HIGH POWER SP4T SWITCH GaAs MMIC

■ GENERAL DESCRIPTION

The NJG1809ME7 is a high power SP4T switch MMIC suitable for LTE-U / LAA, WLAN, and LTE applications.

This switch features very low insertion loss and high isolation up to 6 GHz and excellent linearity performance with 1.8 V control voltage. This switch achieves high speed switching time for WLAN application. Integrated ESD protection device on each port achieves excellent ESD robustness. No DC Blocking capacitors are required for all RF ports unless DC is biased externally.

The small and thin EQFN18-E7 package is adopted.

■ APPLICATIONS

LTE-U / LAA, WLAN (802.11a/b/g/n/ac), LTE multi-mode applications
General purpose switching applications

PACKAGE OUTLINE

NJG1809ME7

■ FEATURES

- Low voltage logic control
- Low insertion loss
- High isolation
- $P_{-0.1 \mathrm{~dB}}$
- High speed switching time
- Small and thin package
- RoHS compliant and Halogen Free, MSL1

PIN CONFIGURATION

Pin connection

1. GND	10. GND
2. GND	11. VDD
3. PC	12. VCTL2
4. GND	13. VCTL1
5. GND	14. GND
6. P1	15. GND
7. GND	16. P4
8. P2	17. GND
9. GND	18. P3
Exposed PAD: GND	

■ TRUTH TABLE

" $\mathrm{H} "=\mathrm{V}_{\text {CTL(H), " }} \mathrm{L} "=\mathrm{V}_{\text {CTLLL }}$		
VCTL1	VCTL2	Path
L	L	PC-P1
H	L	PC-P2
L	H	PC-P3
H	H	PC-P4

NOTE: Please note that any information on this datasheet will be subject to change.

■ ABSOLUTE MAXIMUM RATINGS

$\left(\mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C}, \mathrm{Z}_{\mathrm{s}}=\mathrm{Z}_{\mathrm{I}}=50 \Omega\right)$				
PARAMETER	SYMBOL	CONDITIONS	RATINGS	UNITS
RF Input Power	$\mathrm{P}_{\text {IN }}$	$\mathrm{V}_{\mathrm{DD}}=2.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTL}}=0 / 1.8 \mathrm{~V}$	+33	dBm
Supply Voltage	V_{DD}	VDD terminal	5.0	V
Control Voltage	$\mathrm{V}_{\mathrm{CTL}}$	VCTL1, VCTL2 terminal	5.0	V
Power Dissipation	P_{D}	Four-layer FR4 PCB with through-hole $(101.5 \times 114.5 \mathrm{~mm}), \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	1400	mW
Operating Temp.	$\mathrm{T}_{\text {opr }}$		-40 to +105	${ }^{\circ} \mathrm{C}$
Storage Temp.	$\mathrm{T}_{\text {stg }}$		-55 to +150	${ }^{\circ} \mathrm{C}$

■ ELECTRICAL CHARACTERISTICS 1 (DC)

PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	$V_{\text {D }}$	VDD Terminal	2.5	2.75	5.0	V
Operating Current	$I_{\text {D }}$	No RF input	-	350	700	$\mu \mathrm{A}$
Control Voltage (LOW)	$\mathrm{V}_{\text {CTLL }}$	VCTL1, VCTL2 Terminal	0	-	0.45	V
Control Voltage (HIGH)	$\mathrm{V}_{\text {ctl(H) }}$	VCTL1, VCTL2 Terminal	1.35	1.8	5.0	V
Control Current	$\mathrm{I}_{\text {ctL }}$	$\mathrm{V}_{\text {CTL }(H)=1.8 \mathrm{~V}}$		4	10	$\mu \mathrm{A}$

- ELECTRICAL CHARACTERISTICS 2 (RF)
(General conditions: $\mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C}, \mathrm{Z}_{\mathrm{s}}=\mathrm{Z}_{\mathrm{I}}=50 \Omega, \mathrm{~V}_{\mathrm{DD}}=2.75 \mathrm{~V}, \mathrm{~V}_{\text {CTLH }}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {CTLLL }}=0 \mathrm{~V}$, with application circuit)

