1. General description

The XS3A1T3157 is a low-ohmic single-pole double-throw analog switch suitable for use as an analog or digital 2:1 multiplexer/demultiplexer. It has a digital select input (S), two independent inputs/outputs (Y1 and Y2) and a common input/output (Z).
Schmitt trigger action at the digital input makes the circuit tolerant to slower input rise and fall times. Low threshold digital input allows this device to be driven by 1.8 V logic levels in 3.3 V applications without significant increase in supply current I_{Cc}. This makes it possible for the XS3A1T3157 to switch 4.3 V signals with a 1.8 V digital controller, eliminating the need for logic level translation. The XS3A1T3157 allows signals with amplitude up to V_{CC} to be transmitted from Z to $Y 1$ or $Y 2$, or from $Y 1$ or $Y 2$ to Z. It's low $O N$ resistance (0.5Ω) and flatness (0.13Ω) ensures minimal attenuation and distortion of transmitted signals.

2. Features and benefits

- Wide supply voltage range from 1.4 V to 4.3 V
- Very low ON resistance (peak):
- 1.6Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$
- 1.0Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$
- 0.55Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$
- 0.50Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$
- 0.50Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V}$
- Break-before-make switching
- High noise immunity
- ESD protection:
- HBM ANSI/ESDA/JEDEC JS-001 exceeds 8000 V
- CDM ANSI/ESDA/JEDEC JS-002 exceeds 1000 V
- IEC61000-4-2 contact discharge exceeds 8000 V for switch ports
- CMOS low-power consumption
- Latch-up performance exceeds 100 mA per JESD78 Class II Level A
- Low-switching threshold levels
- Control input accepts voltages above supply voltage
- Very low supply current, even when input is below V_{CC}
- High current handling capability (350 mA continuous current under 3.3 V supply)
- Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

3. Applications

- Mobile phone
- Tablet / Notebook
- Wearables

4. Ordering information

Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
XS3A1T3157GM	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body $1 \times 1.45 \times 0.5 \mathrm{~mm}$	SOT886
XS3A1T3157GS	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	XSON6	extremely thin small outline package; no leads; 6 terminals; body $1.0 \times 1.0 \times 0.35 \mathrm{~mm}$	SOT1202

5. Marking

Table 2. Marking codes

Type number	Marking code[1]
XS3A1T3157GM	aL
XS3A1T3157GS	aL

[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

6. Functional diagram

Fig. 1. Logic symbol

Fig. 2. Logic diagram

7. Pinning information

7.1. Pinning

Transparent top view
Fig. 3. Pin configuration SOT886 (XSON6) and SOT1202 (XSON6)

7.2. Pin description

Table 3. Pin description

Symbol	Pin	Description
Y2	1	independent input or output
GND	2	ground $(0 \mathrm{~V})$
Y1	3	independent input or output
Z	4	common output or input
V CC	5	supply voltage
S	6	select input

8. Functional description

Table 4. Function table
$H=$ HIGH voltage level; $L=$ LOW voltage level.

Input S	Channel on
L	Y1
H	Y2

9. Limiting values

Table 5. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
$\mathrm{V}_{\text {CC }}$	supply voltage		-0.5	+4.6	V
V_{1}	input voltage	select input S [1]	-0.5	+4.6	V
$\mathrm{V}_{\text {SW }}$	switch voltage	[2]	-0.5	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{K}	input clamping current	$\mathrm{V}_{1}<-0.5 \mathrm{~V}$	-50	-	mA
$\mathrm{I}_{\text {SK }}$	switch clamping current	$\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{C C}+0.5 \mathrm{~V}$	-	± 50	mA
Isw	switch current	$\mathrm{V}_{\mathrm{SW}}>-0.5 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{SW}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V} ;$ source or sink current	-	± 350	mA
		$\mathrm{V}_{\mathrm{SW}}>-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{SW}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$; pulsed at 1 ms duration, $<10 \%$ duty cycle; peak current	-	± 500	mA
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-	250	mW

[1] The minimum input voltage rating may be exceeded if the input current rating is observed.
[2] The minimum and maximum switch voltage ratings may be exceeded if the switch clamping current rating is observed but may not exceed 4.6 V .
[3] For SOT886 (XSON6) package: $P_{\text {tot }}$ derates linearly with $3.3 \mathrm{~mW} / \mathrm{K}$ above $74^{\circ} \mathrm{C}$.
For SOT1202 (XSON6) package: $P_{\text {tot }}$ derates linearly with $3.3 \mathrm{~mW} / \mathrm{K}$ above $74^{\circ} \mathrm{C}$.

10. Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		1.4	4.3	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage	select input S	0	4.3	V
$\mathrm{~V}_{\mathrm{SW}}$	switch voltage		$[1]$	0	$\mathrm{~V}_{\mathrm{CC}}$
$\mathrm{T}_{\mathrm{amb}}$	ambient temperature	V			
$\Delta \mathrm{t} / \Delta \mathrm{V}$	input transition rise and fall rate	$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 4.3 V	-40	+125	${ }^{\circ} \mathrm{C}$

[1] To avoid sinking GND current from terminal Z when switch current flows in terminal $Y n$, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal Z, no GND current will flow from terminal Yn. In this case, there is no limit for the voltage drop across the switch.
[2] Applies to control signal levels.

11. Static characteristics

Table 7. Static characteristics
At recommended operating conditions; voltages are referenced to GND (ground 0 V).

Symbol	Parameter	Conditions	$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}= \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{amb}}= \\ -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		Unit
			Min	Typ	Max	Min	Max	Min	Max	
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	0.9	-	-	0.9	-	0.9	-	V
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	0.9	-	-	0.9	-	0.9	-	V
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	1.1	-	-	1.1	-	1.1	-	V
		$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$ to 3.6 V	1.3	-	-	1.3	-	1.3	-	V
		$\mathrm{V}_{\text {CC }}=3.6 \mathrm{~V}$ to 4.3 V	1.4	-	-	1.4	-	1.4	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{C C}=1.4 \mathrm{~V}$ to 1.6 V	-	-	0.3	-	0.3	-	0.3	V
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-	-	0.4	-	0.4	-	0.3	V
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	-	-	0.4	-	0.4	-	0.4	V
		$\mathrm{V}_{C C}=2.7 \mathrm{~V}$ to 3.6 V	-	-	0.5	-	0.5	-	0.5	V
		$\mathrm{V}_{\text {cc }}=3.6 \mathrm{~V}$ to 4.3 V	-	-	0.6	-	0.6	-	0.6	V
1	input leakage current	select input S; $\mathrm{V}_{1}=\mathrm{GND}$ to 4.3 V ; $\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 4.3 V	-	-	-	-	± 0.5	-	± 1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	Y1 and Y2 port; see Fig. 4								
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 3.6 V	-	-	± 5	-	± 50	-	± 500	nA
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$ to 4.3 V	-	-	± 10	-	± 50	-	± 500	nA
$\mathrm{IS}_{\text {(ON })}$	ON-state leakage current	Z port; see Fig. 5								
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 3.6 V	-	-	± 5	-	± 50	-	± 500	nA
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$ to 4.3 V	-	-	± 10	-	± 50	-	± 500	nA
ICC	supply current	$\begin{aligned} & V_{1}=V_{C C} \text { or } G N D ; \\ & V_{S W}=G N D \text { or } V_{C C} \end{aligned}$								
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$	-	-	100	-	690	-	6000	nA
		$\mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V}$	-	-	150	-	800	-	7000	nA
$\Delta \mathrm{I}_{\mathrm{cc}}$	additional supply current	$\mathrm{V}_{\mathrm{SW}}=\mathrm{GND}$ or V_{CC}								
		$\mathrm{V}_{\mathrm{I}}=2.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V}$	-	2.0	4.0	-	7	-	7	$\mu \mathrm{A}$
		$\mathrm{V}_{1}=2.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$	-	0.35	0.7	-	1	-	1	$\mu \mathrm{A}$
		$\mathrm{V}_{1}=1.8 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V}$	-	7.0	10.0	-	15	-	15	$\mu \mathrm{A}$
		$\mathrm{V}_{1}=1.8 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$	-	2.5	4.0	-	5	-	5	$\mu \mathrm{A}$
		$\mathrm{V}_{1}=1.8 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	-	50	200	-	300	-	500	nA
C_{1}	input capacitance		-	1.0	-	-	-	-	-	pF
$\mathrm{C}_{\text {S(OFF) }}$	OFF-state capacitance		-	35	-	-	-	-	-	pF
$\mathrm{C}_{\text {S(ON) }}$	ON-state capacitance		-	130	-	-	-	-	-	pF

Table 8. ON resistance
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for graphs see Fig. 7 to Fig. 13.

