} - 19.4 - 100 - 1$			$V_{GS} = -20 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	10	100	nA
$V_{GS} = 10 \text{ V, } V_{DS} = 13 \text{ A, } V_{D$	R _{DSon}	drain-source on-state	$V_{GS} = 10 \text{ V}; I_D = 15 \text{ A}; T_j = 100 \text{ °C}; \text{ see } \frac{\text{Figure } 12}{}$	-	-	12	mΩ
$ \begin{array}{c} R_{G} & \text{internal gate resistance} \\ (AC) & \\ \hline \textbf{Dynamic characteristics} \\ \hline \textbf{Q}_{G(tot)} & \text{total gate charge} & \begin{array}{c} I_{D} = 25 \text{ A; } V_{DS} = 50 \text{ V; } V_{GS} = 10 \text{ V; see Figure 14} \\ And \ \underline{15} & \\ I_{D} = 0 \text{ A; } V_{DS} = 0 \text{ V; } V_{GS} = 10 \text{ V; see Figure 14} \\ And \ \underline{15} & \\ I_{D} = 0 \text{ A; } V_{DS} = 0 \text{ V; } V_{GS} = 10 \text{ V; see Figure 15} \\ And \ \underline{14} & \\ A_{D} = 25 \text{ A; } V_{DS} = 50 \text{ V; } V_{GS} = 10 \text{ V; see Figure 15} \\ And \ \underline{14} & \\ A_{D} = 25 \text{ A; } V_{DS} = 50 \text{ V; } V_{GS} = 10 \text{ V; see Figure 15} \\ And \ \underline{14} & \\ A_{D} = 25 \text{ A; } V_{DS} = 50 \text{ V; } V_{GS} = 10 \text{ V; see Figure 15} \\ And \ \underline{14} & \\ A_{D} = 25 \text{ A; } V_{DS} = 50 \text{ V; } V_{GS} = 10 \text{ V; see Figure 15} \\ And \ \underline{14} & \\ A_{D} = 25 \text{ A; } V_{DS} = 50 \text{ V; } V_{GS} = 10 \text{ V; see Figure 15} \\ And \ \underline{14} & \\ A_{D} = 25 \text{ A; } V_{DS} = 50 \text{ V; } V_{GS} = 10 \text{ V; see Figure 15} \\ And \ \underline{14} & \\ A_{D} = 25 \text{ A; } V_{DS} = 50 \text{ V; } V_{GS} = 10 \text{ V; see Figure 15} \\ And \ \underline{14} & \\ A_{D} = 25 \text{ A; } V_{DS} = 50 \text{ V; } V_{GS} = 10 \text{ V; see Figure 15} \\ And \ \underline{14} & \\ A_{D} = 25 \text{ A; } V_{DS} = 50 \text{ V; } V_{GS} = 10 \text{ V; see Figure 15} \\ And \ \underline{14} & \\ A_{D} = 25 \text{ A; } V_{DS} = 50 \text{ V; } V_{GS} = 10 \text{ V; see Figure 15} \\ And \ \underline{14} & \\ A_{D} = 25 \text{ A; } V_{DS} = 50 \text{ V; } V_{GS} = 10 \text{ V; see Figure 15} \\ And \ \underline{14} & \\ A_{D} = 25 \text{ A; } V_{DS} = 50 \text{ V; } V_{GS} = 10 \text{ V; see Figure 15} \\ And \ \underline{14} & \\ A_{D} = 25 \text{ A; } V_{DS} = 50 \text{ V; } V_{GS} = 10 \text{ V; see Figure 15} \\ And \ \underline{14} & \\ A_{D} = 25 \text{ A; } V_{DS} = 50 \text{ V; }$		resistance	$V_{GS} = 10 \text{ V}; I_D = 15 \text{ A}; T_j = 175 ^{\circ}\text{C}; \text{see } \frac{\text{Figure } 12}{\text{Figure } 12}$	-	15	19	mΩ
$ \begin{array}{c} \text{Dynamic characteristics} \\ Q_{G(tot)} \\ & \text{total gate charge} \\ & \begin{array}{c} I_D = 25 \text{ A; V}_{DS} = 50 \text{ V; V}_{GS} = 10 \text{ V; see } \frac{\text{Figure } 14}{\text{figure } 14} \\ & - \\ & \text{ID} = 0 \text{ A; V}_{DS} = 0 \text{ V; V}_{GS} = 10 \text{ V} \\ & \text{ID} = 25 \text{ A; V}_{DS} = 50 \text{ V; V}_{GS} = 10 \text{ V} \\ & \text{ID} = 25 \text{ A; V}_{DS} = 50 \text{ V; V}_{GS} = 10 \text{ V; see } \frac{\text{Figure } 15}{\text{figure } 15} \\ & \text{ID} = 25 \text{ A; V}_{DS} = 50 \text{ V; V}_{GS} = 10 \text{ V; see } \frac{\text{Figure } 15}{\text{figure } 15} \\ & \text{ID} = 25 \text{ A; V}_{DS} = 50 \text{ V; V}_{GS} = 10 \text{ V; see } \frac{\text{Figure } 15}{\text{figure } 15} \\ & \text{ID} = 25 \text{ A; V}_{DS} = 50 \text{ V; V}_{GS} = 10 \text{ V; see } \frac{\text{Figure } 15}{\text{figure } 15} \\ & \text{ID} = 25 \text{ A; V}_{DS} = 50 \text{ V; V}_{GS} = 10 \text{ V; see } \frac{\text{Figure } 15}{\text{figure } 15} \\ & \text{ID} = 25 \text{ A; V}_{DS} = 50 \text{ V; V}_{GS} = 10 \text{ V; see } \frac{\text{Figure } 15}{\text{figure } 15} \\ & \text{ID} = 25 \text{ A; V}_{DS} = 50 \text{ V; V}_{GS} = 10 \text{ V; see } \frac{\text{Figure } 15}{\text{figure } 15} \\ & \text{ID} = 25 \text{ A; V}_{DS} = 50 \text{ V; V}_{GS} = 10 \text{ V; see } \frac{\text{Figure } 15}{\text{figure } 15} \\ & \text{ID} = 25 \text{ A; V}_{DS} = 50 \text{ V; V}_{GS} = 10 \text{ V; see } \frac{\text{Figure } 15}{\text{figure } 15} \\ & \text{ID} = 25 \text{ A; V}_{DS} = 50 \text{ V; V}_{GS} = 10 \text{ V; see } \frac{\text{Figure } 15}{\text{figure } 15} \\ & \text{ID} = 25 \text{ A; V}_{DS} = 50 \text{ V; V}_{SS} = 50 \text{ V; V}_{SS} = 10 \text{ V; see } \frac{\text{Figure } 15}{\text{figure } 15} \\ & \text{ID} = 25 \text{ A; V}_{DS} = 50 \text{ V; V}_{SS} = 50 \text{ V; V}_{SS} = 10 \text{ V; see } \frac{\text{Figure } 15}{\text{figure } 15} \\ & \text{ID} = 25 \text{ A; V}_{DS} = 50 \text{ V; V}_{SS} = 50 \text{ V; V}_{SS} = 10 \text{ V; see } \frac{\text{Figure } 15}{\text{figure } 15} \\ & \text{ID} = 25 \text{ A; V}_{DS} = 50 \text{ V; V}_{SS} = 50 \text{ V; V}_{SS} = 10 \text{ V; see } \frac{\text{Figure } 15}{\text{figure } 15} \\ & \text{ID} = 25 \text{ A; V}_{SS} = 50 \text{ V; V}_{SS} = 50 \text{ V; V}_{SS} = 10 \text{ V; see } \frac{\text{Figure } 15}{\text{figure } 15} \\ & \text{ID} = 25 \text{ A; V}_{SS} = 50 \text{ V; V}_{SS} = 50 \text{ V; V}_{SS} = 10 \text{ V; see } \frac{\text{Figure } 15}{\text{figure } 15} \\ & \text{ID} = 25 \text{ A; V}_{SS} = 50 \text{ V; V}_{SS} = 50 \text{ V; V}_{SS} = 10 \text{ V; See } \frac$			$V_{GS} = 10 \text{ V}; I_D = 15 \text{ A}; T_j = 25 ^{\circ}\text{C}; \text{see } \frac{\text{Figure } 13}{\text{Figure } 13}$	-	5.4	6.8	mΩ
$ \begin{array}{c} Q_{G(tot)} \\ Q_{G(tot)} \\ \\ Q_{GS} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	R_G	_	f = 1 MHz	-	0.74	-	Ω
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dynamic	characteristics					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Q _{G(tot)}	total gate charge		-	125	-	nC
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$I_D = 0 \text{ A}; V_{DS} = 0 \text{ V}; V_{GS} = 10 \text{ V}$	-	100	-	nC