PARAMETERS	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Insertion Loss 1	LOSS1	$f=0.7 \mathrm{GHz}, \mathrm{P}_{\text {IN }}=+27 \mathrm{dBm}$		-	0.35	0.55	dB
Insertion Loss 2	LOSS2	$f=2.0 \mathrm{GHz}, \mathrm{P}_{\text {IN }}=+27 \mathrm{dBm}$		-	0.40	0.60	dB
Insertion Loss 3	LOSS3	$f=2.7 \mathrm{GHz}, \mathrm{P}_{\text {IN }}=+27 \mathrm{dBm}$		-	0.40	0.60	dB
Insertion Loss 4	LOSS4	$\mathrm{f}=3.5 \mathrm{GHz}, \mathrm{P}_{\text {IN }}=+27 \mathrm{dBm}$		-	0.40	0.60	dB
Insertion Loss 5	LOSS5	$\mathrm{f}=5.85 \mathrm{GHz}, \mathrm{P}_{\text {IN }}=+27 \mathrm{dBm}$		-	0.50	0.75	dB
Isolation 1	ISL1	$f=0.7 \mathrm{GHz}, \mathrm{P}_{\text {IN }}=+27 \mathrm{dBm}$		32	36	-	dB
Isolation 2	ISL2	$f=2.0 \mathrm{GHz}, \mathrm{P}_{\text {IN }}=+27 \mathrm{dBm}$		25	28	-	dB
Isolation 3	ISL3	$f=2.7 \mathrm{GHz}, \mathrm{P}_{\text {in }}=+27 \mathrm{dBm}$		24	27	-	dB
Isolation 4	ISL4	$f=3.5 \mathrm{GHz}, \mathrm{P}_{\text {IN }}=+27 \mathrm{dBm}$		22	25	-	dB
Isolation 5	ISL5	$\mathrm{f}=5.85 \mathrm{GHz}, \mathrm{P}_{\mathrm{in}}=+27 \mathrm{dBm}$	PC-Pn ${ }^{* 1}$	26	30	-	dB
			$\mathrm{Pm}-\mathrm{Pn}^{* 2}$	20	23	-	
Input Power at 0.1 dB Compression Point	$\mathrm{P}_{-0.1 \mathrm{~dB}}$	$\mathrm{f}=5.85 \mathrm{GHz}$		+32	-	-	dBm
2nd Harmonics 1	2fo(1)	$\begin{array}{\|l} \hline \mathrm{f}=5.18 \mathrm{GHz}, 5.85 \mathrm{GHz}, \\ \mathrm{P} \mathrm{IN}=+27 \mathrm{dBm} \\ \hline \end{array}$		-	-	-70	dBc
2nd Harmonics 2	2fo(2)	$\begin{aligned} & \mathrm{f}=2.69 \mathrm{GHz}, \\ & \mathrm{P}_{\mathrm{IN}}=0 \mathrm{dBm} \end{aligned}$		-	-	-95	dBc
3rd Harmonics 1	3fo(1)	$\begin{array}{\|l} \hline f=5.18 \mathrm{GHz}, 5.85 \mathrm{GHz}, \\ \mathrm{PiN}_{\mathrm{IN}}=+27 \mathrm{dBm} \\ \hline \end{array}$		-	-	-70	dBc
3rd Harmonics 2	3fo(2)	$\begin{array}{\|l} \hline f=1.732 \mathrm{GHz}, 1.91 \mathrm{GHz}, \\ \mathrm{P}_{\mathrm{IN}}=0 \mathrm{dBm} \\ \hline \end{array}$		-	-	-95	dBc
4th Harmonics	4 fo	$\begin{aligned} & \hline f=5.18 \mathrm{GHz}, 5.85 \mathrm{GHz}, \\ & \mathrm{P}_{\mathrm{iN}=+27 \mathrm{dBm}}=+ \end{aligned}$		-	-	-70	dBc
Input $2^{\text {nd }}$ order intercept point	IIP2	$\begin{aligned} & \hline \mathrm{f}=2.48+2.69 \mathrm{GHz}, \\ & \mathrm{f}_{\text {meas }}=5.17 \mathrm{GHz}, \\ & \mathrm{P}_{\mathrm{IN}}=+10 \mathrm{dBm} \text { each } \end{aligned}$		+100	-	-	dBm
Input $3^{\text {rd }}$ order intercept point	IIP3	$\begin{array}{\|l\|} \hline \mathrm{f}=1.71+2.40 \mathrm{GHz}, \\ \mathrm{f}_{\text {meas }}=5.82 \mathrm{GHz}, \\ \mathrm{P}_{\mathrm{IN}}=+10 \mathrm{dBm} \text { each } \\ \hline \end{array}$		+60	-	-	dBm
VSWR1	VSWR1	On-state ports, $\mathrm{f}=2.7 \mathrm{GHz}$		-	1.2	1.5	-
VSWR2	VSWR2	On-state ports, $\mathrm{f}=5.85 \mathrm{GHz}$		-	1.3	1.6	-
Switching time	$\mathrm{T}_{\text {sw }}$	$50 \% \mathrm{~V}_{\text {CTL }}$ to $10 / 90 \% \mathrm{RF}$		-	250	400	ns

