Designated client product

This product will be discontinued its production in the near term. And it is provided for customers currently in use only, with a time limit. It can not be available for your new project. Please select other new or existing products.

For more information, please contact our sales office in your region.

New Japan Radio Co.,Ltd.

www.njr.com

ADJUSTABLE 3-TERMINAL POSITIVE VOLTAGE REGULATOR

■ GENERAL DESCRIPTION

The NJM317 is adjustable 3-terminal positive voltage regulator IC. It is capable of adjustment from typical 1.25V to 37V output voltage range with two resistors. It is capable of supplying in excess of 1.5A with heat sink.

The NJM317 is suitable for the power supply for general purpose.

■ FEATURES

- Operating Voltage (+4.25V to +40V)
- Adjustable Output Down to 1.2V
- Guarantee'd 1.5A Output Current
- Line Regulation typically (0.01%/V)
- Load Regulation typically (0.1%)
- 80dB Ripple Rejection
- Package Outline TO-220F, TO-252
- Bipolar Technology

■ PACKAGE OUTLINE

(TO-252)

NJM317F

NJM317DL1

- 1. Adjustment
- 2. Output
- 3. Input

■ ABSOLUTE MAXIMUM RATINGS

(T_a=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Input-Output Differential Voltage	V _{IN} - V _O	40 (T _C =25°C)	V
Power Dissipation	P _D	TO-220F 16 (T _C ≤70ºC) TO-252 10 (Tc≤25ºC) 1 (Ta≤25ºC)	W
Operating Temperature Range (Junction) (Ambient)	T _{opr} (j) T _{opr (a)}	-40 to +150 -40 to +85	°C
Storage Temperature Range	T _{stg}	-50 to +150	°C

THERMAL CHARACTERISTICS

			TO-220F	TO-252		
Thermal Resistance	Junction-To-Ambient	θja	60	125	00000	
	Junction-To-Case	Ѳјс	5	12.5	°C/W	

$\blacksquare \textbf{ ELECTRICAL CHARACTERISTICS} \quad (V_{IN} - V_O = 5V, I_O = 500 \text{mA}, C_{IN} = 0.1 \mu\text{F}, C_O = 1 \mu\text{F}, Tj = 25^{\circ}\text{C})$

		Measurement is	to be co	onducted	in pulse	testing.
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Reference Voltage	V _{REF} V _{REF} -V _{IN} V _{REF} -I _O	$3V \le (V_{IN} - V_O) \le 40V, I_O=100mA$ $10mA \le I_O \le 1.5A (TO-220F)$ $10mA \le I_O \le 500mA (TO-252)$	1.2 1.2 1.2 1.2	1.25 1.25 1.25 1.25	1.3 1.3 1.3 1.3	V
Reference Voltage Thermal Change	ΔV_{REF} -T	0 ≤ Tj ≤ 125ºC	-	5	-	mV
Adjustment Pin Current	I _{ADJ}		-	50	100	μA
Adjustment Pin Current Change	ΔI _{ADJ} - V _{IN} ΔI _{ADJ} - I _O	$3V \le (V_{IN} - V_O) \le 40V, I_O=100mA$ $10mA \le I_O \le 1.5A (TO-220F)$ $10mA \le I_O \le 500mA (TO-252)$		0.2 0.2 0.2	5 5 5	μA
Line Regulation	ΔV_{O} - V_{IN}	$3V \le (V_{IN} - V_O) \le 40V, I_O = 100mA$	-	0.01	0.04	%/V
Load Regulation	ΔV _O - I _O	$\begin{array}{l} 10 \text{mA} \leq I_{O} \leq 1.5 \text{A} (\text{TO-220F}) \\ 10 \text{mA} \leq I_{O} \leq 500 \text{mA} (\text{TO-252}) \\ V_{O} \leq 5 \text{V} \\ V_{O} > 5 \text{V} \end{array}$	-	5 0.1	25 0.5	mV %
Minimum Load Current	I _{O(MIN)}	$(V_{IN} - V_O) = 40V$	-	3.5	10	mA
Peak Output Current	I _{O(PEAK)}	$5V \le (V_{IN} - V_O) \le 15V$ $(V_{IN} - V_O) = 40V$	1.5 0.15	2.2 0.4	-	А
RMS Output Noise Voltage	V _{NO}	10Hz ≤ f ≤ 10kHz (RMS)	-	0.001	-	%/Vo
Ripple Rejection Ratio	RR	V_O =10V, f= 120Hz, ΔV_{IN} =1Vrms C _{ADJ} =0 C _{ADJ} =10µF	- 66	65 80	-	dB