$\begin{array}{c} \text{gate-source charge} \\ Q_{GS(\text{th-pl})} \\ \text{post-threshold} \\ \text{gate-source charge} \\ \end{array} \\ \begin{array}{c} \text{I}_D = 25 \text{ A; V}_{DS} = 50 \text{ V; V}_{GS} = 10 \text{ V; see } \underline{\text{Figure 15}} \\ \text{and } \underline{14} \\ \end{array} \\ \begin{array}{c} \text{J}_D = 25 \text{ A; V}_{DS} = 50 \text{ V; V}_{GS} = 10 \text{ V; see } \underline{\text{Figure 15}} \\ \text{and } \underline{14} \\ \end{array} \\ \begin{array}{c} \text{J}_D = 25 \text{ A; V}_{DS} = 50 \text{ V; V}_{GS} = 10 \text{ V; see } \underline{\text{Figure 15}} \\ \text{and } \underline{14} \\ \end{array} \\ \begin{array}{c} \text{J}_D = 25 \text{ A; V}_{DS} = 50 \text{ V; V}_{SS} = 10 \text{ V; see } \underline{\text{Figure 15}} \\ \text{J}_D = 25 \text{ V; V}_{SS} = 10 \text{ V; see } \underline{\text{Figure 15}} \\ \text{J}_D = 25 \text{ V; V}_{SS} = 10 \text{ V; see } \underline{\text{Figure 15}} \\ \text{J}_D = 25 \text{ V; V}_{SS} = 10 \text{ V; see } \underline{\text{Figure 15}} \\ \text{J}_D = 25 \text{ V; V}_D = 25 \text{ V; V}_{SS} = 10 \text{ V; fer 1 MHz; T}_J = 25 °C; for 20 V; fer $	Q_{GS}	gate-source charge		-	28	-	nC
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Q _{GS(th)}	•			19.4	-	nC
	Q _{GS(th-pl)}	•		-	9	-	nC
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Q_{GD}	gate-drain charge		-	36	-	nC
$ \begin{array}{c} C_{oss} & \text{output capacitance} \\ C_{rss} & \text{reverse transfer} \\ c_{apacitance} \\ \end{array} \begin{array}{c} \text{see } \overline{\text{Figure 16}} \\ \text{-} & 272 \\ \text{-} \\ \text{-} \end{array} \begin{array}{c} \text{pF} \\ \text{-} \\ \text{-} \end{array} \begin{array}{c} 272 \\ \text{-} \end{array} \begin{array}{c} \text{pF} \\ \text{-} \\ \text{-} \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \end{array} \begin{array}{c} \text{-} \\ \text{-} \end{array} \begin{array}{c} \text{-} \\ \text{-} \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \end{array} \begin{array}{c} \text{-} \\ \text{-} \\$	V _{GS(pI)}	-	$V_{DS} = 50 \text{ V}$; see <u>Figure 15</u> and <u>14</u>	-	4.3	-	V
$ \begin{array}{c} C_{oss} & \text{output capacitance} \\ C_{rss} & \text{reverse transfer} \\ c_{apacitance} \\ \end{array} \begin{array}{c} \text{see } \overline{\text{Figure 16}} \\ \text{-} & 272 \\ \text{-} \\ \text{-} \end{array} \begin{array}{c} \text{pF} \\ \text{-} \\ \text{-} \end{array} \begin{array}{c} 272 \\ \text{-} \end{array} \begin{array}{c} \text{pF} \\ \text{-} \\ \text{-} \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \end{array} \begin{array}{c} \text{-} \\ \text{-} \end{array} \begin{array}{c} \text{-} \\ \text{-} \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \end{array} \begin{array}{c} \text{-} \\ \text{-} \\$	C _{iss}	input capacitance	$V_{DS} = 50 \text{ V}; V_{GS} = 0 \text{ V}; f = 1 \text{ MHz}; T_i = 25 °C;$	-	6686	-	pF
	C _{oss}	output capacitance		-		-	
t_r rise time $R_{G(ext)} = 4.7 \ \Omega; T_j = 25 \ ^{\circ}C$ - 45.6 - ns $t_{d(off)}$ turn-off delay time - 103.9 - ns	C _{rss}			-	272	-	pF
t_r rise time $R_{G(ext)} = 4.7 \ \Omega; T_j = 25 \ ^{\circ}C$ - 45.6 - ns $t_{d(off)}$ turn-off delay time - 103.9 - ns	t _{d(on)}	turn-on delay time		-	34.6	-	ns
t _{d(off)} turn-off delay time - 103.9 - ns	t _r	rise time	$R_{G(ext)} = 4.7 \Omega; T_j = 25 \text{ °C}$	-	45.6	-	ns
	t _{d(off)}	turn-off delay time		-	103.9	-	ns
	t _f	fall time		-	49.5	-	ns

