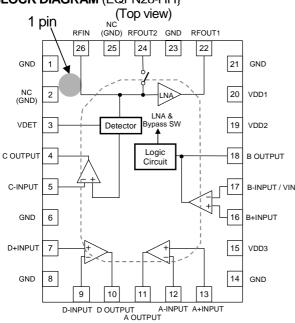


Wide Band Low Noise Amplifier with Auto Gain Control Function

■ FEATURES


High gain
 Low noise figure
 18 dB typ. @ 40 to 780 MHz
 0.9 dB typ. @ 174 to 780 MHz

- Auto gain control (AGC) function with hysteresis
- Integrated signal detector with thermal compensation
- Package size 3.4 x 2.6 mm², 26-pin
- RoHS compliant and Halogen Free, MSL1

■ APPLICATION

- Digital TV, DAB, FM, terrestrial broadcast applications
- Active antenna, digital video recorder, set top box, tuner module applications

■ BLOCK DIAGRAM (EQFN26-HH)

■ GENERAL DESCRIPTION

The NJG1740MHH is a wideband low noise amplifier with AGC function for DAB, DTV and FM applications.

This LNA has LNA mode and bypass mode switched by AGC function which features temperature compensation and hysteresis performance to avoid excessively frequent switching (chattering). AGC function is suitable for active antennas whose gain can't be controlled externally.

Its integrated ESD protection circuits bring high ESD tolerance.

The small and thin EQFN26-HH package is adopted.

■ PIN CONFIGURATION

	PIN CONFIGURATION						
PIN NO.	SYMBOL	DESCRIPTION					
1	GND	Ground					
2	NC(GND)	No Connection					
3	VDET	Detector signal output					
4	C OUTPUT	Output C					
5	C -INPUT	Inverting input C					
6	GND	Ground					
7	D +INPUT	Noninverting input D					
8	GND	Ground					
9	D -INPUT	Inverting input D					
10	D OUTPUT	Output D					
11	A OUTPUT	Output A					
12	A -INPUT	Inverting input A					
13	A +INPUT	Noninverting input A					
14	GND	Ground					
15	VDD3	Power supply 3					
16	B +INPUT	Noninverting input B					
17	B-INPUT/	Inverting input B /					
	VIN	Manual inspection					
18	B OUTPUT	Output B					
19	VDD2	Power supply 2					
20	VDD1	Power supply 1					
21	GND	Ground					
22	RFOUT1	RF output 1					
	131 0011	(LNA mode)					
23	GND	Ground					
24	RFOUT2	RF output 2					
	1(1 0012	(bypass mode)					
25	NC(GND)	No Connection					
26	RFIN	RF input					
Exposed pad	GND	Ground					

■ MARK INFORMATION

NJG1740 MHH (TE1)

| | |
Part number Package Taping form

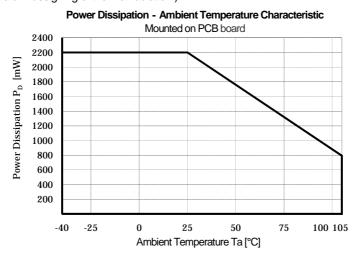
■ ORDERING INFORMATION

PART NUMBER	PACKAGE OUTLINE	RoHS	HALOGEN- FREE	TERMINAL FINISH	MARKING	WEIGHT (mg)	MOQ (pcs.)
NJG1740MHH	EQFN26-HH	Yes	Yes	Sn-Bi	1740	1.89	1,500

■ABSOLUTE MAXIMUM RATINGS

 $T_a = 25^{\circ}C, Z_s = Z_l = 50 \Omega$

PARAMETER	SYMBOL	RATINGS	UNIT
Supply voltage	V_{DD}	6.0	V
Inspection voltage	Vin (1)	V _{DD} + 0.3	V
Input power	P _{IN}	+15 ⁽²⁾	dBm
Power dissipation	PD	2200 ⁽³⁾	mW
Operating temperature	T _{opr}	-40 to +105	°C
Storage temperature	T _{stg}	-55 to +150	°C


(1): Vin is only applied to select manually LNA active mode or bypass mode for inspection. Please refer APPLICATION CIRCUIT for detail.

