HIGH POWER SPDT SWITCH GaAs MMIC

■ GENERAL DESCRIPTION

The NJG1681MD7 is a GaAs SPDT switch MMIC suitable for LTE/UMTS/CDMA/GSM applications.
The NJG1681MD7 features very low insertion loss, high isolation and excellent linearity performance down to 1.8 V control voltage at high frequency up to 6 GHz . In addition, this switch is able to handle high power signals.
The NJG1681MD7 has ESD protection devices to achieve excellent ESD performances. No DC Blocking capacitors are required for all RF ports unless DC is biased externally. And the ultra small \& ultra thin EQFN14-D7 package is adopted.

APPLICATIONS

LTE, UMTS, CDMA, GSM applications
IEEE802.11p application
Antenna switching, bands switching, post PA switching applications

■ PACKAGE OUTLINE

NJG1681MD7

■ FEATURES

- Low voltage logic control
- Low voltage operation
- Low distortion
- P-0.1dB
- Low insertion loss
- Ultra small \& ultra thin package

RoHS compliant and Halogen Free, MSL1
$\mathrm{V}_{\text {СтL }(H)}=1.8 \mathrm{~V}$ typ.
$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ typ.
IIP3 $=+73 \mathrm{dBm}$ typ. $@ f=829+849 \mathrm{MHz}, \mathrm{P}_{\text {IN }}=24 \mathrm{dBm}$
IIP3=+71dBm typ. @f=1870+1910MHz, $P_{\text {in }}=24 \mathrm{dBm}$
2nd harmonics $=-85 \mathrm{dBc}$ typ. @ $\mathrm{f}=0.9 \mathrm{GHz}, \mathrm{P}_{\mathrm{in}}=35 \mathrm{dBm}$
3rd harmonics $=-90 \mathrm{dBc}$ typ. @ $\mathrm{f}=0.9 \mathrm{GHz}, \mathrm{P}_{\mathrm{in}}=35 \mathrm{dBm}$ +36 dBm min.
0.18 dB typ. $@ f=0.9 \mathrm{GHz}, \mathrm{P}_{\mathrm{in}}=35 \mathrm{dBm}$
0.20 dB typ. $@ f=1.9 \mathrm{GHz}, \mathrm{P}_{\mathrm{in}}=33 \mathrm{dBm}$
0.23 dB typ. @f=2.7GHz, $\mathrm{P}_{\mathrm{in}}=27 \mathrm{dBm}$
0.45 dB typ. $@ f=6.0 \mathrm{GHz}, \mathrm{P}_{\mathrm{iN}}=27 \mathrm{dBm}$

EQFN14-D7 (Package size: $1.6 \times 1.6 \times 0.397 \mathrm{~mm}$.)

PIN CONFIGURATION

Pin connection

1. GND	8. GND
2. NC(GND)	9. P1
3. P2	10. GND
4. GND	11. GND
5. GND	12. VDD
6. PC	13. NC(GND)
7. GND	14. VCTL

Exposed PAD: GND

■ TRUTH TABLE

" H " $=\mathrm{V}_{\text {CTLH }}$, " $\mathrm{L} "=\mathrm{V}_{\text {CTLLL }}$	
VCTL	Path
H	PC-P1
L	PC-P2

NOTE: Please note that any information on this datasheet will be subject to change.

NJG1681MD7

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	CONDITIONS	RATINGS	UNITS
RF Input Power	Pin	$V_{D D}=2.7 \mathrm{~V}$	37	dBm
Supply Voltage	$V_{D D}$		5.0	V
Control Voltage	$\mathrm{V}_{\text {ctL }}$		5.0	V
Power Dissipation	PD	Four-layer FR4 PCB with through-hole ($74.2 \times 74.2 \mathrm{~mm}$), $\mathrm{Tj}=150^{\circ} \mathrm{C}$	1300	mW
Operating Temp.	$\mathrm{T}_{\text {opr }}$		-40 to +105	${ }^{\circ} \mathrm{C}$
Storage Temp.	$\mathrm{T}_{\text {stg }}$		-55 to +150	${ }^{\circ} \mathrm{C}$

■ ELECTRICAL CHARACTERISTICS 1 (DC)