Table 6. Characteristics ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Source-dr	ain diode					
V_{SD}	source-drain voltage	$I_S = 25 \text{ A}$; $V_{GS} = 0 \text{ V}$; $T_j = 25 \text{ °C}$; see <u>Figure 17</u>	-	8.0	1.2	V
t _{rr}	reverse recovery time	$I_S = 25 \text{ A}; dI_S/dt = 100 \text{ A/}\mu\text{s}; V_{GS} = 0 \text{ V};$ $V_{DS} = 50 \text{ V}$	-	64	-	ns
Qr	recovered charge		-	167	-	nC

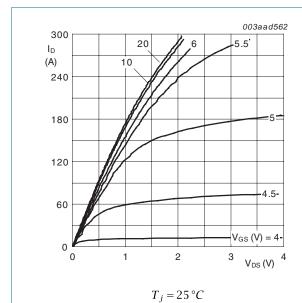


Fig 5. Output characteristics: drain current as a function of drain-source voltage; typical values

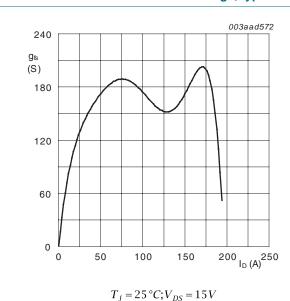


Fig 7. Forward transconductance as a function of drain current; typical values

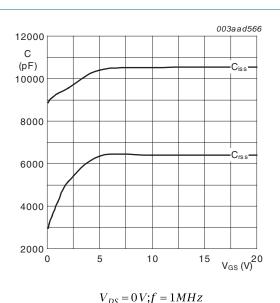


Fig 6. Input and reverse transfer capacitances as a function of gate-source voltage; typical values

