COBP PHOTO REFLECTOR with RED & IR LED

GENERAL DISCRIPTION

The NJL5501R is the compact surface mount type photo reflector, which is built in a RED LED, Infrared LED and a high sensitive detector. This product is suit for the application for Bio monitor as pulse rate, SpO₂.

FEATURES

- Peak wavelength : λ_P 660±3nm (RED) , 940±10nm (Infrared)
- High output current : 1000 to 4300µA typ (RED), 145 to 580µA typ (Infrared)
- Miniature, thin package: 1.9x2.6x0.8mm

APPLICATION

• Bio monitor as pulse rate, SpO₂

■ ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Emitter			
Forward Current (Continuous)	IF RED	30	mA
	IF IR	30	mA
Reverse Voltage (Continuous)	VR RED	5	V
	VR IR	5	V
Power Dissipation *1	PD	65	mW
Detector			
Collector-Emitter Voltage	VCEO	16	V
Emitter-Collector Voltage	VECO	6	V
Collector Current	IC	10	mA
Collector Power Dissipation	PC	25	mW
Coupled			
Total Power Dissipation	Ptot	85	mW
Operating Temperature	Topr	-20 to +85	°C
Storage Temperature	Tstg	-30 to +85	°C
Reflow Soldering Temperature	Tsol	260 peak	°C

*1 Prohibits that "RED LED" and "IR LED" turn on at the same time.

■ ELECTRO-OPTICAL CHARACTERISTICS (Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Emitter						
Forward Voltage	VF RED	IF=4mA	1.7	—	2.1	V
	VF IR	IF=4mA	1.0	—	1.35	V
Reverse Current	IR RED	VR=5V	—	—	5	μA
	IR IR	VR=5V	—	—	5	μA
Peak Wavelength * ¹	λ_{PRED}	I _F =20mA	657	660	663	nm
	$\lambda_{P IR}$	I _F =20mA	930	940	950	nm
Detector						
Dark Current	ICEO	VCE=10V	—	—	0.2	μA
Collector-Emitter Voltage	VCEO	IC=100μA	16	—	—	V
Coupled						
Output Current *2	IO RED	IF=4mA,VCE=2V,d=0.7mm	1000	—	4300	μA
	IO IR	IF=4mA,VCE=2V,d=0.7mm	145	—	580	μA
Operating Dark Current * ³	ICEOD RED	IF=4mA,VCE=2V	—	—	5	μA
	ICEOD IR	IF=4mA,VCE=2V	—	—	1	μA
Response Time(Rise/Fall)	Tr,Tf	IO=100 μ A, VCE=2V,d=0.7mm,RL=1k Ω	—	20	—	μs

*1 This is represented as Emission wavelength range of LED. The emission wavelength verification test has not confirmed in the manufacturing process.

*2 Please refer to "Output Current Test Condition".

*3 ICEOD may increase according to the periphery situation of the surface mounted condition.

21.Nov.2013

OUTLINE unit:mm

Example of solder pads dimensions

1. Cathode for RED LED

- 2. Collector
- 3. Anode for Infrared LED
- 4. Cathode for Infrared LED
- 5. Emitter
- 6. Anode for RED LED

Unspecified tolerance : ± 0.1 mm Dimensions in parenthesis are shown for reference.

BLOCK DIAGRAM

- 1. Cathode for RED LED
- 6. Anode for RED LED
- 2. Collector
- 5. Emitter
- 3. Anode for Infrared LED
- 4. Cathode for Infrared LED

OUTPUT CURRENT TEST CONDITION

The signal from LED is reflected at the aluminum surface.

DARK CURRENT TEST CONDITION

-New Japan Radio Co.,Ltd.

RESPONSE TIME TEST CONDITION

EDGE RESPONSE TEST CONDITION

Direction Y2

-New Japan Radio Co.,Ltd.

Direction X2

Power Dissipation vs. Temperature

TYPICAL CHARACTERISTICS

Forward Voltage vs. Forward Current

Dark Current vs. Temperature

Forward Voltage vs. Temperature RED LED & IR LED

Ambient Temperature Ta(°C)

Operating Dark Current vs. Temperature RED LED & IR LED

-New Japan Radio Co.,Ltd.

lo=500µA lo=400µA lo=300µA lo=200µA

lo=100µA

10

Output Current vs. Edge Distance

IR LED(Ta=25°C)

1

1.5

IR LED

1

IF=4mA,VCE=2V, d=0.7mm

Direction X2

2

2.5

Directivity at Package direction X

Directivity at Package direction Y

21.Nov.2013

Remark: Please be aware that all data in the graph are only reference and are not any guarantee.

-New Japan Radio Co.,Ltd.-

MOUNTING METHOD

NOTE

Mounting was evaluated with the following profiles in our company, so there was no problem. However, confirm mounting by the condition of your company beforehand.

Mounting: Twice soldering is allowed.

■ INFRARED REFLOW SOLDERING METHOD

Recommended reflow soldering procedure

(NOTE1) Using reflow furnace with short wave infrared radiation heater such as halogen lamp Regarding temperature profile, please refer to those fo reflow furnace.

