Low Power Analog Front End

- \quad FEATURES

Supply Voltage	+2.4V to +3.6V
-Low Current Consumption	$4 \mu \mathrm{~A}$ (OPA, OPB)
	150 A ((ADC)
\bullet Low Noise Amplifier $1.3 \mu \mathrm{Vpp}$ typ. (0.1 to 10Hz)	
-Low Offset Voltage Amplifier 300 V V max.	
-RF immunity Amplifier	
Programmable Cell Bias	

OPA: $\quad 0.3 \mathrm{~V}$ to 1.7 V (7 steps)
OPB: $\quad 0.25 \mathrm{~V}$ to 1.75 V (50 mV step)
-Programmable Gain Pre-Amplifier 1V/V to 8V/V

- High resolution Programmable Gain ADC
$1 \mathrm{~V} / \mathrm{V}$ to $8 \mathrm{~V} / \mathrm{V}$, 16-Bit (NFB), 32sps to 2 k sps
- System Calibration for offset \& gain drift
- Control external EEPROM as a Master device
-Ambient Operating Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Interface $1^{2} \mathrm{C}$ (3-Bit selectable slave address)
-Package
EQFN-24-LE (4mm x 4mm)

-GENERAL DESCRIPTION

NJU9101 is a Low Power Analog Front End IC for use in micro-power sensing applications,
especially electrochemical sensors. It provides a complete signal processing solution between sensor and micro-processor as smart-sensor module.
NJU9101 has 2 channel low power operational amplifiers. These amplifiers provide potentiostat and trans-impedance-amplifiers to constitute gas sensor systems. The NJU9101 has calibration circuit by using output data of built-in high precision ADC. It is suitable for temperature variation of sensor.
NJU9101 operates over voltage range of 2.4 V to 3.6 V . Total average current consumption can be less than $5 \mu \mathrm{~A}$.

-APPLICATION

\bullet Gas Monitor	\bullet Blood Glucose Meter
\bullet Current Sensing Systems	\bullet Low Power Systems
\bullet •Photodiode Sensing Systems	\bullet Portable equipment

■EQUIVALENT CIRCUIT BLOCK DIAGRAM

-PIN CONFIGURATION

EQFN-24-LE

PIN NO.	SYMBOL	DESCRIPTION		Pin Type
1	SCL	$1^{2} \mathrm{C}$ serial clock input		Digital Input
2	SDA	${ }^{2}{ }^{2} \mathrm{C}$ serial data input / output (which requires an pull-up resistor)		Digital Input / Output
3	EXSCL	${ }^{2}$ C serial clock output for external EEPROM (which requires an pull-up register)		Digital Output
4	EXSDA	${ }^{2} \mathrm{C}$ serial data input / output for external EEPROM (which requires an pull-up resister)		Digital Input / Output
5	AD0	Chip address selection input 0	Select from 7 chip addresses "000" to "110". Do not select address " 111 ", which address is for production test purpose	Digital Input
6	AD1	Chip address selection input 1		Digital Input
7	AD2	Chip address selection input 2		Digital Input
8	TEST	TEST terminal (This terminal is used for production test. Connect to VDD)		Analog Input
9	VDD	Voltage Supply		Power Supply
10	VREFA+	Positive voltage reference input for ADC		Analog Input
11	VREFIN	Voltage reference input for Bias Resistor		Analog Input
12	BOUT	Voltage output for Bch. OpAmp		Analog Output
13	BIN-	Negative voltage input for Bch. OpAmp		Analog Input
14	$\mathrm{BIN}+$	Positive voltage input for Bch. OpAmp		Analog Input
15	SWS	Switch Source input / output		Switch Input / Output
16	SWD	Switch Drain input / output		Switch Input / Output
17	AIN+	Positive voltage input for Ach. OpAmp		Analog Input
18	AIN-	Negative voltage input for Ach. OpAmp		Analog Input
19	AOUT	Voltage output for Ach. OpAmp		Analog Output
20	AUXIN-	Auxiliary negative input		Analog Input
21	AUXIN+	Auxiliary positive input		Analog Input
22	VREFA-	Negative voltage reference input for ADC (connect to GND, is recommended)		Analog Input
23	GND	GND		GND
24	RDYB	RDYB output / GPIO		Digital Input / Output
PAD	EXPPAD	Exposed PAD on backside (connect to GND)		GND

