HIGH POWER SP4T SWITCH GaAs MMIC

■ GENERAL DESCRIPTION

The NJG1684ME2 is a GaAs SP4T switch MMIC suitable for LTE/UMTS/CDMA/GSM applications.
The NJG1684ME2 features very low insertion loss, high isolation and excellent linearity performance down to 1.8 V control voltage at high frequency up to 2.7 GHz . In addition, this switch is able to handle high power signals.
The NJG1684ME2 has ESD protection devices to achieve excellent ESD performances. No DC Blocking capacitors are required for all RF ports unless DC is biased externally. And the ultra small \& ultra thin EQFN12-E2 package is adopted.

- APPLICATIONS

LTE, UMTS, CDMA, GSM applications
Post PA Switching, Antenna Switching and Bands Switching applications
General Purpose Switching applications

■ FEATURES

- Low voltage logic control
- Low voltage operation
- Low distortion
- Low insertion loss- P-0.1dB

U
Ultra small \& ultra thin package

- RoHS compliant and Halogen Free, MSL1

PIN CONFIGURATION

Pin connection

Exposed PAD: GND
$\mathrm{V}_{\mathrm{CTL}(\mathrm{H})}=1.8 \mathrm{~V}$ typ.
$V_{D D}=2.7 \mathrm{~V}$ typ.
IIP3=+70dBm typ. @f=829+849MHz, $\mathrm{P}_{\mathrm{IN}}=24 \mathrm{dBm}$
IIP3=+69dBm typ. @f $=1870+1910 \mathrm{MHz}, \mathrm{P}_{\mathrm{IN}}=24 \mathrm{dBm}$
2nd harmonics $=-80 \mathrm{dBc}$ typ. @f=0.9GHz, $\mathrm{P}_{\mathrm{in}}=35 \mathrm{dBm}$ 3rd harmonics=-77dBc typ. @f=0.9GHz, $P_{\text {IN }}=35 \mathrm{dBm}$ 0.25 dB typ. @f=0.9GHz, $\mathrm{P}_{\mathrm{IN}}=35 \mathrm{dBm}, \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ 0.30 dB typ. @f=1.9GHz, $\mathrm{P}_{\mathbb{I}}=33 \mathrm{dBm}, \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ 0.35 dB typ. @f=2.7GHz, $\mathrm{P}_{\mathrm{IN}}=27 \mathrm{dBm}, \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ 36 dBm min.
EQFN12-E2 (Package size: $1.8 \times 1.8 \times 0.397 \mathrm{~mm}$)

1. P1	7. GND
2. P2	8. P4
3. GND	9. P3
4. VDD	10. GND
5. VCTL2	11. PC
6. VCTL1	12. GND

6. VCTL1
7. GND
8. P2
9. P4
10. GND
11. P3
12. VDD
13. GND
14. VCTL2
GND

■ TRUTH TABLE

NJG1684ME2

" H " $=\mathrm{V}_{\text {CTL(H), " } \mathrm{L} "=\mathrm{V}_{\text {CTLLL }}}$		
VCTL1	VCTL2	Path
L	L	PC-P1
H	L	PC-P2
L	H	PC-P3
H	H	PC-P4

NOTE: Please note that any information on this catalog will be subject to change.

NJG1684ME2

■ ABSOLUTE MAXIMUM RATINGS
$\mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C}, \mathrm{Z}_{\mathrm{s}}=\mathrm{Z}_{\mathrm{i}}=50 \mathrm{ohm}$

PARAMETER	SYMBOL	CONDITIONS	RATINGS	UNITS
RF Input Power	P_{IN}	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\text {CTL }}=0 / 1.8 \mathrm{~V}$	37	dBm
Supply Voltage	V_{DD}	VDD terminal	5.0	V
Control Voltage	$\mathrm{V}_{\mathrm{CTL}}$	VCTL1, VCTL2 terminal	5.0	V
Power Dissipation	P_{D}	Four-layer FR4 PCB with through-hole $(101.5 \times 114.5 \mathrm{~mm}), \mathrm{Tj}=150^{\circ} \mathrm{C}$	1200	mW
Operating Temp.	$\mathrm{T}_{\text {opr }}$		$-40 \sim+85$	${ }^{\circ} \mathrm{C}$
Storage Temp.	$\mathrm{T}_{\text {stg }}$		$-55 \sim+150$	${ }^{\circ} \mathrm{C}$