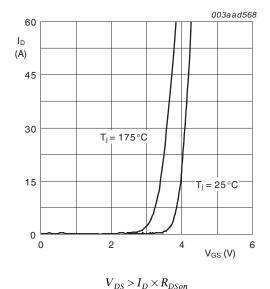


Fig 8. Transfer characteristics: drain current as a function of gate-source voltage; typical values

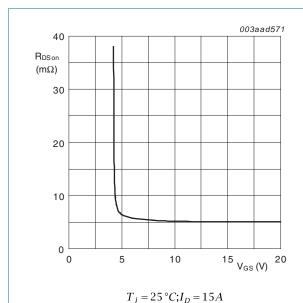


Fig 9. Drain-source on-state resistance as a function of gate-source voltage; typical values

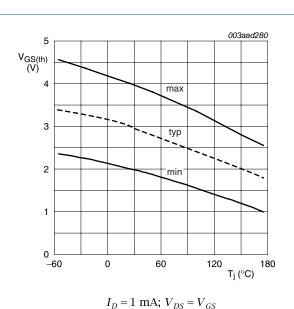


Fig 10. Gate-source threshold voltage as a function of

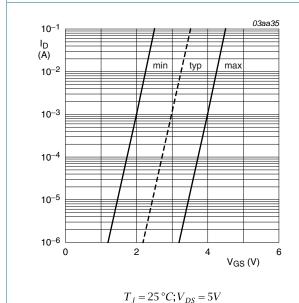


Fig 11. Sub-threshold drain current as a function of

gate-source voltage

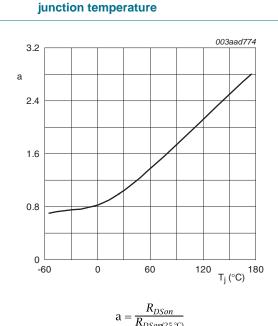


Fig 12. Normalized drain-source on-state resistance factor as a function of junction temperature

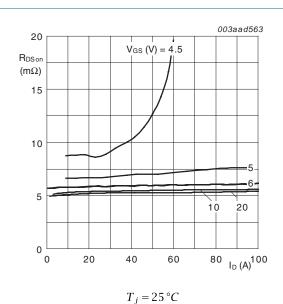
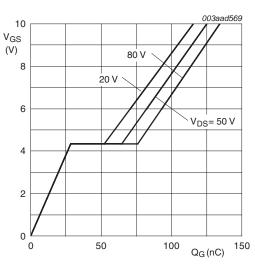



Fig 13. Drain-source on-state resistance as a function of drain current; typical values

 $T_j = 25\,^{\circ}C; I_D = 25A$

Fig 14. Gate-source voltage as a function of gate charge; typical values

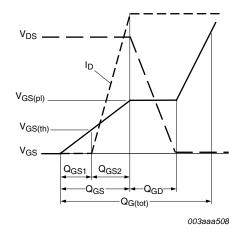
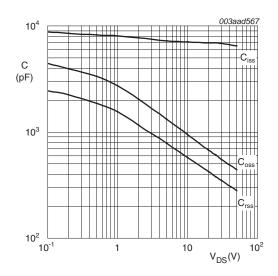
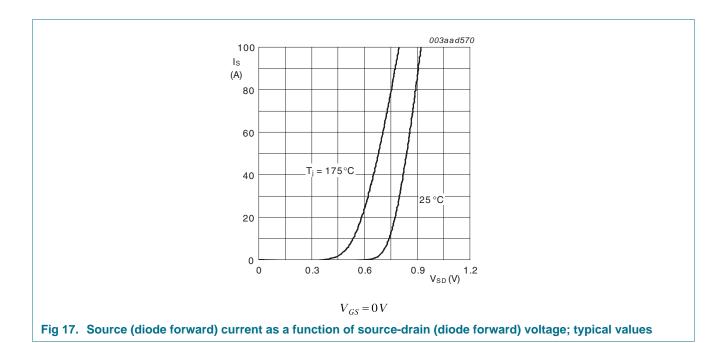