(General conditions: $\mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTLLL}}=0 \mathrm{~V}, \mathrm{~V}_{\text {CTLH }}=1.8 \mathrm{~V}$)						
PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	V_{DD}		2.375	2.7	5.0	V
Operating Current	I_{DD}	No RF input, $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$	-	95	180	$\mu \mathrm{~A}$
Control Voltage (LOW)	$\mathrm{V}_{\text {CTL(L) }}$		0	-	0.45	V
Control Voltage (HIGH)	$\mathrm{V}_{\text {CTL(H) }}$		1.35	1.8	5.0	V
Control Current	$\mathrm{I}_{\text {CTL }}$	$\mathrm{V}_{\text {CTL(H) }}=1.8 \mathrm{~V}$	-	4	10	$\mu \mathrm{~A}$

■ELECTRICAL CHARACTERISTICS 2 (RF)

(General conditions: $\mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C}, \mathrm{Z}_{\mathrm{s}}=\mathrm{Z}_{\mathrm{l}}=50 \Omega, \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTL}(\mathrm{L})}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTL}(\mathrm{H})}=1.8 \mathrm{~V}$)						
PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Insertion Loss 1	LOSS1	$\mathrm{f}=0.9 \mathrm{GHz}, \mathrm{P}_{\mathrm{IN}}=35 \mathrm{dBm}$	-	0.18	0.33	dB
Insertion Loss 2	LOSS2	$\mathrm{f}=1.9 \mathrm{GHz}, \mathrm{P}_{\mathrm{IN}}=33 \mathrm{dBm}$	-	0.20	0.40	dB
Insertion Loss 3	LOSS3	$\mathrm{f}=2.7 \mathrm{GHz}, \mathrm{P}_{\mathrm{IN}}=27 \mathrm{dBm}$	-	0.23	0.43	dB
Insertion Loss 4	LOSS4	$\mathrm{f}=6.0 \mathrm{GHz}, \mathrm{P}_{\mathrm{IN}}=27 \mathrm{dBm}$	-	0.45	0.65	dB
Isolation 1	ISL1	$\mathrm{f}=0.9 \mathrm{GHz}, \mathrm{P}_{\mathrm{IN}}=35 \mathrm{dBm}$	40	45	-	dB
Isolation 2	ISL2	$\mathrm{f}=1.9 \mathrm{GHz}, \mathrm{P}_{\mathrm{IN}}=33 \mathrm{dBm}$	30	35	-	dB
Isolation 3	ISL3	$\mathrm{f}=2.7 \mathrm{GHz}, \mathrm{P}_{\mathrm{IN}}=27 \mathrm{dBm}$	25	30	-	dB
Isolation 4	ISL4	$\mathrm{f}=6.0 \mathrm{GHz}, \mathrm{P}_{\mathrm{IN}}=27 \mathrm{dBm}$	16.5	20	-	dB
Input Power at 0.1 dB Compression Point	$\mathrm{P}_{-0.1 \mathrm{~dB}}$	$\begin{aligned} & \mathrm{f}=0.9 \mathrm{GHz}, \mathrm{f}=1.9 \mathrm{GHz}, \\ & \mathrm{f}=2.7 \mathrm{GHz}, \mathrm{f}=6.0 \mathrm{GH} \end{aligned}$	+36	-	-	dBm
2nd Harmonics 1	2fo(1)	$\mathrm{f}=0.9 \mathrm{GHz}, \mathrm{P}_{\mathrm{IN}}=35 \mathrm{dBm}$	-	-85	-70	dBc
2nd Harmonics 2	2fo(2)	$\mathrm{f}=1.9 \mathrm{GHz}, \mathrm{P}_{\mathrm{IN}}=33 \mathrm{dBm}$	-	-90	-70	dBc
2nd Harmonics 3	2fo(3)	$\mathrm{f}=2.7 \mathrm{GHz}, \mathrm{P}_{\mathrm{IN}}=27 \mathrm{dBm}$	-	-90	-70	dBc
3rd Harmonics 1	3fo(1)	$\mathrm{f}=0.9 \mathrm{GHz}, \mathrm{P}_{\mathrm{IN}}=35 \mathrm{dBm}$	-	-90	-70	dBc
3rd Harmonics 2	3fo(2)	$\mathrm{f}=1.9 \mathrm{GHz}, \mathrm{P}_{\mathrm{IN}}=33 \mathrm{dBm}$	-	-80	-70	dBc
3rd Harmonics 3	3fo(3)	$\mathrm{f}=2.7 \mathrm{GHz}, \mathrm{P}_{\mathrm{IN}}=27 \mathrm{dBm}$	-	-90	-70	dBc
Input $3^{\text {rd }}$ order intercept point1	IIP3(1)	$\begin{aligned} & \mathrm{f}=829+849 \mathrm{MHz}, \\ & \mathrm{P}_{\mathrm{IN}}=24 \mathrm{dBm} \text { each } \end{aligned}$	+65	+73	-	dBm
Input $3^{\text {rd }}$ order intercept point2	IIP3(2)	$\begin{aligned} & \mathrm{f}=1870+1910 \mathrm{MHz}, \\ & \mathrm{P}_{\mathrm{IN}}=24 \mathrm{dBm} \text { each } \end{aligned}$	+65	+71	-	dBm
VSWR 1	VSWR 1	on-state ports, $\mathrm{f}=2.7 \mathrm{GHz}$	-	1.1	1.4	
VSWR 2	VSWR 2	on-state ports, $\mathrm{f}=6.0 \mathrm{GHz}$	-	1.1	1.4	
Switching time	$\mathrm{T}_{\text {sw }}$	50\% $\mathrm{V}_{\text {CTL }}$ to 10/90\% RF	-	1	5	$\mu \mathrm{S}$