(2): $V_{DD} = 5 V$

(3): Mounted on four-layer FR4 PCB with through-hole (114.5 \times 101.5 mm), $T_j = 150^{\circ}$ C

■ POWER DISSIPATION VS.AMBIENT TEMPERATURE

Please, refer to the following Power Dissipation and Ambient Temperature. (Please note the surface mount package has a small maximum rating of Power Dissipation $[P_D]$, a special attention should be paid in designing of thermal radiation.)

■ ELECTRICAL CHARACTERISTICS 1 (DC CHARACTERISTICS)

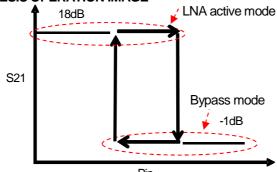
T_a = 25°C, with application circuit

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Supply voltage	V_{DD}		4.7	5.0	5.5	V
Operating current 1	I _{DD} 1	LNA active mode	-	40	100	mA
Operating current 2	I _{DD} 2	Bypass mode	-	10	20	mA

 $V_{DD} = 5V$, freq = 40 to 780 MHz, $T_a = 25$ °C, $Z_s = Z_l = 50 \Omega$, with application circuit

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Small signal gain	Gain	Exclude PCB & connector losses (Note1)	15.0	18.0	21.0	dB
Noise figure1_1	NF1_1	freq = 40 to 174 MHz, exclude PCB & connector losses (Note2)	-	1.2	2.0	dB
Noise figure 1_2	NF1_2	freq = 174 to 780 MHz, exclude PCB & connector losses (Note2)	1	0.9	1.3	dB
3rd order intermodulation distortion1	IM3_1	f1 = freq, f2 = freq + 100 kHz Pin = -60 dBm	1	-	-105	dBm
Input 3rd order intercept point1	IIP3_1	f1 = freq, f2 = freq + 100 kHz Pin = -45 dBm (Note 3)	-15	-5.0	-	dBm
RFIN port return loss1	RLi1		4.5	7.5	-	dB
RFOUT port return loss 1	RLo1		8.0	14.0	-	dB

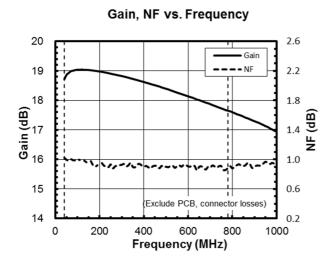
■ ELECTRICAL CHARACTERISTICS 3 (Bypass mode)

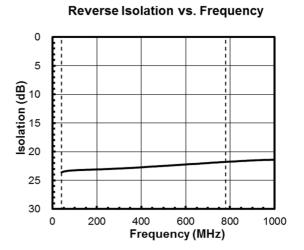

 $V_{DD} = 5V$, freq = 40 to 780 MHz, $T_a = 25$ °C, $Z_s = Z_l = 50\Omega$, with application circuit

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Insertion loss	Loss	Exclude PCB & connector losses (Note1)	1	1.0	3.0	dB
3rd order intermodulation distortion 2_1	IM3_2_1	f1 = 40 to 68 MHz, f2 = freq + 100 kHz, Pin = -34 dBm	-	-115	-100	dBm
3rd order intermodulation distortion 2_2	IM3_2_2	f1 = 68 to 240 MHz, f2 = freq + 100 kHz, Pin = -34 dBm	-	-105	-90	dBm
3rd order intermodulation distortion 2_3	IM3_2_3	f1 = 240 to 780 MHz, f2 = freq + 100 kHz, Pin = -34 dBm	1	-95	-80	dBm
Input 3rd order intercept point 2_1	IIP3_2_1	f1 = 40 to 68 MHz, f2 = freq + 100 kHz, Pin = -34 dBm (Note 3)	-2.0	+6.0		dBm
Input 3rd order intercept point 2_2	IIP3_2_2	f1 = 68 to 240 MHz, f2 = freq + 100 kHz, Pin = -34 dBm (Note 3)	-7.5	+1.0	ı	dBm
Input 3rd order intercept point 2_3	IIP3_2_3	f1 = 240 to 780 MHz, f2 = freq + 100 kHz, Pin = -34 dBm (Note 3)	-12.5	-4.0	ı	dBm
RFIN port return loss 2	RLi2		7.5	14.0	-	dB
RFOUT port return loss 2	RLo2		7.5	14.0	-	dB

