3-TERMINAL NEGATIVE VOLTAGE REGULATOR

- GENERAL DESCRIPTION

The NJM79M00 series of 3-Terminal Negative Voltage Regulators are constructed using the New JRC Planar epitaxial process. These regulators employ internal current limiting, thermal shutdown and safearea compensation, making them essentially indestructible. If adequate heat sinking is provided, they can deliver up to 500 mA output current. They are intended as fixed voltage regulators in a wide range of applications including local (on-card) regulation for elimination of noise and distribution problems associated with single point regulation. In addition to use a fixed voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents.

- FEATURES

- Internal Short Circuit Current Limit
- Internal Thermal Overload Protection
- Excellent Ripple Rejection
- Guarantee'd 500 mA Output Current
- Package Outline

TO-220F, TO-252

- Bipolar Technology

- EQUIVALENT CIRCUIT

- PACKAGE OUTLINE
(TO-220F)

NJM79m00FA

1. COMMON
2. IN
3. OUT
(TO-252)

WJM79H00DL1A
1.COMMON 2.1 N
3.OUT
(note) The radiation fin is connected to Pin 2.

- ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	MAXIMUM RATINGS			UNIT
Input Voltage	$V_{\text {IN }}$	$\begin{aligned} & 79 \mathrm{M} 05 \sim 79 \mathrm{M} 09 \\ & 79 \mathrm{M} 12 \sim 79 \mathrm{M} 15 \\ & 79 \mathrm{M1}-79 \mathrm{M} 24 \end{aligned}$		$\begin{aligned} & -35 \\ & -35 \\ & -40 \end{aligned}$	V
Storge Temperature Range	$\mathrm{T}_{\text {stg }}$	$\begin{array}{ll} \text { TO-220F } & -40 \sim+150 \\ \text { TO-252 } & -40 \sim+150 \end{array}$			${ }^{\circ} \mathrm{C}$
Operating Temperature Range	Operating Junction Temperature Operating Junction Temperature		Tj Topr	$\begin{gathered} \text { TO-22OF }-30 \sim+150 \\ \text { T0-222 }-30 \sim+150 \\ -40 \sim+85 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Power Dissipation	P_{D}		$\mathrm{c} \leqq 75$		W

- THERMAL CHARACTERISTICS

			TO220F	TO252	
Thermal Resistance	Junction-to-Ambient Temperature	θ ja	60	125	C/w
	Junction-to-Case	θ jc	7	12.5	

- ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} . \mathrm{C}_{\mathrm{N}}=2.2 \mu \mathrm{~F}, \mathrm{Co}=1.0 \mu \mathrm{~F}$.)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
NJM79M05 FA/DL1A						
Output Voltage	V_{0}	$\mathrm{V}_{\text {IN }}=-10 \mathrm{~V}, \mathrm{I}_{0}=0.35 \mathrm{~A}$	-4.8	-5.0	-5.2	V
Quiescent Current	I_{Q}	$\mathrm{V}_{\mathrm{IN}}=-10 \mathrm{~V}, \mathrm{I}_{0}=0 \mathrm{~mA}$	-	2.2	5.0	mA
Load Regulation	ΔV_{0} - ${ }_{\text {IO }}$	$V_{\text {IN }}=-10 \mathrm{~V}, \mathrm{I}_{0}=0.005 \sim 0.5 \mathrm{~A}$	-	35	50	mV
Line Regulation	$\Delta V_{O-} V_{\text {in }}$	$\mathrm{V}_{\text {IN }}=-7 \sim-25 \mathrm{~V}, \mathrm{IO}=0.35 \mathrm{~A}$	-	5	50	mV
Ripple Rejection	RR	$\mathrm{V}_{\text {IN }}=-10 \mathrm{~V}, \mathrm{l}_{\mathrm{O}}=0.35 \mathrm{~A}, e_{\text {ein }}=2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}, \mathrm{f}}=120 \mathrm{~Hz}$	50	58	-	dB
Output Noise Voltage	$\mathrm{V}_{\text {No }}$	$\mathrm{V}_{\text {IN }}=-10 \mathrm{~V} . \mathrm{I}_{\mathrm{O}}=0.35 \mathrm{~A} . \mathrm{BW}=10 \mathrm{~Hz} \sim 100 \mathrm{kHz}$	-	100	-	$\mu \mathrm{V}$
Average Temperature Coefficient of Output Voltage	$\Delta V_{0} / \Delta T$	$\mathrm{V}_{1 \mathrm{~N}}=-10 \mathrm{~V}, \mathrm{l}_{\mathrm{O}}=5 \mathrm{~mA}$	-	-0.4	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

- ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} . \mathrm{C}_{\mathrm{IN}}=2.2 \mu \mathrm{~F}, \mathrm{Co}=1.0 \mu \mathrm{~F}$) Measurement is to be conducted in pulse testing

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
NJM79M06 FA/DL1 Output Voltage Quiescent Current Load Regulation Line Regulation Ripple Rejection Output Noise Voltage Average Temperature Coefficient of Output Voltage	Vo IQ $\Delta V_{0}-I_{0}$ $\Delta V_{O}-V_{I N}$ RR $\mathrm{V}_{\mathrm{NO}} \quad$ $\Delta V_{0} / \Delta T$		$\begin{gathered} -5.75 \\ - \\ - \\ - \\ 50 \\ - \end{gathered}$	$\begin{array}{r} -6.0 \\ 2.2 \\ 35 \\ 5 \\ 57 \\ 110 \\ \\ -0.5 \end{array}$	$\begin{gathered} -6.25 \\ 5.0 \\ 60 \\ 60 \\ - \\ - \end{gathered}$	V mA mV mV dB $\mu \mathrm{V}$ $\mathrm{mV} /{ }^{\circ} \mathrm{C}$
NJM79M08 FA/DL1 Output Voltage Quiescent Current Load Regulation Line Regulation Ripple Rejection Output Noise Voltage Average Temperature Coefficient of Output Voltage	V_{0} I_{Q} $\Delta V_{0}-l_{0}$ $\Delta V_{\mathrm{O}}-V_{\text {IN }}$ RR V_{NO} $\Delta V_{\mathrm{O}} / \Delta \mathrm{T}$		$\begin{gathered} -7.7 \\ - \\ - \\ - \\ 50 \\ - \end{gathered}$	$\begin{gathered} -8.0 \\ 2.2 \\ 40 \\ 8 \\ 55 \\ 130 \\ \\ -0.7 \end{gathered}$	$\begin{gathered} -8.3 \\ 5.0 \\ 80 \\ 80 \end{gathered}$	V mA mV mV dB $\mu \mathrm{V}$ $\mathrm{mV} /{ }^{\circ} \mathrm{C}$
NJM79M09 FA/DL1 Output Voltage Quiescent Current Load Regulation Line Regulation Ripple Rejection Output Noise Voltage Average Temperature Coefficient of Output Voltage	V_{0} IQ ΔV_{O}-Io $\Delta V_{\mathrm{O}}-\mathrm{V}_{\mathrm{IN}}$ RR V_{NO} $\Delta V_{0} / \Delta T$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.35 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \\ & \mathrm{~V}_{1 \mathrm{~N}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.005 \sim 0.5 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=-11.5 \sim-25 \mathrm{~V}, \mathrm{Io}=0.35 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.35 \mathrm{~A}, \mathrm{e}_{\mathrm{in}}=2 \mathrm{~V} \cdot \mathrm{P}, \mathrm{f}, \mathrm{f}=120 \mathrm{~Hz} \\ & \mathrm{~V}_{\mathrm{IN}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.35 \mathrm{~A}, \mathrm{BW}=10 \mathrm{~Hz}-100 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{IN}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \end{aligned}$	$\begin{gathered} -8.65 \\ - \\ - \\ - \\ 50 \\ - \end{gathered}$	-9.0 2.2 40 8 54 150 -0.8	$\begin{gathered} -9.35 \\ 5.0 \\ 90 \\ 80 \\ - \\ - \end{gathered}$	V mA mV mV dB $\mu \mathrm{V}$ $\mathrm{mV} /{ }^{\circ} \mathrm{C}$
NJM79M12 FA/DL1 Output Voltage Quiescent Current Load Regulation Line Regulation Ripple Rejection Output Noise Voltage Average Temperature Coefficient of Output Voltage	V_{0} l_{Q} $\Delta V_{\mathrm{O}}-\mathrm{I}_{\mathrm{O}}$ $\Delta V_{O}-V_{\text {IN }}$ RR $V_{\text {No }}$ $\Delta V_{0} / \Delta T$	$\begin{aligned} & \mathrm{V}_{I N}=-19 \mathrm{~V}, \mathrm{l}_{\mathrm{O}}=0.35 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=-19 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=-19 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.005 \sim 0.5 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=-14.5 \sim-30 \mathrm{~V}, \mathrm{lo}=0.35 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=-19 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.35 \mathrm{~A}, \mathrm{e}_{\mathrm{in}}=2 \mathrm{~V}_{\mathrm{P} \cdot \mathrm{p}, \mathrm{f}}=120 \mathrm{~Hz} \\ & \mathrm{~V}_{\mathrm{IN}}=-19 \mathrm{~V}, \mathrm{l}_{\mathrm{O}}=0.35 \mathrm{~A}, \mathrm{BW}=10 \mathrm{~Hz} \sim 100 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{IN}}=-19 \mathrm{~V}, \mathrm{l}_{\mathrm{O}}=5 \mathrm{~mA} \end{aligned}$	-11.5 - - - 54 -	-12.0 2.7 30 3 71 150 -0.4	$\begin{gathered} -12.5 \\ 6.0 \\ 120 \\ 80 \\ - \\ - \end{gathered}$	V mA mV mV dB $\mu \mathrm{V}$ $\mathrm{mV} /{ }^{\circ} \mathrm{C}$