[^0]
NJG1681MD7

■ TERMINAL INFORMATION

No.	SYMBOL	DESCRIPTION
1	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
2	NC(GND)	No connected terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
3	P2	RF transmitting/receiving port. No DC blocking capacitor is required for this port unless DC is biased externally.
4	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
5	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
6	PC	RF transmitting/receiving port. No DC blocking capacitor is required for this port unless DC is biased externally. Please connect an inductor with GND terminal for ESD protection.
7	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
8	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
9	P1	RF transmitting/receiving port. No DC blocking capacitor is required for this port unless DC is biased externally.
10	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
11	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
12	VDD	Positive voltage supply terminal. The positive voltage ($+2.375 \sim+5 \mathrm{~V}$) has to be supplied. Please connect a bypass capacitor with GND terminal for excellent RF performance.
13	NC(GND)	No connected terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
14	VCTL	Control signal input terminal. This terminal is set to High-Level ($+1.35 \sim+5.0 \mathrm{~V}$) or Low-Level ($0 \sim+0.45 \mathrm{~V}$).
$\begin{aligned} & \text { Exposed } \\ & \text { Pad } \end{aligned}$	GND	Ground terminal.

ELECTRICAL CHARACTERISTICS (With application circuit)

VSWR vs Frequency

IDD vs. VDD

Loss, ISL vs Frequency
(PC-P2 ON, $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTL}}=0 \mathrm{~V}$)

VSWR vs Frequency

Control Current vs. VCTL
(No RF input, PC-P1 ON, $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$)

NJG1681MD7

ELECTRICAL CHARACTERISTICS (With application circuit)

Output Power, $I_{D D}$ vs Input Power

Output Power, $I_{D D}$ vs Input Power
($\mathrm{f}=2.7 \mathrm{GHz}, \mathrm{PC}-\mathrm{P} 1 \mathrm{ON}, \mathrm{V}_{\mathrm{c} . \mathrm{I}}=1.8 \mathrm{~V}$)

Output Power, I vs Input Power
($\mathrm{f}=1.9 \mathrm{GHz}, \mathrm{PC}-\mathrm{P} 1 \mathrm{ON}, \mathrm{V}_{\mathrm{c} \cdot \mathrm{TI}}=1.8 \mathrm{~V}$)

Output Power, $I_{D D}$ vs Input Power

ELECTRICAL CHARACTERISTICS (With application circuit)

Loss, ISL vs Input Power
($\mathrm{f}=2.7 \mathrm{GHz}, \mathrm{PC}-\mathrm{P} 1 \mathrm{ON}, \mathrm{V}_{\mathrm{ctL}}=1.8 \mathrm{~V}$)