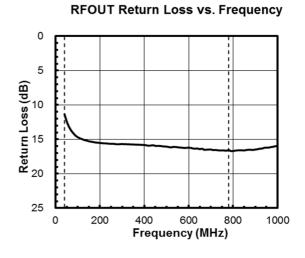
(Note1) Input and output PCB, connector losses: 0.01 dB (40 MHz), 0.03 dB (174 MHz), 0.09 dB (620 MHz), 0.11 dB (780 MHz)

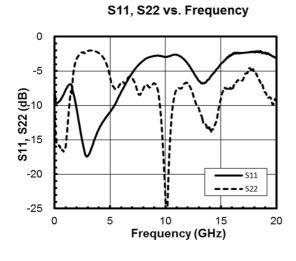
(Note2) Input PCB and connector losses: 0.01 dB (40 MHz), 0.02 dB (174 MHz), 0.04 dB (620 MHz), 0.05 dB (780 MHz) (Note3) IIP3 = OIP3-Gain, OIP3 = (3*Pout-IM3)/2

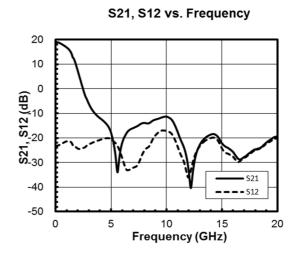

■ HYSTERESIS OPERATION IMAGE



New Japan Radio Co., Ltd.

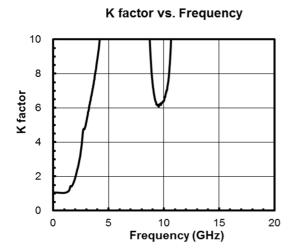

General condition: $V_{DD} = 5.0 \text{ V}$, $T_a = 25^{\circ}\text{C}$, $Z_s = Z_l = 50 \Omega$, with application circuit

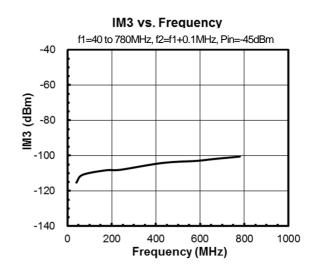


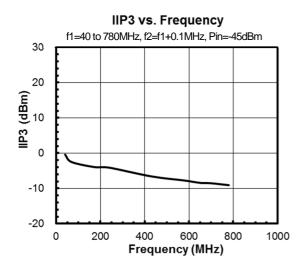


RFIN Return Loss vs. Frequency

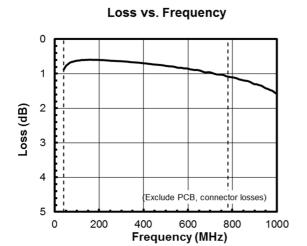
0
5
10
20
400
600
800
1000
Frequency (MHz)