-ORDERING INFORMATION

PART NUMBER	PACKAGE OUTLINE	RoHS	HALOGEN- FREE	TERMINAL FINISH	MARKING	WEIGHT (mg)	MOQ(pcs)
NJU9101MLE	EQFN-24-LE	O	O	$\mathrm{Sn}-2 \mathrm{Bi}$	9101	31	1,000

-ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT
Power Supply Voltage	$\mathrm{V}_{\text {DDabso }}$	5	V
Analog Input Voltage ${ }^{(1)}$	V_{IA}	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$ not exceeding 5	V
Digita Input Voltage	V_{ID}	-0.3 to 6	V
Switch Input Voltage ${ }^{(1)}$	V_{IS}	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$ not exceeding 5	V
On State Switch Current	I_{so}	-40 to $+40^{(3)}$	mA
Power Dissipation $\left(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}\right)^{(2)}$	PD_{D}	$8300^{(4)}$ R-layer)	mW
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +150	${ }^{\circ} \mathrm{C}$

(1): The input pins have clamp diodes to the power supply pins. Limit the input current to 10 mA or less whenever input signals exceed the power supply rail by 0.3 V .
(2): Power dissipation is the power that can be consumed by the IC at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$, and is the typical measured value based on JEDEC condition. When using the IC over $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ subtract the value $\left[\mathrm{mW} /{ }^{\circ} \mathrm{C}\right]=\mathrm{Po} / \mathrm{T}_{\text {stg }}$ max. -25) per temperature.
(3: Continuous maximum switch current (DC current) value at $\mathrm{Ta}=25^{\circ} \mathrm{C}$. For $\mathrm{Ta}=25^{\circ} \mathrm{C}$ or higher, refer to " 3 . Shorting FET function (analog switch)" in the "Application Manual".
(4): Mounted on glass epoxy board.
($101.5 \times 114.5 \times 1.6 \mathrm{~mm}$: based on EIA/JEDEC standard, 2 Layers FR-4.)
-RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	RATINGS	UNIT
Power Supply Voltage	V $_{\text {DD }}$	+2.4 to +3.6	V
Operating Temperature Range	$\mathrm{T}_{\text {opr }}$	-40 to +85	${ }^{\circ} \mathrm{C}$

-ELECTRICAL CHARACTERISTICS

Unless otherwise specified, all limits ensured for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {REFIN }}=\mathrm{V}_{\text {REFA }}=3 \mathrm{~V}$

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
OPA, OPB						
Input Offset Voltage	V 10	$\mathrm{V}_{I C M}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{S}}=50 \Omega$	-	-	± 300	$\mu \mathrm{V}$
Input Offset Voltage Drift	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$		-	± 1	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	I_{B}		-	10	-	pA
Open Loop Gain	Av		-	100	-	dB
Common Mode Rejection Ratio	CMR	$\mathrm{V}_{\text {ICM }}=\mathrm{GND}$ to 2 V	65	80	-	dB
Common Mode Input Voltage Range	Vicm	CMR $\geq 65 \mathrm{~dB}$	GND	-	2	V
Maximum Output Voltage	VOH	ISOURCE $=1 \mathrm{~mA}$	2.8	2.85	-	V
	Vol	$\mathrm{ISINK}=1 \mathrm{~mA}$	-	0.15	0.2	V
Gain Band Width	GBW		-	30	-	kHz
Slew Rate	SR		-	0.01	-	V/ $\mu \mathrm{s}$
Equivalent Input Noise Voltage	e_{n}	$\mathrm{f}=100 \mathrm{~Hz}, \mathrm{Rs}=50 \Omega$	-	50	-	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
		$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz	-	1.3	-	$\mu \mathrm{V}_{\mathrm{pp}}$