Fig 15. Gate charge waveform definitions

 $V_{GS} = 0V; f = 1MHz$

Fig 16. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values

7. Package outline

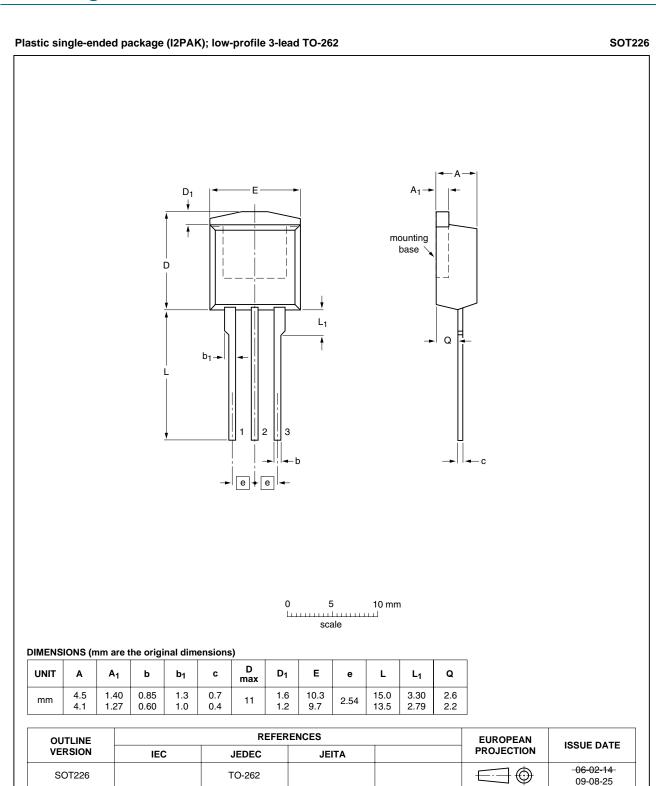


Fig 18. Package outline SOT226 (I2PAK)

8. Revision history

Table 7. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
PSMN7R0-100ES_3	20100223	Product data sheet	-	PSMN7R0-100ES_2
Modifications:	 Various cha 	anges to content.		
PSMN7R0-100ES_2	20100114	Objective data sheet	-	PSMN7R0-100ES_1
PSMN7R0-100ES_1	20090917	Objective data sheet	-	-

9. Legal information

9.1 Data sheet status

Document status [1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

9.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on a weakness or default in the customer application/use or the application/use of customer's third party customer(s) (hereinafter both referred to as "Application"). It is customer's sole responsibility to check whether the Nexperia product is suitable and fit for the Application planned. Customer has to do all necessary testing for the Application in order to avoid a default of the Application and the product. Nexperia does not accept any liability in this respect.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

PSMN7R0-100ES_3

PSMN7R0-100ES

N-channel 100V 6.8 mΩ standard level MOSFET in I2PAK.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Non-automotive qualified products — Unless the data sheet of an Nexperia product expressly states that the product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever

customer uses the product for automotive applications beyond Nexperia' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

10. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

PSMN7R0-100ES

Nexperia

N-channel 100V 6.8 m Ω standard level MOSFET in I2PAK.

11. Contents

1	Product profile	1
1.1	General description	1
1.2	Features and benefits	1
1.3	Applications	1
1.4	Quick reference data	1
2	Pinning information	2
3	Ordering information	2
4	Limiting values	3
5	Thermal characteristics	5
6	Characteristics	6
7	Package outline	1
8	Revision history1	2
9	Legal information1	3
9.1	Data sheet status	3
9.2	Definitions1	3
9.3	Disclaimers	3
9.4	Trademarks1	
10	Contact information	,

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Nexperia manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D

TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C

IPS70R2K0CEAKMA1 BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI

DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384

NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956

NTE2911 US6M2GTR TK10A80W,S4X(S SSM6P69NU,LF