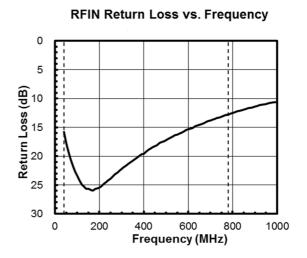


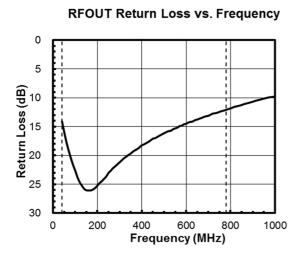


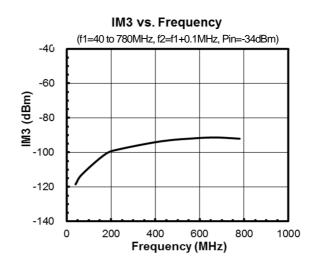


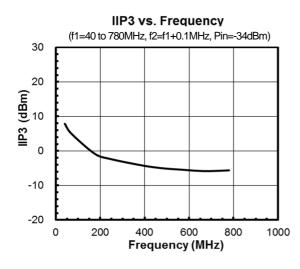
General condition: $V_{DD} = 5.0 \text{ V}$, $T_a = 25^{\circ}\text{C}$, $Z_s = Z_l = 50 \Omega$, with application circuit

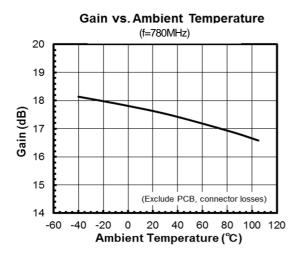


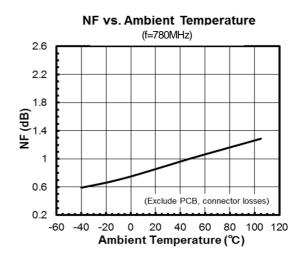


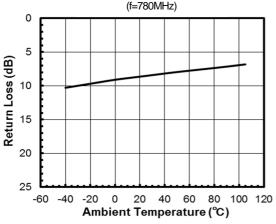


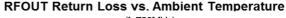

■ ELECTRICAL CHARACTERISTICS (Bypass mode)

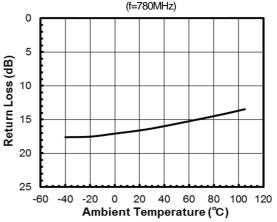

General condition: V_{DD} = 5.0 V, T_a = 25°C, Z_s = Z_l = 50 Ω , with application circuit

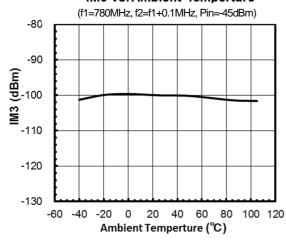


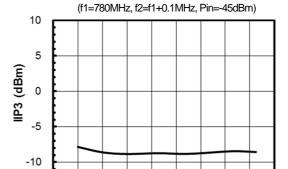





General condition: $V_{DD} = 5.0 \text{ V}$, $Z_s = Z_l = 50 \Omega$, with application circuit




RFIN Return Loss vs. Ambient Temperature



IM3 vs. Ambient Temperture

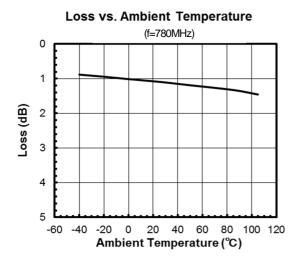
0

20 40 60 80

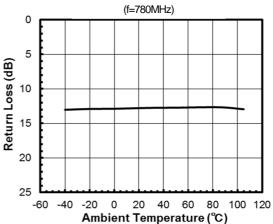
Ambient Temperture (°C)

100 120

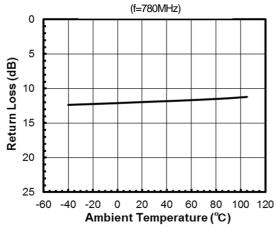
IIP3 vs. Ambient Temperture

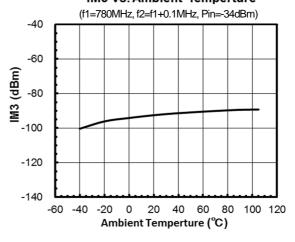

-15

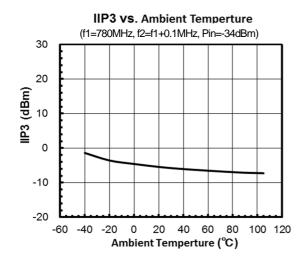
-60 -40 -20



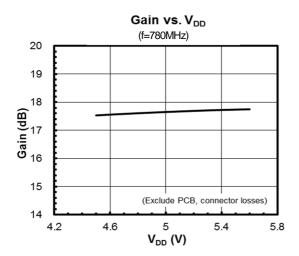
■ ELECTRICAL CHARACTERISTICS (Bypass mode)