*1: Pn=P1, P2, P3, P4
*2: $\mathrm{Pm}=\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3, \mathrm{P} 4 . \mathrm{Pn}=\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3, \mathrm{P} 4 . \mathrm{m} \neq \mathrm{n}$

TERMINAL INFORMATION

No.	SYMBOL	DESCRIPTION
1	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
2	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
3	PC	Common RF terminal. No DC blocking capacitor is required for this port unless DC is biased externally.
4	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
5	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
6	P1	RF terminal. No DC blocking capacitor is required for this port unless DC is biased externally.
7	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
8	P2	RF terminal. No DC blocking capacitor is required for this port unless DC is biased externally.
9	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
10	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
11	VDD	Positive voltage supply terminal. The positive voltage (+2.5 to +5 V) has to be supplied. Please connect a bypass capacitor with ground plane for excellent RF performance.
12	VCTL2	Control signal input terminal. This terminal is set to High-Level (+1.35 to +5.0 V) or Low-Level (0 to +0.45 V).
13	VCTL1	Control signal input terminal. This terminal is set to High-Level (+1.35 to +5.0 V) or Low-Level (0 to +0.45 V).
14	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
15	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
16	P4	RF terminal. No DC blocking capacitor is required for this port unless DC is biased externally.
17	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
18	P3	RF terminal. No DC blocking capacitor is required for this port unless DC is biased externally.
Exposed Pad	GND	Ground pad of IC bottom side. Please connect this pad with ground plane as close as possible for excellent RF performance.

ELECTRICAL CHARACTERISTICS (With application circuit, loss of external circuit are excluded.)

LOSS, ISL vs Frequency

LOSS, ISL vs Frequency
(PC-P3 ON, $\mathrm{V}_{\mathrm{DD}}=2.75 \mathrm{~V}, \mathrm{~V}_{\text {ctLLL }}=0 \mathrm{~V}, \mathrm{~V}_{\text {ctLL(H) }}=1.8 \mathrm{~V}$)

ISL vs Frequency

LOSS, ISL vs Frequency

LOSS, ISL vs Frequency
(PC-P4 ON, $\mathrm{V}_{\mathrm{DD}}=2.75 \mathrm{~V}, \mathrm{~V}_{\text {cTLLL }}=0 \mathrm{~V}, \mathrm{~V}_{\text {ctL(H) }}=1.8 \mathrm{~V}$)

ISL vs Frequency
(PC-P2 ON, $\mathrm{V}_{\text {DD }}=2.75 \mathrm{~V}, \mathrm{~V}_{\text {ctLLL }}=0 \mathrm{~V}, \mathrm{~V}_{\text {ctLL(H) }}=1.8 \mathrm{~V}$)

ELECTRICAL CHARACTERISTICS (With application circuit, loss of external circuit are excluded.)

ISL vs Frequency
(PC-P3 ON, $\mathrm{V}_{\mathrm{DD}}=2.75 \mathrm{~V}, \mathrm{~V}_{\text {cTLLL }}=0 \mathrm{~V}, \mathrm{~V}_{\text {CTL(H) }}=1.8 \mathrm{~V}$)

VSWR vs Frequency

$I_{D D} v S V_{D D}$

ISL vs Frequency
(PC-P4 ON, $\mathrm{V}_{\mathrm{DD}}=2.75 \mathrm{~V}, \mathrm{~V}_{\text {ctLLL }(L)}=0 \mathrm{~V}, \mathrm{~V}_{\text {ctLL(H) }}=1.8 \mathrm{~V}$)

VSWR vs Frequency

$I_{C T L}$ vs $V_{C T L}$
(No RF input, PC-P1 ON, $\mathrm{V}_{\mathrm{DD}}=2.75 \mathrm{~V}$)

ELECTRICAL CHARACTERISTICS (With application circuit, loss of external circuit are excluded.)