■ ELECTRICAL CHARACTERISTICS 1 (DC)

(General conditions: $\mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C}, \mathrm{Z}_{\mathrm{s}}=\mathrm{Z}_{\mathrm{i}}=50 \mathrm{ohm}, \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTLH})}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTLLL}}=0 \mathrm{~V}$, with application circuit)

PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	V_{DD}	VDD Terminal	2.375	2.7	5.0	V
Operating Current	I_{DD}	No RF input	-	180	400	$\mu \mathrm{~A}$
Control Voltage (LOW)	$\mathrm{V}_{\text {CTLLL }}$	VCTL1, VCTL2 Terminal	0	-	0.45	V
Control Voltage (HIGH)	$\mathrm{V}_{\text {CTL(H) }}$	VCTL1, VCTL2 Terminal	1.35	1.8	5.0	V
Control Current	$\mathrm{I}_{\text {CTL }}$	$\mathrm{V}_{\text {CTL(H) }}=1.8 \mathrm{~V}$	-	4	10	$\mu \mathrm{~A}$

■ ELECTRICAL CHARACTERISTICS 2 (RF)

(General conditions: $\mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C}, \mathrm{Z}_{\mathrm{s}}=\mathrm{Z}_{\mathrm{I}}=50$ ohm, $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\text {CTLH }}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {CTLLL }}=0 \mathrm{~V}$, with application circuit)

PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Insertion Loss 1	LOSS1	$\mathrm{f}=0.9 \mathrm{GHz}, \mathrm{P}_{\text {IN }}=35 \mathrm{dBm}$	-	0.25	0.40	dB
Insertion Loss 2	LOSS2	$\mathrm{f}=1.9 \mathrm{GHz}, \mathrm{P}_{\mathrm{in}}=33 \mathrm{dBm}$	-	0.30	0.45	dB
Insertion Loss 3	LOSS3	$\mathrm{f}=2.7 \mathrm{GHz}, \mathrm{P}_{\text {IN }}=27 \mathrm{dBm}$	-	0.35	0.50	dB
Isolation 1	ISL1	$\mathrm{f}=0.9 \mathrm{GHz}, \mathrm{P}_{\text {IN }}=35 \mathrm{dBm}$	30	37	-	dB
Isolation 2	ISL2	$\mathrm{f}=1.9 \mathrm{GHz}, \mathrm{P}_{\text {IN }}=33 \mathrm{dBm}$	25	29	-	dB
Isolation 3	ISL3	$\mathrm{f}=2.7 \mathrm{GHz}, \mathrm{P}_{\mathrm{in}}=27 \mathrm{dBm}$	22	25	-	dB
Input Power at 0.1 dB Compression Point	$\mathrm{P}_{-0.1 \mathrm{~dB}}$	$\mathrm{f}=0.9 \mathrm{GHz}, 1.9 \mathrm{GHz}, 2.7 \mathrm{GHz}$	36	-	-	dBm
2nd Harmonics 1	2fo(1)	$\mathrm{f}=0.9 \mathrm{GHz}, \mathrm{P}_{\text {IN }}=35 \mathrm{dBm}$	-	-80	-70	dBc
2nd Harmonics 2	2fo(2)	$\mathrm{f}=1.9 \mathrm{GHz}, \mathrm{P}_{\mathrm{in}}=33 \mathrm{dBm}$	-	-80	-70	dBc
2nd Harmonics 3	2fo(3)	$\mathrm{f}=2.7 \mathrm{GHz}, \mathrm{P}_{\text {IN }}=27 \mathrm{dBm}$	-	-90	-70	dBc
3rd Harmonics 1	3fo(1)	$\mathrm{f}=0.9 \mathrm{GHz}, \mathrm{P}_{\mathrm{in}}=35 \mathrm{dBm}$	-	-77	-70	dBc
3rd Harmonics 2	3fo(2)	$\mathrm{f}=1.9 \mathrm{GHz}, \mathrm{P}_{\text {IN }}=33 \mathrm{dBm}$	-	-77	-70	dBc
3rd Harmonics 3	3fo(3)	$\mathrm{f}=2.7 \mathrm{GHz}, \mathrm{P}_{\text {IN }}=27 \mathrm{dBm}$	-	-90	-70	dBc
Input $3^{\text {rd }}$ order intercept point1	IIP3(1)	$\begin{aligned} & \hline \mathrm{f}=829+849 \mathrm{MHz}, \\ & \mathrm{P}_{\mathrm{IN}}=24 \mathrm{dBm} \text { each *1 } \\ & \hline \end{aligned}$	+65	+70	-	dBm
Input $3^{\text {rd }}$ order intercept point2	IIP3(2)	$\begin{aligned} & f=1870+1910 \mathrm{MHz}, \\ & \mathrm{P}_{\text {IN }}=24 \mathrm{dBm} \text { each *1 } \end{aligned}$	+63	+69	-	dBm
VSWR	VSWR	On-state ports, $\mathrm{f}=2.7 \mathrm{GHz}$	-	1.2	1.4	
Switching time	$\mathrm{T}_{\text {sw }}$	$50 \% \mathrm{~V}_{\text {CTL }}$ to $10 / 90 \%$ RF	-	1.0	5.0	$\mu \mathrm{S}$