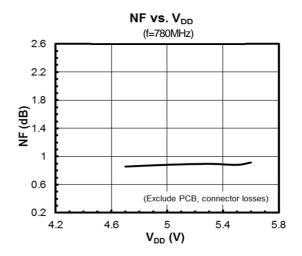

General condition: $V_{DD} = 5.0 \text{ V}$, $Z_s = Z_l = 50 \Omega$, with application circuit

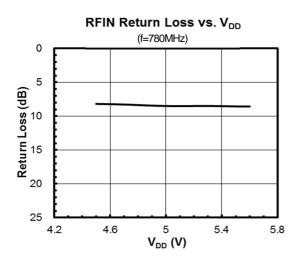

RFIN Return Loss vs. Ambient Temperature

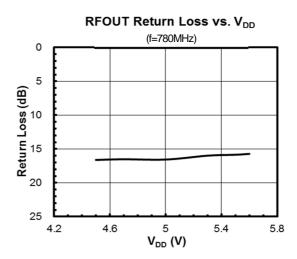


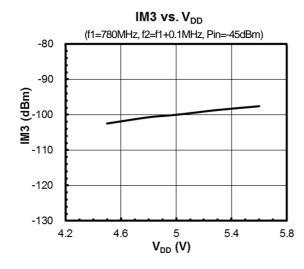
RFOUT Return Loss vs. Ambient Temperature

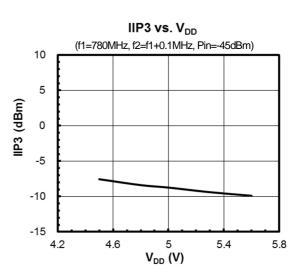

IM3 vs. Ambient Temperture

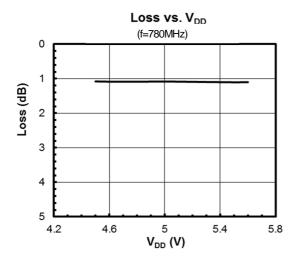


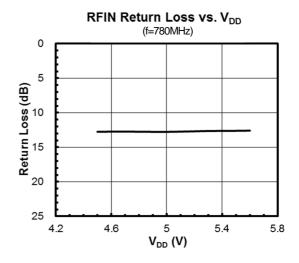


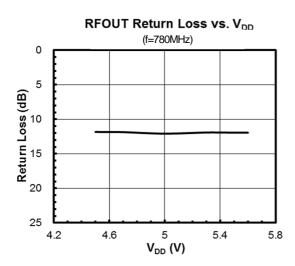


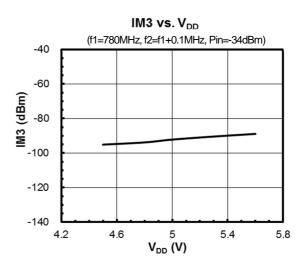

General condition: $T_a = 25$ °C, $Z_s = Z_l = 50 \Omega$, with application circuit