Switching Time
(PC-P1/P2 path, $\mathrm{V}_{\mathrm{DD}}=2.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTL}(\mathrm{L})}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTL}(\mathrm{H})}=1.8 \mathrm{~V}$)

Time ($1 \mu \mathrm{~s} / \mathrm{div}$)

ELECTRICAL CHARACTERISTICS (With application circuit, loss of external circuit are excluded.)

Loss, ISL vs Temperature

Loss, ISL vs Temperature

Loss, ISL vs Temperature

Loss, ISL vs Temperature

ELECTRICAL CHARACTERISTICS (With application circuit, loss of external circuit are excluded.)

VSWR vs Temperature

VSWR vs Temperature

$\mathbf{P}_{-0.1 \mathrm{~dB}}$ vs Temperature

VSWR vs Temperature

VSWR vs Temperature

ELECTRICAL CHARACTERISTICS (With application circuit, loss of external circuit are excluded.)

Operating Current vs Temperature

Switching Time(rise) vs Temperature

Control Current vs Temperature
(PC-P2 ON, V ${ }_{D D}=2.75 \mathrm{~V}$)

Switching Time(fall) vs Temperature

APPLICATION CIRCUIT

(TOP VIEW)

Note:
[1] No DC blocking capacitors are required on all RF ports, unless DC is biased externally.
[2] The inductor L1 is optional in order to achieve enhancing ESD protection level. L1 is also recommended in order to keep the DC bias level of each RF port at ground level tightly.

PARTS LIST

No.	Parameters	Note
C1	1000 pF	MURATA (GRM15)
L1	68 nH	TAIYO-YUDEN (HK1005)

PCB LAYOUT

PC

<PCB LAYOUT GUIDELINE>

(TOP VEIW)

Package terminal
\square Package outline

- Ground through hole

Diameter $\phi=0.2 \mathrm{~mm}$

■ PRECAUTIONS

[1] No DC block capacitors are required for RF ports unless DC is biased externally. When other device biased at certain voltage is connected to the NJG1809ME7, a DC block capacitor is required between the device and this switch IC. This is because the each RF port of this switch is biased at ground level.
[2] For avoiding the degradation of RF performance, the bypass capacitor (C1) should be placed as close as possible to VDD terminal.
[3] For good RF performance, all GND terminals are must be connected to PCB ground plane of substrate, and through holes for GND should be placed near the IC.
[4] Please connect Exposed PAD to PCB ground plane of substrate, and through holes for ground should be placed under the IC.

■ RECOMMENDED FOOTPRINT PATTERN (EQFN18-E7 PACKAGE REFERENCE)

Za : Land
\mathbb{N} : Mask (Open area) *Metal mask thickness: $100 \mu \mathrm{~m}$: Resist (Open area)

PKG: $2.0 \times 2.0 \mathrm{~mm}^{2}$
Pin pitch: 0.4 mm

Unit: mm

Detail A

PACKAGE OUTLINE (EQFN18-E7)

Terminal Treat	$: \mathrm{SnBi}$
Board	$:$ Copper
Molding Material	$:$ Epoxy resin
Weight	$: 5.0 \mathrm{mg}$

Unit
: mm

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by Nisshinbo manufacturer:

Other Similar products are found below :
MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 SKY13446-374LF SW-227-PIN CG2185X2 CG2415M6 MA4SW410 MA4SW410B-1 MASW-002102-13580G MASW-008543-001SMB MASW-008955-TR3000 TGS4307 BGS 12PL6 E6327 BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8 HMC986A SKY13374-397LF SKY13453-385LF CG2430X1-C2 CG2415M6-C2 HMC986A-SX SW-314-PIN UPG2162T5N-E2-A SKY13416-485LF MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-003102-13590G MASWSS0202TR-3000 MA4SW310B-1 MA4SW110 SW-313-PIN CG2430X1 SKY13321-360LF SKY13405490LF BGSF 18DM20 E6327 MMS008PP3 BGS13PN10E6327XTSA1 SKY13319-374LF BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404-466LF MASW-011060-TR0500 SKYA21024