■ TEST CIRCUIT

1) (Reference Voltage Thermal Change), (Adjustment Pin Current Change), (Line Regulation), (Load Regulation), (Peak Output Current), (RMS Output Noise Current)

2) Minimum Load Current

 $V_{O} = V_{REF}$ (Typical 1.25V) ($V_{IN} = 40 + V_{REF}$)

IOMIN: Minimum Io for

3) Ripple Rejection

Ripple Rejection = $20\log_{10}\left(\frac{e_{IN}}{e_0}\right)$ [dB]

■ TYPICAL APPLICATIONS

1) V_O = 1.25V to 37V Adjustable Voltage Regulator

2) Selected Output Voltage

Selective Signal Inputs

3) Regulater with Protection Diodes

The transistors Q_3 are switched by selective signal inputs and the output voltage V_0 is controlled by the transistor on or off.

(Example)

When all transistor is off,

$$V_{O} = V_{REF} X \left(1 + \frac{R_2}{R_1} \right)$$

When the transistor Q_3 is on, and others are off.

$$V_{O} = V_{REF} X \left\{ 1 + \frac{R_2 \times R_3}{(R_2 + R_3) \times R_1} \right\}$$

*I_{ADJ} ignore.

4) Constant Current Regulator

Ambient Temperature Ta(°C)

Input-Output Differential Voltage $V_{\rm IN}{=}V_{\rm O}$ (V)

Ripple Rejection vs. Output Voltage

Input-output Differential Voltage VIN=Vo (V)

Ripple Rejection vs. Output Current

■ TYPICAL CHARACTERISTICS

0.03

0.02

0.01

- 50

- 25 0

0 25 25

50

Ambient Temperature Ta (°C)

75

100

125

150

Line Regulation

 $\Delta V_O = V_{IN}$

(%/V)

Reference Voltage vs. Temperature

Line Regulation vs. Temperature

 $(V_{IN}\!=\!8V\!=\!45V, V_0\!=\!5V, I_0\!=\!100mA, Polse Test)$

Adjustment Pin Current vs. Temperature

Load Regulation vs. Temperature

Thermal Shutdown $(V_{IN} = 15 V, V_0 = 10 V, I_0 = 0 mA)$ Output Voltage $(V_0 = 10V)$ 10 Vo (V) 5

75

50

100 Ambient Temperature Ta (°C)

125

150

175 200

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Linear Voltage Regulators category:

Click to view products by Nisshinbo manufacturer:

Other Similar products are found below :

LV56831P-E LV5684PVD-XH MCDTSA6-2R L7815ACV-DG LV56801P-E TCR3DF13,LM(CT TCR3DF39,LM(CT TLE42794G L78L05CZ/1SX L78LR05DL-MA-E LM317T 636416C 714954EB LV5680P-E L78M15CV-DG L79M05T-E TLS202A1MBVHTSA1 L78LR05D-MA-E NCV317MBTG NTE7227 NCV78M09BDTRKG LV5680NPVC-XH LT1054CN8 ME6208A50M3G SL7533-8 ME6231A50M3G ME6231A50PG ME6231C50M5G AMS1117S-3.3 AMS1117-5.0 AMS1117S-5.0 AMS1117-3.3 MD5118 MD5121 MD5127 MD5128 MD5130 MD5144 MD5150 MD5115 MD5125 MD5133 MD5136 MD5140 MD5110 MD52E18WB6 MD52E33WB6 MD52E15QA3 MD52E21QA3 MD52E25QA3