Designated client product

This product will be discontinued its production in the near term.
And it is provided for customers currently in use only, with a time limit.
It can not be available for your new project. Please select other new or existing products.

For more information, please contact our sales office in your region.

New Japan Radio Co.,Ltd.

www.njr.com

3-INPUT VIDEO SWITCH WITH 75』 DRIVER

■ GENERAL DESCRIPTION

The NJM2244 is a three input integrated video switch, which selects one video signal from three input signals.
It contains driver circuit for 75Ω load and is able to connect to TV monitor.
Its operating supply voltage range is 5 to 12 v and bandwidth is 10 MHz .
Crosstalk is 70 dB (at 4.43 MHz).
NJM2244 contains clamp function and it can be operated while setting DC level fixed in position of the video signal.

- FEATURES

- Operating Voltage 4.75 to 13 V
- 3 input - 1 Output
- Internal Driver Circuit for 75Ω Impedance
- Muting Function available
- Internal Clamp Function
- Low power Dissipation
- Cross-talk
- Wide Frequency Range
- Package Outline
16.5 mA

70 dB (at 4.43 MHz)
10 MHz (2V-p Input)
DIP8, DMP8, SIP8

- Bipolar Technology
- APPLICATION
- VCR Video Camera AV-TV Video Disc Player
- PIN CONFIGURATION

NJM2244L

- PACKAGE OUTLINE

NJM2244D

NJM2244M

NJM2244L

PIN FUNCTION

	$\mathrm{V}_{\mathrm{In}} 1$
2	SW1
3.	. $\mathrm{V}_{\mathrm{in}} 2$
4	. SW2
5	. $V_{1 n} 3$
	. V^{+}
7.	. $V_{\text {out }}$
	. GND

- BLOCK DIAGRAM

Pin Connection

- INPUT CONTROL SIGNAL-OUTPUT SIGNAL

SW1	SW2	OUTPUT SIGNAL
L	L	$V_{\mathbb{N} 1}$
H	L	$V_{\mathbb{N} 2}$
L/H	H	$V_{\mathbb{N} 3}$

note): Input clamp Voltage is about $2 / 5$ of Supply Voltage

a ABSOLUTE MAXIMUM RATINGS	$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$		
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V^{+}	15	V
Power Dissipation	P_{D}	(DIP8) 500	mW
		(DMP8) 300	mW
(SIP8) 800	mW		
Operating Temperature Range	$\mathrm{T}_{\text {opr }}$	-20 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$

$■$ ELECTRICAL CHARACTERISTICS $\quad\left(\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Recommended Supply Voltage	V^{+}		4.75	-	13.0	V
Operating Current	Icc	$\mathrm{S} 1=\mathrm{S} 2=\mathrm{S} 3=\mathrm{S} 4=\mathrm{S} 5=2$	11.5	16.5	22.0	mA
Voltage Gain	Gv	Vin $=2.0 \mathrm{~V}_{\text {P-P, }} 100 \mathrm{kHz}$, VO $/ \mathrm{Vi}, \mathrm{R}_{\mathrm{L}}=150 \Omega$	-0.8	-0.3	+0.2	dB
Frequency Characteristics	G_{f}	Vin $=2.0 \mathrm{~V}_{\text {P. } \mathrm{P}}, \mathrm{V}_{\mathrm{O}}(10 \mathrm{MHz}) / \mathrm{V}_{\mathrm{O}}(100 \mathrm{kHz}), \mathrm{R}_{\mathrm{L}}=150 \Omega$	-1.0	-	+1.0	dB
Differential Gain	DG	Vin $=2.0 V_{\text {P-P, }}$, staircase, $\mathrm{R}_{\mathrm{L}}=150 \Omega$	-	0.3	-	\%
Differential Phase	DP	Vin $=2.0 V_{\text {P-P, }}$, staircase, $R_{L}=150 \Omega$	-	0.3	-	deg.
Output Offset Voltage	$V_{\text {off }}$	$\mathrm{S} 1=\mathrm{S} 2=\mathrm{S} 3=2, \mathrm{~S} 5=1 \rightarrow 2 \mathrm{Vo}:$ Voltage change	-	0	± 30	mV
Crosstalk	CT	$\mathrm{Vin}=2 \mathrm{~V}_{\text {P-P, }}, 4.43 \mathrm{MHz}$, Vo $/ \mathrm{Vi}$	-	-70	-	dB
Switch Change Voltage	V_{CH}	All inside Sw : ON	2.4	-	-	V
	$\mathrm{V}_{\text {CL }}$	All inside Sw : OFF	-	-	0.8	V