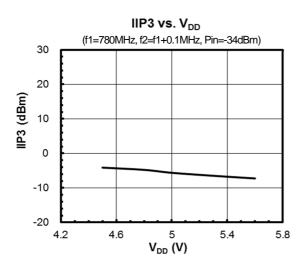


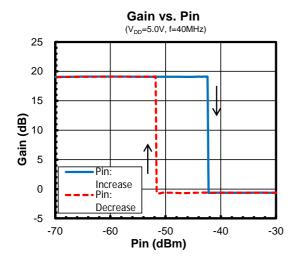


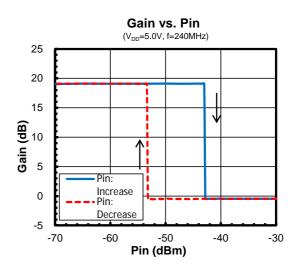


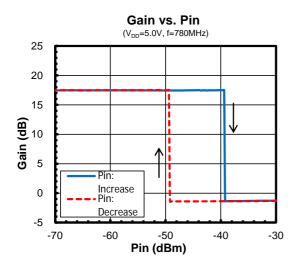


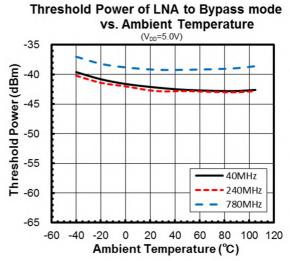

■ ELECTRICAL CHARACTERISTICS (Bypass mode)


General condition: $T_a = 25$ °C, $Z_s = Z_l = 50 \Omega$, with application circuit

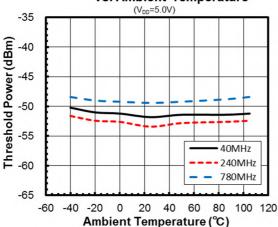


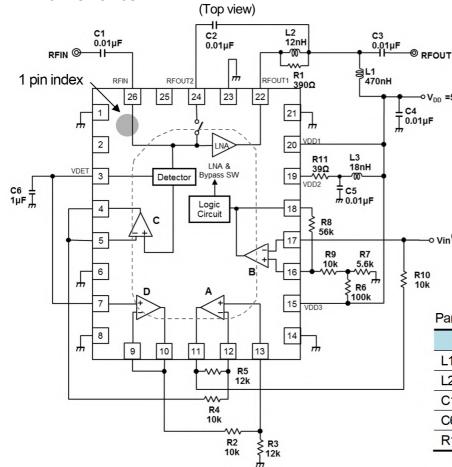




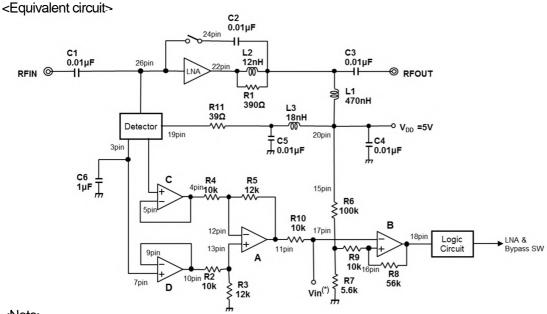

■ ELECTRICAL CHARACTERISTICS (Auto gain control)

General condition: $V_{DD} = 5.0V$, $T_a = 25$ °C, $Z_s = Z_l = 50 \Omega$, with application circuit





Threshold Power of Bypass to LNA mode vs. Ambient Temperature



Parts list	
Part ID	Notes
L1	TAIYO-YUDEN HK1608 series
L2, L3	TAIYO-YUDEN HK1005 series
C1 to C5	MURATA GRM15 series
C6	MURATA GRM18 series
R1 to R11	KOA RK73H series

o Vin^(*)

<Note>

*Regarding Vin, please keep open normally and not applying voltage externally when auto gain control function is used. Applying voltage to Vin is only used to select manually and inspect performance of LNA active mode or bypass mode as below:

