SPDT SWITCH GaAs MMIC

■ GENERAL DESCRIPTION

The NJG1815K75 is a 1 bit control SPDT switch. The switch is used for WLAN system.
The switch features low insertion loss, high isolation for high frequency up to 6 GHz , and high handling power performance at 1.8 V control voltage. Integrated ESD protection device on each port achieves excellent ESD robustness.
Integrated DC blocking capacitors at all RF ports and the ultra small package of DFN6-75 offer very small mounting area.

PACKAGE OUTLINE

NJG1815K75

APPLICATION

$802.11 \mathrm{a} / \mathrm{b} / \mathrm{g} / \mathrm{n} / \mathrm{ac} / \mathrm{ax}$ networks applications
Transmit/receive switching, antenna switching and others switching applications
Smart phone, WLAN module, data card and others mobile applications

FEATURES

- Low control voltage
- Voltage operation
- Low insertion loss
- High isolation
- P-1dB
- Ultra small \& ultra thin package
- RoHS compliant and Halogen Free, MSL1

PIN CONFIGURATION

(Top view)

Pin connection

1. P1
2. GND
3. P2
4. VCTL
5. PC
6. VDD

■ TRUTH TABLE

$" \mathrm{H} "=\mathrm{V}_{\text {стL }}(\mathrm{H})$, " $\mathrm{L} "=\mathrm{V}_{\text {стL }}(\mathrm{L})$

ON PATH	VCTL
PC-P1	H
PC-P2	L

NOTE: Please note that any data or drawing in this catalog is subject to change.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	CONDITIONS	RATINGS	UNITS
RF Input Power	P_{IN}	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{C}, \mathrm{Z}_{\mathrm{s}}=\mathrm{Z}_{\mathrm{l}}=50 \Omega$ ON State Port		
Supply Voltage	V_{DD}		+31	dBm
Control Voltage	$\mathrm{V}_{\mathrm{CTL}}$		6.0	V
Power Dissipation	P_{D}	4-layer FR4 PCB with through-hole $(76.2 \times 114.3 \mathrm{~mm}), \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	380	mW
Operating Temperature	$\mathrm{T}_{\text {opr }}$		6.0	V
Storage Temperature	$\mathrm{T}_{\text {stg }}$		-40 to +105	${ }^{\circ} \mathrm{C}$

■ ELECTRICAL CHARACTERISTICS1 (DC CHARACTERISTICS)
(General conditions: $\mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C}$, with application circuit)

PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	V_{DD}		2.5	3.3	5.0	V
Operating Current	I_{DD}	No RF input, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	-	15	30	$\mu \mathrm{~A}$
Control Voltage (HIGH)	$\mathrm{V}_{\text {CTL }}(\mathrm{H})$		1.35	1.8	5.0	V
Control Voltage (LOW)	$\mathrm{V}_{\text {CTL }}(\mathrm{L})$		0	-	0.45	V
Control Current	$\mathrm{I}_{\text {CTL }}$	$\mathrm{V}_{\text {CTL }}(\mathrm{H})=1.8 \mathrm{~V}$	-	3	10	$\mu \mathrm{~A}$

■ ELECTRICAL CHARACTERISTICS2 (RF CHARACTERISTICS)
(General conditions: $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {CTL }}(\mathrm{H})=1.8 \mathrm{~V}, \mathrm{~V}_{\text {CTL }}(\mathrm{L})=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=+25^{\circ} \mathrm{C}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{l}}=50 \Omega$, with application circuit)

PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Insertion loss1	LOSS1	$\mathrm{f}=2.4$ to 2.5 GHz	-	0.45	0.65	dB
Insertion loss2	LOSS2	$\mathrm{f}=3.4$ to 3.8 GHz	-	0.45	0.65	dB
Insertion loss3	LOSS3	$\mathrm{f}=4.9$ to 6.0 GHz	-	0.40	0.60	dB
Isolation1	ISL1	$\mathrm{f}=2.4$ to 2.5 GHz	23	25	-	dB
Isolation2	ISL2	$\mathrm{f}=3.4$ to 3.8 GHz	22	25	-	dB
Isolation3	ISL3	$\mathrm{f}=4.9$ to 6.0 GHz	22	25	-	dB
Return loss1	RL1	$\mathrm{f}=2.4$ to 2.5 GHz	13	16	-	dB
Return loss2	RL2	$\mathrm{f}=3.4$ to 3.8 GHz	15	20	-	dB
Return loss3	RL3	$\mathrm{f}=4.9$ to 6.0 GHz	15	20	-	dB
Input power at 1dB compression point	P-1dB	$\mathrm{f}=2.4$ to 6.0 GHz	+28	+31	-	dBm
Switching time	T SW	$50 \% \mathrm{~V}_{\mathrm{ctL}}$ to $10 \% / 90 \% \mathrm{RF}$	-	150	400	ns

TERMINAL INFORMATION

No.	SYMBOL	DESCRIPTION
1	P1	RF terminal. No DC blocking capacitor is required for this port because of internal capacitor.
2	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
3	P2	RF terminal. No DC blocking capacitor is required for this port because of internal capacitor.
4	VCTL	Control voltage input terminal. This terminal is set to High-Level (+1.35 to $+5.0 V)$ or Low-Level (0 to $+0.45 \mathrm{~V})$.
5	PC	Common RF terminal. No DC blocking capacitor is required for this port because of internal capacitor.
6	VDD	Positive voltage supply terminal. The positive voltage (+2.5 to +5.0V) has to be supplied. Please connect a bypass capacitor with GND terminal for excellent RF performance.

ELECTRICAL CHARACTERISTICS

Return Loss vs Frequency
(PC-P1 ON, $\left.\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTL}}=1.8 \mathrm{~V}\right)$

Switching Time
(PC-P1 path, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{cTL}(\mathrm{H})}=1.8 \mathrm{~V}$)

Time (100ns/div)

Return Loss vs Frequency

ELECTRICAL CHARACTERISTICS

Loss, ISL vs Input Power
($\mathrm{PC}-\mathrm{P} 1 \mathrm{ON}, \mathrm{V}_{\mathrm{cTL}}=1.8 \mathrm{~V}, \mathrm{f}=2.5 \mathrm{GHz}$)

Loss, ISL vs Input Power
($\mathrm{PC}-\mathrm{P} 2 \mathrm{ON}, \mathrm{V}_{\mathrm{ctL}}=0 \mathrm{~V}, \mathrm{f}=2.5 \mathrm{GHz}$)

ELECTRICAL CHARACTERISTICS

Loss, ISL vs Input Power
(PC-P1 ON, $\mathrm{V}_{\mathrm{crL}}=1.8 \mathrm{~V}, \mathrm{f}=6.0 \mathrm{GHz}$)

EVM vs Input Power
(PC-P1 ON, $\mathrm{V}_{\mathrm{CrL}}=1.8 \mathrm{~V}, \mathrm{f}=2.5 \mathrm{GHz}$, OFDM 64QAM)

EVM vs Input Power
(PC-P1 ON, $\mathrm{V}_{\mathrm{cTL}}=1.8 \mathrm{~V}, \mathrm{f}=6.0 \mathrm{GHz}$, OFDM 64QAM)

Loss, ISL vs Input Power
(PC-P2 ON, $\mathrm{V}_{\mathrm{ctL}}=0 \mathrm{~V}, \mathrm{f}=6.0 \mathrm{GHz}$)

EVM vs Input Power
(PC-P2 ON, $\mathrm{V}_{\mathrm{CTL}}=0 \mathrm{~V}, \mathrm{f}=2.5 \mathrm{GHz}$, OFDM 64QAM)

EVM vs Input Power
(PC-P2 ON, $V_{\text {cTL }}=0 V, f=6.0 \mathrm{GHz}$, OFDM 64QAM)