*1: IIP3 are defined by the following equations.
IIP3=(3 x Pout-IM3)/2+LOSS

NJG1684ME2

■ TERMINAL INFORMATION

No.	SYMBOL	DESCRIPTION
1	P1	RF transmitting/receiving port.
2	P2	RF transmitting/receiving port.
3	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
4	VDD	Positive voltage supply terminal. The positive voltage (+2.375~+5V) has to be supplied. Please connect a bypass capacitor with GND terminal for excellent RF performance.
5	VCTL2	Control signal input terminal. This terminal is set to High-Level (+1.35~+5.0V) or Low-Level ($0 \sim+0.45 \mathrm{~V}$).
6	VCTL1	Control signal input terminal. This terminal is set to High-Level (+1.35~+5.0V) or Low-Level ($0 \sim+0.45 \mathrm{~V}$).
7	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
8	P4	RF transmitting/receiving port.
9	P3	RF transmitting/receiving port.
10	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
11	PC	RF transmitting/receiving port. Please connect an inductor with GND terminal for ESD protection.
12	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
Exposed	GND	Ground terminal.

■ ELECTRICAL CHARACTERISTICS (With Application circuit, Loss of external circuit are excluded)

Loss, ISL vs Frequency

Loss, ISL vs Frequency

VSWR vs Frequency

Loss, ISL vs Frequency

Loss, ISL vs Frequency

Switching Time

NJG1684ME2

■ ELECTRICAL CHARACTERISTICS (With Application circuit, Loss of external circuit are excluded)

Output Power, $I_{D D}$ vs Input Power

Output Power, $I_{D D}$ vs Input Power

Output Power, $I_{D D}$ vs Input Power

Loss, ISL vs Input Power

Loss, ISL vs Input Power
(P1-PC ON, f=1.9GHz)

Loss, ISL vs Input Power
($\mathrm{P} 1-\mathrm{PC}$ ON, f=2.7GHz)

■ ELECTRICAL CHARACTERISTICS (With Application circuit, Loss of external circuit are excluded)

Loss, ISL vs Temperature
($\mathrm{f}=0.9 \mathrm{GHz}, \mathrm{P}_{\mathrm{IN}}=35 \mathrm{dBm}, \mathrm{PC}-\mathrm{P} 1 \mathrm{ON}$)