- ELECTRICAL CHARACTERISTICS
$\left(\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} . \mathrm{C}_{\mathrm{IN}}=2.2 \mu \mathrm{~F}, \mathrm{Co}=1.0 \mu \mathrm{~F}\right)$
Measurement is to be conducted in pulse testing.

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
NJM79M15 FA/DL1 Output Voltage Quiescent Current Load Regulation Line Regulation Ripple Rejection Output Noise Voltage Average Temperature Coefficient of Output Voltage	Vo I_{Q} ΔV_{0}-Io ΔV_{O} - V_{IN} RR $V_{\text {No }}$ $\Delta V_{0} / \Delta T$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=-23 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.35 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=-23 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=-23 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.005 \sim 0.5 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=-17.5 \sim-30 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.35 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=-23 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.35 \mathrm{~A}, \mathrm{e}_{\mathrm{in}}=2 \mathrm{~V}_{\mathrm{P} . \mathrm{P}, \mathrm{f}}=120 \mathrm{~Hz} \\ & \mathrm{~V}_{\mathrm{IN}}=-23 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.35 \mathrm{~A}, \mathrm{BW}=10 \mathrm{~Hz} \sim 100 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{IN}}=-23 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \end{aligned}$	$\begin{gathered} -14.4 \\ - \\ - \\ - \\ 54 \end{gathered}$	$\begin{array}{r} -15.0 \\ 2.7 \\ 30 \\ 3 \\ 70 \\ 170 \\ \\ -0.5 \end{array}$	-15.6 6.0 150 80	mA mV mV dB $\mu \mathrm{V}$ $\mathrm{mV} /{ }^{\circ} \mathrm{C}$
NJM79M18 FA/DL1 Output Voltage Quiescent Current Load Regulation Line Regulation Ripple Rejection Output Noise Voltage Average Temperature Coefficient of Output Voltage	V_{0} IQ $\Delta V_{0} l_{0}$ $\Delta V_{\mathrm{O}}-\mathrm{V}_{\mathrm{IN}}$ RR V_{NO} $\Delta V_{\mathrm{O}} / \Delta \mathrm{T}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=-27 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.35 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=-27 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}_{N}}=-27 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.005 \sim 0.5 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=-21 \sim-33 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.35 \mathrm{~A} \\ & \mathrm{~V}_{\mathbb{N}}=-27 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.35 \mathrm{~A}, \mathrm{e}_{\mathrm{in}}=2 \mathrm{~V}_{\mathrm{P} . \mathrm{P}, \mathrm{f}}=120 \mathrm{~Hz} \\ & \mathrm{~V}_{\mathrm{IN}}=-27 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.35 \mathrm{~A}, \mathrm{BW}=10 \mathrm{~Hz}-100 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{IN}}=-27 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \end{aligned}$	$\begin{gathered} -17.3 \\ - \\ - \\ - \\ 54 \end{gathered}$	$\begin{gathered} -18.0 \\ 2.7 \\ 35 \\ 4 \\ 69 \\ 200 \\ \\ -0.6 \end{gathered}$	$\begin{gathered} -18.7 \\ 6.0 \\ 180 \\ 80 \end{gathered}$	mA mV mV dB $\mu \mathrm{V}$ $\mathrm{mV} /{ }^{\circ} \mathrm{C}$
NJM79M24 FA/DL1 Output Voltage Quiescent Current Load Regulation Line Regulation Ripple Rejection Output Noise Voltage Average Temperature Coefficient of Output Voltage	Vo I_{Q} $\Delta V_{0}-\mathrm{l}_{\mathrm{O}}$ $\Delta \mathrm{V}_{\mathrm{O}}-\mathrm{V}_{\mathrm{IN}}$ RR V_{NO} $\Delta V_{o} / \Delta T$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=-33 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.35 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=-33 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=-33 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.005 \sim 0.5 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=-27 \sim-38 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.35 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=-33 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.35 \mathrm{~A}, \mathrm{e}_{\mathrm{in}}=2 \mathrm{~V}_{\mathrm{P} \cdot \mathrm{P}, \mathrm{f}}=120 \mathrm{~Hz} \\ & \mathrm{~V}_{\mathrm{IN}}=-33 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.35 \mathrm{~A}, \mathrm{BW}=10 \mathrm{~Hz} \sim 100 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{IN}}=-33 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \end{aligned}$	-23.0 - - - 54	$\begin{gathered} -24.0 \\ 2.7 \\ 40 \\ 5 \\ 66 \\ 300 \\ \\ -0.8 \end{gathered}$	-25.0 6.0 240 80	mA mV mV dB $\mu \mathrm{V}$ $\mathrm{mV} /{ }^{\circ} \mathrm{C}$