In this case the resin surface temperature may become higher than lead terminals due to endothermic ally of black colored mold resin. Therefore, please avoid from direct exposure to mold resin.

(NOTE2) Other method

Such other methods of soldering as dipping the device into melted solder and vapor phase method (VPS) are not appropriate because the body of device will be heated rapidly. Therefore, these are not recommended to apply.

(NOTE3) The resin gets softened right after soldering, so, the following care has to be taken Not to contact the lens surface to anything. Not to dip the device into water or any solvents.

■ FLOW SOLDERING METHOD

Flow soldering is not possible.

IRON SOLDERING METHOD

Iron soldering is not possible.

-New Japan Radio Co., Ltd.–

CLEANING

Avid washing the device after soldering by reflow method.

■ IC STORAGE CONDITIONS AND ITS DURATION

(1) Temperature and humidity ranges

Pack Sealing	Temperature:	5 to 40 [°C]
	Humidity:	40 to 80 [%]
Pack Opening	Temperature:	5 to 30 [°C]
	Humidity:	40 to 70 [%]

After opening the bag, solder products within 48h.

Avoid a dry environment below 40% because the products are is easily damageable by the electrical discharge.

Store the products in the place where it does not create dew with the products due to a sudden change in temperature. (2) When baking, place the reel vertically to avoid load to the side.

- (3) Do not store the devices in corrosive-gas atmosphere.
- (4) Do not store the devices in a dusty place.
- (5) Do not expose the devices to direct rays of the sun.
- (6) Do not allow external forces or loads to be applied to IC's.
- (7) BE careful because affixed label on the reel might be peeled off when baking.

BAKING

In case of keeping expect above condition be sure to apply baking. (Heat-resistant tape) Baking method: Ta=60°C, 48 to 72h, Three times baking is allowed

STORAGE DURATION

Within a year after delivering this device.

For the products stored longer than a year, confirm their terminals and solderability before they are used.

APPLICATION NOTES

(1) Attention in handling

Treat not to touch the light receiving and light emitting part.

Avoid to adhering the dust and any other foreign materials on the light receiving and light emitting part when using. Never apply reverse voltage (VEC) of over 6V to the photo transistor when measuring the characteristics or adjusting

the system. If applied, it causes to lower the sensitivity.

When LED has operated by voltage, it should be connected the resistor of current adjustment. Avoid to applying direct voltage to LED, because there is possibility that LED is destroyed.

When mounting, special care has to be taken on the mounting position and tilting of the device because it is very important to place the device to the optimum position to the object.

(2) Attention in designing

Avoid the entering ambient light into light receiving part for avoid the malfunction by ambient light. Furthermore, there is possibility of malfunction when there are the other mounted parts by near this product peripheral.

There will be changing characteristics by detection object. Refer to this datasheet and evaluate by actual detection object.

When LED has been applied continuous power on long period of time, the output current is dropped. If it uses by always applying power to LED, have to consider the circuit designing of including output current decrease.

-New Japan Radio Co.,Ltd.

■ PACKING SPECIFICATION

* Carrier tape material : Polycarbonate(antistatic) Cover tape material : Polyester(antistatic)

Taping Strength

Pull up the cover tape from the carrier tape, and when the opening angle comes around 10 to 15, and the peeling-off strength is to be within the power of 20 to 70g.

Packaging

- 1) The taped products are to be rolled up on the taping reel as on the drawing.
- 2) Rolling up specification
 - 2-1) Start rolling : Carrier tape open space more than 20 Pieces.
 - 2-2) End of rolling : Carrier tape open space more than 20 Pieces, and 2 round of reel space at the cover tape only.
- 3) Taping quantity : 2,000 Pieces
- 4) Seal off after putting each reels in a damp proof bag with silica gel.

SYMBOL	DIMENSION
A	_φ 180 ±1.0
В	¢60 ±1.0
С	_{\$\phi} 13 ±0.2
D	_φ 21 ±0.8
E	2.0 ±0.5
W0	9.5 ±1.0
W1	13.1 ±1.0

*Material : PPE(antistatic)

[CAUTION]

The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

-New Japan Radio Co.,Ltd.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Optical Switches, Reflective, Phototransistor Output category:

Click to view products by Nisshinbo manufacturer:

Other Similar products are found below :

LTH-1650-01 HOA1180-106 NJL5303R-TE1 ITR8307/L24/TR8 RPR-359F OPR5005 EE-SF5-B QRD1114 ITR8307 ITR-20001T ITR-20002 ITR-8307/TR8 ITR9606-F HOA0708-001 HOA0709-001 HOA0709-011 HOA1180-001 HOA1180-002 HOA1397-001 HOA1406-003 HOA2498-002 LTH-209-01 NJL5501R-TE1 NJL5902R-2-TE1 EE-SB5 EE-SB5-B EE-SF5 EE-SPY302 EE-SPY311 EE-SPY312 EE-SPY401 EE-SPY402 EE-SPY411 EE-SPY412 EE-SPZ301A EE-SPZ401A EESB5MW12 EE-SY110 EE-SY113 EE-SY169 EE-SY169A EE-SY171 EE-SY190 EE-SY199 EE-SY671 EE-SY672 QRD1113 QRE1113 QRE1113GR SFH 9206