Loss, ISL vs Temperature
$\left(\mathrm{f}=2.7 \mathrm{GHz}, \mathrm{P}_{\mathrm{IN}}=27 \mathrm{dBm}, \mathrm{PC}-\mathrm{P} 1 \mathrm{ON}\right)$

Loss, ISL vs Temperature
($\mathrm{f}=1.9 \mathrm{GHz}, \mathrm{P}_{\mathrm{IN}}=33 \mathrm{dBm}, \mathrm{PC}-\mathrm{P} 1 \mathrm{ON}$)

VSWR vs Temperature

Switching Time vs Temperature

NJG1684ME2

APPLICATION CIRCUIT
(TOP VIEW)

PRECAUTIONS

[1] The Inductor L1 is required for enhancing ESD protection level.
[2] All RF terminals are biased DC GND level.
[3] No DC block capacitors are required for RF ports unless DC is biased externally.

■ PARTS LIST

No.	Parameters	Note
C1	1000 pF	MURATA (GRM15)
L1	68 nH	TAIYO-YUDEN (HK1005)

■ PCB LAYOUT

(TOP VIEW)

PCB:
Capacitor Size: 1005
Strip Line Width: 0.4 mm
PCB Size: $26 \times 26 \mathrm{~mm}$

Losses of PCB and connectors, $\mathrm{Ta}=+25^{\circ} \mathrm{C}$

Frequency (GHz)	Loss (dB)
0.9	0.27
1.9	0.50
2.7	0.61

<PCB LAYOUT GUIDELINE>

■ PRECAUTIONS

[1] No DC block capacitors are required for RF ports unless DC is biased externally. When the other device is biased at certain voltage and connected to the NJG1684ME2, a DC block capacitor is required between the device and the switch IC. This is because the each RF port of NJG1684ME2 is biased at 0 V (GND).
[2] For good RF performance, all GND terminals must be connected to PCB ground plane of substrate, and via-holes for GND should be placed near the IC.
[3] For good RF performance, through-holes for GND should be placed close to the GND pin 6 and pin 13.
One of the ways to do this is to place a via-hole at the TAB pad under this IC.

NJG1684ME2

RECOMMENDED FOOTPRINT PATTERN (EQFN12-E2 PACKAGE Reference)

Zan : Land
: Mask (Open area) *Metal mask thickness: 100um
: Resist(Open area)

PKG : $1.8 \mathrm{~mm} \times 1.8 \mathrm{~mm}$ Pin pitch : 0.4 mm

Detail A

PACKAGE OUTLINE (EQFN12-E2)

Cautions on using this product

This product contains Gallium-Arsenide (GaAs) which is a harmful material.

- Do NOT eat or put into mouth.
- Do NOT dispose in fire or break up this product.
- Do NOT chemically make gas or powder with this product.
- To waste this product, please obey the relating law of your country.

[^0]This product may be damaged with electric static discharge (ESD) or spike voltage. Please handle with care to avoid these damages.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by Nisshinbo manufacturer:

Other Similar products are found below :
MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 SKY13446-374LF SW-227-PIN CG2185X2 CG2415M6 MA4SW410 MA4SW410B-1 MASW-002102-13580G MASW-008543-001SMB MASW-008955-TR3000 TGS4307 BGS 12PL6 E6327 BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8 HMC986A SKY13374-397LF SKY13453-385LF CG2430X1-C2 CG2415M6-C2 HMC986A-SX SW-314-PIN UPG2162T5N-E2-A SKY13416-485LF MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-003102-13590G MASWSS0202TR-3000 MA4SW310B-1 MA4SW110 SW-313-PIN CG2430X1 SKY13321-360LF SKY13405490LF BGSF 18DM20 E6327 MMS008PP3 BGS13PN10E6327XTSA1 SKY13319-374LF BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404-466LF MASW-011060-TR0500 SKYA21024

[^0]: [CAUTION]
 The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are
 described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