ELECTRICAL CHARACTERISTICS

Loss, ISL vs Temperature
(PC-P1 ON, $\mathrm{V}_{\mathrm{cTL}}=1.8 \mathrm{~V}, \mathrm{f}=2.5 \mathrm{GHz}$)

Loss, ISL vs Temperature
(PC-P1 ON, $\mathrm{V}_{\mathrm{cTL}}=1.8 \mathrm{~V}, \mathrm{f}=6.0 \mathrm{GHz}$)

Loss, ISL vs Temperature

Loss, ISL vs Temperature
($\mathrm{PC}-\mathrm{P} 2 \mathrm{ON}, \mathrm{V}_{\mathrm{ctL}}=0 \mathrm{~V}, \mathrm{f}=6.0 \mathrm{GHz}$)

ELECTRICAL CHARACTERISTICS

APPLICATION CIRCUIT

The bypass capacitor C2 is optional, and is recommended only when the control line is affected under noisy environment.

■ PCB LAYOUT

(TOP VIEW)

PCB: FR-4, $t=0.2 \mathrm{~mm}$
Capacitor Size: 0603 ($0.6 \times 0.3 \mathrm{~mm}$)
Strip Line Width: 0.4 mm
PCB Size: $19.4 \times 14.0 \mathrm{~mm}$
Through Hole Diameter: 0.2 mm

- Loss of PCB and connectors

Frequency (GHz)	Loss (dB)
2.4	0.28
2.5	0.28
3.4	0.35
3.8	0.39
4.9	0.52
6.0	0.72

■ PARTS LIST

No.	Value	Notes
C1	1000 pF	Murata MFG (GRM03 series)
C2	10 pF	

PCB LAYOUT GUIDELINE

(TOP VIEW)

Diameter $\phi=0.2 \mathrm{~mm}$

PRECAUTIONS

For good RF performance, exposed pad should be connected to PCB ground plane as close as possible.

RECOMMENDED FOOTPRINT PATTERN (6pin DFN Package 1.0x1.0mm) <Reference>

Package: $1.0 \mathrm{~mm} \times 1.0 \mathrm{~mm}$
Pin pitch: 0.35 mm

Z : Land
: Mask (Open area) *Metal mask thickness: $100 \mu \mathrm{~m}$: Resist (Open area)

Unit : mm

PACKAGE OUTLINE (DFN6-75)

Unit	$: \mathrm{mm}$
Board	$: \mathrm{Cu}$
Terminal Treat	$: \mathrm{Ni} / \mathrm{Pd} / \mathrm{Au}$
Molding Material	$:$ Epoxy resin
Weight	$: 1.2 \mathrm{mg}$

Cautions on using this product

This product contains Gallium-Arsenide (GaAs) which is a harmful material.

- Do NOT eat or put into mouth.
- Do NOT dispose in fire or break up this product.
- Do NOT chemically make gas or powder with this product.
- To waste this product, please obey the relating law of your country.

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by Nisshinbo manufacturer:

Other Similar products are found below :
MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 SKY13446-374LF SW-227-PIN CG2185X2 CG2415M6 MA4SW410 MA4SW410B-1 MASW-002102-13580G MASW-008543-001SMB MASW-008955-TR3000 TGS4307 BGS 12PL6 E6327 BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8 HMC986A SKY13374-397LF SKY13453-385LF CG2430X1-C2 CG2415M6-C2 HMC986A-SX SW-314-PIN UPG2162T5N-E2-A SKY13416-485LF MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-003102-13590G MASWSS0202TR-3000 MA4SW310B-1 MA4SW110 SW-313-PIN CG2430X1 SKY13321-360LF SKY13405490LF BGSF 18DM20 E6327 MMS008PP3 BGS13PN10E6327XTSA1 SKY13319-374LF BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404-466LF MASW-011060-TR0500 SKYA21024

[^0]: This product may be damaged with electric static discharge (ESD) or spike voltage. Please handle with care to avoid these damages.