Symbol	Parameter	Conditions	$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
			Min	Typ [1]	Max	Min	Max	
$\mathrm{R}_{\text {ON(} \text { (peak) }}$	ON resistance (peak)	$\begin{aligned} & V_{1}=\text { GND to } V_{C C} ; \\ & \text { Isw }=100 \mathrm{~mA} ; \\ & \text { see Fig. } 6 \end{aligned}$						
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$	-	1.6	3.7	-	4.1	Ω
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	1.0	1.6	-	1.7	Ω
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$	-	0.55	0.8	-	0.9	Ω
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	0.5	0.75	-	0.9	Ω
		$\mathrm{V}_{C C}=4.3 \mathrm{~V}$	-	0.5	0.75	-	0.9	Ω
$\Delta \mathrm{R}_{\mathrm{ON}}$	ON resistance mismatch between channels	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{I}_{\mathrm{SW}}=100 \mathrm{~mA} \end{aligned}$						
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$	-	0.04	0.3	-	0.3	Ω
		$\mathrm{V}_{\mathrm{cc}}=1.65 \mathrm{~V}$	-	0.04	0.2	-	0.3	Ω
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$	-	0.02	0.08	-	0.1	Ω
		$\mathrm{V}_{C C}=2.7 \mathrm{~V}$	-	0.02	0.075	-	0.1	Ω
		$\mathrm{V}_{C C}=4.3 \mathrm{~V}$	-	0.02	0.075	-	0.1	Ω
$\mathrm{R}_{\text {ON(flat) }}$	ON resistance (flatness)	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{I}_{\mathrm{SW}}=100 \mathrm{~mA} \end{aligned}$						
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$	-	1.0	3.3	-	3.6	Ω
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$	-	0.5	1.2	-	1.3	Ω
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	0.15	0.3	-	0.35	Ω
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	0.13	0.3	-	0.35	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V}$	-	0.2	0.4	-	0.45	Ω

[1] Typical values are measured at $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
[2] Measured at identical V_{cc}, temperature and input voltage.
[3] Flatness is defined as the difference between the maximum and minimum value of ON resistance measured at identical V_{CC} and temperature.

11.1. Test circuits and graphs

$$
\mathrm{V}_{\mathrm{I}}=0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } 0.3 \mathrm{~V}
$$

Fig. 4. Test circuit for measuring OFF-state leakage current

$$
V_{I}=0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } 0.3 \mathrm{~V}
$$

Fig. 5. Test circuit for measuring ON-state leakage current

Low-ohmic single-pole double-throw analog switch

Fig. 6. Test circuit for measuring ON resistance

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$
(2) $T_{a m b}=85^{\circ} \mathrm{C}$
(3) $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$
(4) $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$

Fig. 8. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{cc}}=1.5 \mathrm{~V}$

(1) $V_{C C}=1.5 \mathrm{~V}$
(2) $V_{C C}=1.8 \mathrm{~V}$
(3) $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$
(4) $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$
(5) $V_{C C}=3.3 \mathrm{~V}$
(6) $V_{C C}=4.3 \mathrm{~V}$

Measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Fig. 7. Typical ON resistance as a function of input voltage

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$
(2) $\mathrm{T}_{\text {amb }}=85^{\circ} \mathrm{C}$
(3) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
(4) $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$

Fig. 9. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$
(2) $\mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}$
(3) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
(4) $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$

Fig. 10. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$

(1) $\mathrm{T}_{\text {amb }}=125^{\circ} \mathrm{C}$
(2) $\mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}$
(3) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
(4) $T_{\text {amb }}=-40^{\circ} \mathrm{C}$

Fig. 12. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}$

(1) $\mathrm{T}_{\text {amb }}=125^{\circ} \mathrm{C}$
(2) $\mathrm{T}_{\text {amb }}=85^{\circ} \mathrm{C}$
(3) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
(4) $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$

Fig. 11. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$
(2) $\mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}$
(3) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
(4) $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$

Fig. 13. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V}$

12. Dynamic characteristics

Table 9. Dynamic characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 16.