- TEST CIRCUIT

1. Output Voltage, Line Regulation, Load Regulation, Quiescent Current, Average Temperature Coefficient of Output Voltage, Output Noise Voltage

- POWER DISSIPATION VS. AMBIENT TEMPERATURE

- TYPICAL CHARACTERISTICS

NJM79M05/15/24 Load Characteristics

NJM79M05/12/24 Output Voltage vs. Junction Temperature

NJM79M12 Output Voltage
vs. Low input Voltage

NJM79M00 Series
Short Circuit Output Current

NJM79M05/15/24 Ripple Rejection

vs. Frequency

Quiescent Current vs. Input Voltage

NJM79M00

MEMO
[CAUTION]
The specifications on this databook are only given for information, without any guarantee as regards either mistakes circuits in this databook are
application circuits in this databook are
described only to show representative usages guarantee or permission of any right including the industrial rights.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Linear Voltage Regulators category:
Click to view products by Nisshinbo manufacturer:
Other Similar products are found below :
LV56831P-E LV5684PVD-XH MCDTSA6-2R L7815ACV-DG LV56801P-E TCR3DF13,LM(CT TCR3DF39,LM(CT TLE42794G L78L05CZ/1SX L78LR05DL-MA-E LM317T 636416C 714954EB LV5680P-E L78M15CV-DG L79M05T-E TLS202A1MBVHTSA1 L78LR05D-MA-E NCV317MBTG NTE7227 NCV78M09BDTRKG LV5680NPVC-XH LT1054CN8 ME6208A50M3G SL7533-8 ME6231A50M3G ME6231A50PG ME6231C50M5G AMS1117S-3.3 AMS1117-5.0 AMS1117S-5.0 AMS1117-3.3 MD5118 MD5121 MD5127 MD5128 MD5130 MD5144 MD5150 MD5115 MD5125 MD5133 MD5136 MD5140 MD5110 MD52E18WB6 MD52E33WB6 MD52E15QA3 MD52E21QA3 MD52E25QA3