Loss, ISL vs Input Power
($\mathrm{f}=1.9 \mathrm{GHz}, \mathrm{PC}-\mathrm{P} 1 \mathrm{ON}, \mathrm{V}_{\mathrm{CTL}}=1.8 \mathrm{~V}$)

Loss, ISL vs Input Power
($\mathrm{f}=6.0 \mathrm{GHz}, \mathrm{PC}-\mathrm{P} 1 \mathrm{ON}, \mathrm{V}_{\mathrm{cTL}}=1.8 \mathrm{~V}$)

NJG1681MD7

ELECTRICAL CHARACTERISTICS (With application circuit)

Loss, ISL vs Ambient Temperature

Loss, ISL vs Ambient Temperature

DC Current vs Ambient Temperature

Loss, ISL vs Ambient Temperature

Loss, ISL vs Ambient Temperature

Switching Time vs Ambient Temperature

(TOP VIEW)

Note: No DC blocking capacitors are required on all RF ports, unless DC is biased externally.

* The Inductor L1 is required for enhancing ESD protection level.

The inductor L1 is recommended in order to keep the DC bias level of each RF port at 0 V level tightly.

■ PARTS LIST

No.	Parameters	Note
C1	1000 pF	MURATA (GRM15)
L1	68 nH	TAIYO-YUDEN (HK1005)

■ PCB LAYOUT

(TOP VIEW)

PCB SIZE: $19.4 \times 15.0 \mathrm{~mm}$
PCB: FR-4, t=0.5mm
Capacitor size: 1005
MICROSTRIP LINE WIDTH: 0.98 mm

Losses of PCB and connectors, $\mathrm{Ta}=+25^{\circ} \mathrm{C}$	
Frequency (GHz)	Loss (dB)
0.9	0.09
1.9	0.18
2.7	0.26
6.0	0.48

PRECAUTIONS

[1] No DC blocking capacitors are required at each RF port normally. When the other device is biased at certain voltage and connected to the NJG1681MD7, a DC block capacitor is required between the device and the switch IC. This is because the each RF port of NJG1681MD7 is biased at 0 V (GND).
[2] For avoiding the degradation of RF performance, the bypass capacitor (C1) should be placed as close as possible to VDD terminal
[3] For good RF performance, all GND terminals are must be connected to PCB ground plane of substrate, and through - holes for GND should be placed the IC near.

NJG1681MD7

■ RECOMMENDED FOOTPRINT PATTERN (EQFN14-D7 PACKAGE Reference)

Ø :Land
:Mask (Open area) *Metal mask thickness: 100 $\mu \mathrm{m}$:Resist(Open area)

PKG: $\quad 1.6 \mathrm{~mm} \times 1.6 \mathrm{~mm}$
Pin pitch: 0.4 mm

PACKAGE OUTLINE (EQFN14-D7)

Cautions on using this product

This product contains Gallium-Arsenide (GaAs) which is a harmful material.

- Do NOT eat or put into mouth.
- Do NOT dispose in fire or break up this product.
- Do NOT chemically make gas or powder with this product.
- To waste this product, please obey the relating law of your country.

This product may be damaged with electric static discharge (ESD) or spike voltage. Please handle with care to avoid these damages.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by Nisshinbo manufacturer:

Other Similar products are found below :
MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 SKY13446-374LF SW-227-PIN CG2185X2 CG2415M6 MA4SW410 MA4SW410B-1 MASW-002102-13580G MASW-008543-001SMB MASW-008955-TR3000 TGS4307 BGS 12PL6 E6327 BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8 HMC986A SKY13374-397LF SKY13453-385LF CG2430X1-C2 CG2415M6-C2 HMC986A-SX SW-314-PIN UPG2162T5N-E2-A SKY13416-485LF MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-003102-13590G MASWSS0202TR-3000 MA4SW310B-1 MA4SW110 SW-313-PIN CG2430X1 SKY13321-360LF SKY13405490LF BGSF 18DM20 E6327 MMS008PP3 BGS13PN10E6327XTSA1 SKY13319-374LF BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404-466LF MASW-011060-TR0500 SKYA21024

[^0]: *1: IIP3 are defined by the following equations.
 IIP3=(3 x Pout-IM3)/2+LOSS