Symbol	Parameter	Conditions	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \\ \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		Unit
			Min	Typ[1]	Max	Min	Max	Min	Max	
t_{en}	enable time	S to Z or Yn; see Fig. 14								
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	-	50	100	-	120	-	120	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-	36	70	-	80	-	90	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	24	45	-	50	-	55	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	-	22	40	-	45	-	50	ns
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$ to 4.3 V	-	22	40	-	45	-	50	ns
$\mathrm{t}_{\text {dis }}$	disable time	S to Z or Yn; see Fig. 14								
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	-	32	80	-	80	-	90	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-	20	55	-	60	-	65	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	12	25	-	30	-	35	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	-	10	20	-	25	-	30	ns
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$ to 4.3 V	-	10	20	-	25	-	30	ns
$\mathrm{t}_{\mathrm{b}-\mathrm{m}}$	break-before-make time	see Fig. 15 [2]								
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	-	19	-	9	-	9	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-	17	-	7	-	7	-	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	13	-	4	-	4	-	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	-	10	-	3	-	3	-	ns
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$ to 4.3 V	-	10	-	2	-	2	-	ns

[1] Typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.3 \mathrm{~V}$ and 4.3 V respectively.
[2] Break-before-make guaranteed by design.

12.1. Waveforms and test circuit

Measurement points are given in Table 10.
Logic level: V_{OH} is typical output voltage level that occurs with the output load.
Fig. 14. Enable and disable times

Table 10. Measurement points

Supply voltage	Input	Output
\mathbf{V}_{CC}	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{X}}$
1.4 V to 4.3 V	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$0.9 \mathrm{~V}_{\mathrm{OH}}$

a. Test circuit

b. Input and output measurement points

Fig. 15. Test circuit for measuring break-before-make times

Test data is given in Table 11.
Definitions test circuit:
$\mathrm{R}_{\mathrm{L}}=$ Load resistance.
$C_{L}=$ Load capacitance including jig and probe capacitance.
$\mathrm{V}_{\mathrm{EXT}}=$ External voltage for measuring switching times.
Fig. 16. Test circuit for measuring switching times
Table 11. Test data

Supply voltage	Input	Load		
$\mathbf{V}_{\mathbf{C C}}$	$\mathbf{V}_{\mathbf{I}}$	$\mathbf{t}_{\mathbf{r}}, \mathbf{t}_{\mathbf{f}}$	$\mathbf{C}_{\mathbf{L}}$	$\mathbf{R}_{\mathbf{L}}$
1.4 V to 4.3 V	$\mathrm{~V}_{\mathrm{CC}}$	$\leq 2.5 \mathrm{~ns}$	35 pF	50Ω

12.2. Additional dynamic characteristics

Table 12. Additional dynamic characteristics
At recommended operating conditions; voltages are referenced to GND (ground $=0 \mathrm{~V}$);
$V_{l}=G N D$ or $V_{C C}$ (unless otherwise specified); $t_{r}=t_{f} \leq 2.5 \mathrm{~ns} ; T_{\text {amb }}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
THD	total harmonic distortion	$\mathrm{f}_{\mathrm{i}}=20 \mathrm{~Hz}$ to $20 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=32 \Omega$; see Fig. $17 \quad[1]$				
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=1 \mathrm{~V}$ (p-p)	-	0.15	-	\%
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=1.2 \mathrm{~V}(\mathrm{p}-\mathrm{p})$	-	0.10	-	\%
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=1.5 \mathrm{~V}$ (p-p)	-	0.04	-	\%
		$\mathrm{V}_{C C}=2.7 \mathrm{~V} ; \mathrm{V}_{1}=2 \mathrm{~V}(\mathrm{p}-\mathrm{p})$	-	0.03	-	\%
		$\mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=2 \mathrm{~V}(\mathrm{p}-\mathrm{p})$	-	0.01	-	\%
$\mathrm{f}_{(-3 \mathrm{~dB})}$	-3 dB frequency response	$\mathrm{R}_{\mathrm{L}}=50 \Omega$; see Fig. 18 [1]				
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 4.3 V	-	40	-	MHz
$\mathrm{a}_{\text {iso }}$	isolation (OFF-state)	$\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=50 \Omega$; see Fig. 19 [1]				
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 4.3 V	-	-90	-	dB
$\mathrm{V}_{\text {ct }}$	crosstalk voltage	between digital inputs and switch; $\mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz}$; [1] $C_{L}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=50 \Omega$; see Fig. 20				
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 3.6 V	-	0.4	-	V
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$ to 4.3 V	-	0.6	-	V
$\mathrm{Q}_{\text {inj }}$	charge injection	$\begin{aligned} & \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{nF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega ; \mathrm{V}_{\text {gen }}=0 \mathrm{~V} ; \quad \text { 1] } \\ & \mathrm{R}_{\text {gen }}=0 \Omega \text {; see Fig. } 21 \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V}$	-	3	-	pC
		$\mathrm{V}_{C C}=1.8 \mathrm{~V}$	-	4	-	pC
		$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	-	6	-	pC
		$\mathrm{V}_{C C}=3.3 \mathrm{~V}$	-	9	-	pC
		$\mathrm{V}_{C C}=4.3 \mathrm{~V}$	-	15	-	pC