Vin = 0V → LNA active mode

Vin = 5V → Bypass mode

■NF MEASUREMENT BLOCK DIAGRAM

Measuring instruments

NF Analyzer : Keysight 8975A Noise Source : Keysight 346A

Setting the NF analyzer

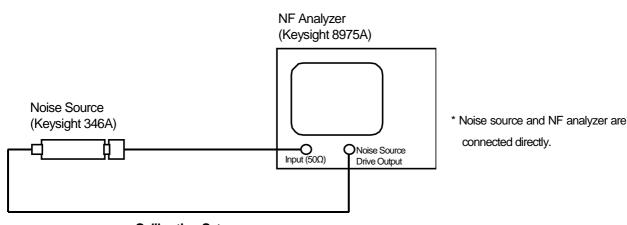
Measurement mode form

Device under test : Amplifier

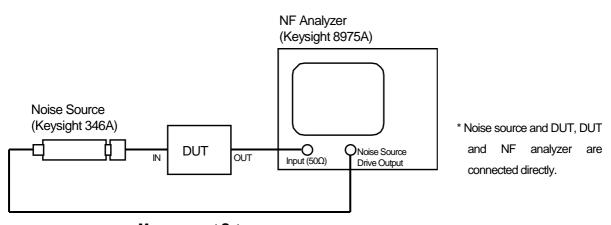
System downconverter : off

Mode setup form

Sideband : LSB


Averages : 4

Average mode : Point


Bandwidth : 4 MHz

Loss comp : off

Tcold : setting the temperature of noise source (303 K)

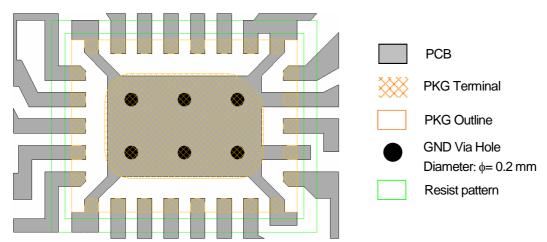
Calibration Setup

Measurement Setup

■ EVALUATION BOARD

(Top View)

RFIN | Column | Colu


RFOUT

PCB Information

Substrate: FR-4
Thickness: 0.2 mm

Micro strip line width: $0.4 \text{ mm } (Z_0 = 50 \Omega)$ Size: 35.2 mm x 16.8 mm

<PCB LAYOUT GUIDELINE>

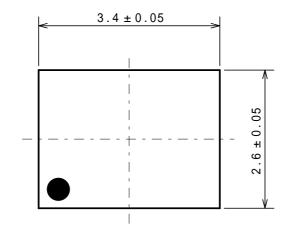
PRECAUTIONS

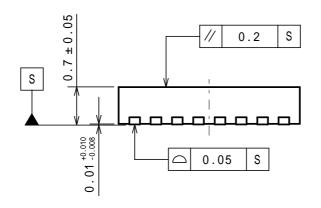
- All external parts should be placed as close as possible to the IC.
- For good RF performance, all GND terminals must be connected to PCB ground plane of substrate, and via-holes for GND should be placed near the IC.
- In order not to couple with terminal RFIN and RFOUT, please layout ground pattern between both terminals.

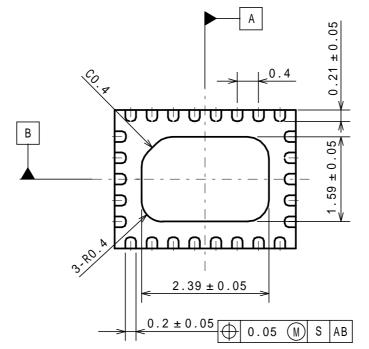
■ RECOMMENDED FOOTPRINT PATTERN (EQFN26-HH)

: Land

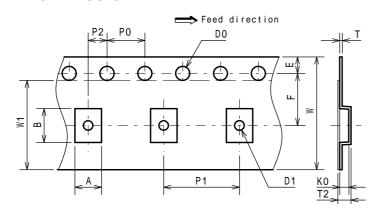
: Mask (Open area) *Metal mask thickness: 100 μm


: Resist (Open area)

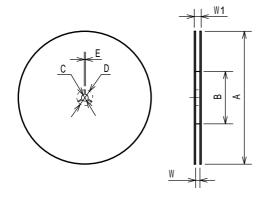

PKG: 3.4 mm x 2.6 mm Pin pitch: 0.4 mm

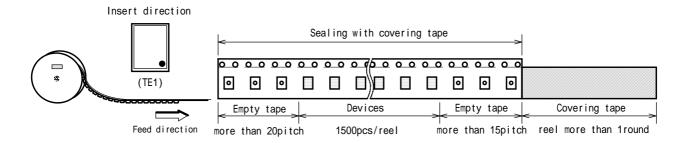


■ PACKAGE OUTLINE (EQFN26-HH)