(note) Unless specified, tested with three mode below.
a) $\mathrm{S} 1=1, \mathrm{~S} 2=\mathrm{S} 3=\mathrm{S} 4=\mathrm{S} 5=2 \mathrm{~b}$) $\mathrm{S} 2=\mathrm{S} 4=1, \mathrm{~S} 1=\mathrm{S} 3=\mathrm{S} 5=2 \mathrm{c}) \mathrm{S} 1=\mathrm{S} 2=2, \mathrm{~S} 3=\mathrm{S} 5=1, \mathrm{~S} 4=1$ or 2

- TEST CIRCUIT

DC Voltage Each Terminal
Typ. on Test Circuit Ta $=25^{\circ} \mathrm{C}$

Terminal Name	$\mathrm{V}_{\mathbb{N}} 1$	SW1	$\mathrm{V}_{\mathbb{N} 2}$	SW2	$\mathrm{V}_{\mathbb{N}} 3$	$\mathrm{~V}^{+}$	$\mathrm{V}_{\text {OUT }}$	GND
DC Voltage	$\frac{2}{5} \mathrm{~V}^{+}$	-	$\frac{2}{5} \mathrm{~V}^{+}$	-	$\frac{2}{5} \mathrm{~V}^{+}$	-	$\frac{2}{5} \mathrm{~V}^{+}-0.7$	-

- APPLICATION

Oscillation Prevention on light loading conditions
Recommended under circuit

■ MUTE

Use pin5 as mute terminal.
Pin5: connect to GND via a capacitor (0.1 uF), and SW2 to high.

- EQUIVALENT CIRCUIT

PIN NO. | PIN |
| :---: |
| FUNCTION | INSIDE EQUIVALENT CIRCUIT

■ APPLICATION

This IC requires $1 \mathrm{M} \Omega$ resistance between INPUT and GND pin for clamp type input since the minute current causes an unstable pin voltage.

This IC requires 0.1 uF capacitor between INPUT and GND, $1 \mathrm{M} \Omega$ resistance between INPUT and GND for clamp type input at mute mode.

[CAUTION]

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Video Switch ICs category:
Click to view products by Nisshinbo manufacturer:
Other Similar products are found below :
PI3HDX621FBE PI3HDMI2410FFE PI3VDP12412NEE HD3SS212ZQER PI3HDMI412ADZBEX AD8191ASTZ LT6555IGN\#PBF
 MAX4567ESE+ MAX4547ESE+ PI3HDX412BDZBEX NJM2244M LT1203CN8\#PBF MAX4814EECB+ MAX14885EETL+T MAX4885ETJ+T IH5352CPE + MAX4589CAP+ MAX4565EAP+ MAX4565CAP+ MAX4545EAP+ MAX4545CAP+ MAX4885EETG+T MAX4359EAX + MAX4529CUT+T MAX4545CWP+ MAX4547CEE + MAX4547EEE + MAX4562CEE + MAX4562EEE + $\underline{\text { MAX4563CEE }+ \text { MAX4563EEE }+ \text { MAX4565EWP }+ \text { MAX4566CEE }+ \text { MAX4567EEE }+ \text { MAX4571CWI }+ \text { MAX4572CEI }+ \text { MAX4573CAI }+~}$ $\underline{\text { MAX4584EUB }+} \underline{\text { MAX4586EUB }+}$ MAX4587EUB+ MAX4588CAI+ MAX4885ETJ+