[1] f_{i} is biased at $0.5 \mathrm{~V}_{\mathrm{CC}}$.

12.3. Additional test circuits

Fig. 17. Test circuit for measuring total harmonic distortion

Adjust f_{i} voltage to obtain 0 dBm level at output. Increase f_{i} frequency until dB meter reads -3 dB . $R_{S}=R_{L}=50 \Omega$ (standard 50Ω system).
Fig. 18. Test circuit for measuring the frequency response when channel is in ON-state

Adjust f_{i} voltage to obtain 0 dBm level at input.
Fig. 19. Test circuit for measuring isolation (OFF-state)

a. Test circuit

vo

aaa-031220
b. Input and output pulse definitions

Fig. 20. Test circuit for measuring crosstalk voltage between digital input and switch

a. Test circuit

Vo

b. Input and output pulse definitions
$Q_{i n j}=\Delta V_{O} \times C_{L}$.
$\Delta \mathrm{V}_{\mathrm{O}}=$ output voltage variation.
$\mathrm{R}_{\text {gen }}=$ generator resistance.
$\mathrm{V}_{\text {gen }}=$ generator voltage.
Fig. 21. Test circuit for measuring charge injection

13. Package outline

Dimensions (mm are the original dimensions)

Fig. 22. Package outline SOT886 (XSON6)

XSON6: extremely thin small outline package; no leads; 6 terminals; body $1.0 \times 1.0 \times 0.35 \mathrm{~mm}$ SOT1202

Dimensions

Unit		$A^{(1)}$	A_{1}	b	D	E	e	e_{1}	L	L_{1}
mm	max	0.35	0.04	0.20	1.05	1.05			0.35	0.40
	nom			0.15	1.00	1.00	0.55	0.35	0.30	0.35
	min			0.12	0.95	0.95			0.27	0.32

Note

1. Including plating thickness.
2. Visible depending upon used manufacturing technology.

Fig. 23. Package outline SOT1202 (XSON6)

14. Abbreviations

Table 13. Abbreviations

Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model

15. Revision history

Table 14. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
XS3A1T3157 v.1	20200317	Product data sheet	-	-

16. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term 'short data sheet' is explained in section "Definitions".
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.
Short data sheet - A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification - The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.
In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes - Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

Low-ohmic single-pole double-throw analog switch

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data - The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.
Applications - Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.
Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.
Export control - This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products - Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.
In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.
Translations - A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.
Contents

1. General description 1
2. Features and benefits 1
3. Applications 2
4. Ordering information 2
5. Marking 2
6. Functional diagram 2
7. Pinning information 3
7.1. Pinning 3
7.2. Pin description 3
8. Functional description 3
9. Limiting values 4
10. Recommended operating conditions 4
11. Static characteristics 5
11.1. Test circuits and graphs 7
12. Dynamic characteristics 10
12.1. Waveforms and test circuit 10
12.2. Additional dynamic characteristics 12
12.3. Additional test circuits 13
13. Package outline 15
14. Abbreviations 17
15. Revision history 17
16. Legal information 18

© Nexperia B.V. 2020. All rights reserved

For more information, please visit: http://www.nexperia.com
For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 17 March 2020

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Nexperia manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAS4599DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 DG2502DB-T2-GE1

TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN\#PBF 74LV4066DB,118
FSA2275AUMX