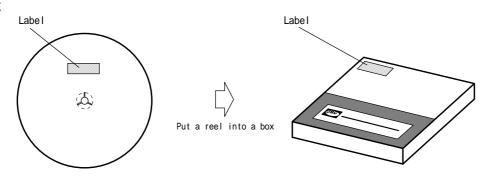

Units : mm
Board : Cu
Terminal treat : SnBi
Molding material : Epoxy resin
Weight : 1.89 mg

■ PACKING SPECIFICATION (EQFN26-HH)


TAPING DIMENSIONS


SYMBOL	DIMENSION	REMARKS
A	2.8 ± 0.05	BOTTOM DIMENSION
В	3.6 ± 0.05	BOTTOM DIMENSION
D0	1.5 +0.1	
D1	1.0 +0.1	
E	1.75 ± 0.1	
F	5.5 ± 0.05	
P0	4.0 ± 0.1	
P1	8.0 ± 0.1	
P2	2.0 ± 0.05	
T	0.25 ± 0.05	
T2	1.2	
K0	0.85 ± 0.05	
W	12.0 +0.3	
W1	9.5	THICKNESS 0.1max

REEL DIMENSIONS



SYMBOL	DIMENSION
Α	180 -3
В	60 +1
С	13 ± 0.2
D	21 ± 0.8
Е	2 ± 0.5
W	13 +1.0
W1	15.4 ± 1.0

TAPING STATE

PACKING STATE

[CAUTION]

- NJR strives to produce reliable and high quality semiconductors. NJR's semiconductors are intended for specific applications
 and require proper maintenance and handling. To enhance the performance and service of NJR's semiconductors, the devices,
 machinery or equipment into which they are integrated should undergo preventative maintenance and inspection at regularly
 scheduled intervals. Failure to properly maintain equipment and machinery incorporating these products can result in
 catastrophic system failures
- 2. The specifications on this datasheet are only given for information without any guarantee as regards either mistakes or omissions. The application circuits in this datasheet are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial property rights.
 All other trademarks mentioned herein are the property of their respective companies.
- To ensure the highest levels of reliability, NJR products must always be properly handled.
 The introduction of external contaminants (e.g. dust, oil or cosmetics) can result in failures of semiconductor products.
- NJR offers a variety of semiconductor products intended for particular applications. It is important that you select the proper component for your intended application. You may contact NJR's Sale's Office if you are uncertain about the products listed in this datasheet.
- 5. Special care is required in designing devices, machinery or equipment which demand high levels of reliability. This is particularly important when designing critical components or systems whose failure can foreseeably result in situations that could adversely affect health or safety. In designing such critical devices, equipment or machinery, careful consideration should be given to amongst other things, their safety design, fail-safe design, back-up and redundancy systems, and diffusion design.
- 6. The products listed in this datasheet may not be appropriate for use in certain equipment where reliability is critical or where the products may be subjected to extreme conditions. You should consult our sales office before using the products in any of the following types of equipment.
 - · Aerospace Equipment
 - · Equipment Used in the Deep Sea
 - · Power Generator Control Equipment (Nuclear, steam, hydraulic, etc.)
 - · Life Maintenance Medical Equipment
 - · Fire Alarms / Intruder Detectors
 - · Vehicle Control Equipment (Airplane, railroad, ship, etc.)
 - · Various Safety Devices
- 7. NJR's products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. NJR shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products. The products are sold without warranty of any kind, either express or implied, including but not limited to any implied warranty of merchantability or fitness for a particular purpose.
- 8. Warning for handling Gallium and Arsenic (GaAs) Products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
- 9. The product specifications and descriptions listed in this datasheet are subject to change at any time, without notice.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Nisshinbo manufacturer:

Other Similar products are found below:

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP17E-XX8E SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15#PBF CHA5115-QDG SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310