Unless otherwise specified, all limits ensured for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V} D \mathrm{~V}=\mathrm{V}_{\text {REFIN }}=\mathrm{V}_{\text {REFA }}=3 \mathrm{~V}$, ADC reference Voltage $=$ External

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
OPA, OPB with BIASRES (Potentiostat)						
OPA referred to OPB Input Offset Voltage 1	$\mathrm{V}_{\text {IOTA-B }}$	$\begin{aligned} & \text { OPA BIAS }=1 \mathrm{~V} \\ & \text { OPB BIAS }=1 \mathrm{~V} \end{aligned}$	-	-	± 0.6	mV
OPA referred to OPB Input Offset Drift 1	$\Delta \mathrm{V}_{\text {IO1A-B }}$ / ΔT	$\begin{aligned} & \text { OPA BIAS }=1 \mathrm{~V} \\ & \text { OPB BIAS }=1 \mathrm{~V} \end{aligned}$	-	± 2	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
OPA referred to OPB Input Offset Voltage 2	VIoza-b	$\begin{gathered} \hline \text { OPA BIAS }=1 \mathrm{~V} \\ \text { OPB BIAS }=0.7 \mathrm{~V} \end{gathered}$	295	300	305	mV
OPA referred to OPB Input Offset Drift 2	$\Delta \mathrm{V}_{\text {IO2A }}$ $/ \Delta \mathrm{T}$	$\begin{gathered} \text { OPA BIAS }=1 \mathrm{~V} \\ \text { OPB BIAS }=0.7 \mathrm{~V} \end{gathered}$	-	± 5	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
OPA referred to OPB Input Offset Voltage 3	$V_{\text {IOЗA-b }}$	$\begin{gathered} \text { OPA BIAS }=1 \mathrm{~V} \\ \text { OPB BIAS }=1.6 \mathrm{~V} \end{gathered}$	-605	-600	-595	mV
OPA referred to OPB Input Offset Drift 3	$\Delta \mathrm{V}_{\text {IO3A-B }}$ / ΔT	$\begin{gathered} \text { OPA BIAS = } 1 \mathrm{~V} \\ \text { OPB BIAS }=1.6 \mathrm{~V} \end{gathered}$	-	± 8	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

Unless otherwise specified, all limits ensured for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {REFIN }}=\mathrm{V}_{\text {REFA }}=3 \mathrm{~V}$

| PARAMETER | SYMBOL | TEST CONDITION | MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analog Switch (ANASW) | Ron | Analog Switch $=$ ON
 los $=-10 m A$ | | 10 | 30 | Ω |
| On State Resistance | ILoffd | Analog Switch $=$ OFF
 Vsws=2V/1V,
 VswD $=1 \mathrm{~V} / 2 \mathrm{~V}$ | - | ± 1 | - | nA |
| Off Leakage Current | | | | | | |

Unless otherwise specified, all limits ensured for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{REFIN}}=\mathrm{V}_{\text {REFA }}=3 \mathrm{~V}$, Temperature Input Mode

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Temperature Sensor						
Temperature Accuracy (Error) 1	$\mathrm{T}_{\mathrm{ACC} 1}$	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	-	± 1	± 5	${ }^{\circ} \mathrm{C}$
Temperature Accuracy (Error) 2	$\mathrm{T}_{\text {ACC2 }}$	$\mathrm{T}_{\mathrm{a}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-	± 3	-	${ }^{\circ} \mathrm{C}$
Temperature Resolution	Tres		-	0.25	-	${ }^{\circ} \mathrm{C}$

Unless otherwise specified, all limits ensured for $T_{a}=25^{\circ} \mathrm{C}, \mathrm{V}_{D D}=3 \mathrm{~V}$

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Internal Reference						
Internal Reference Voltage	VIREF	$\pm 1 \%$	2.028	2.048	2.068	V
Internal Reference Drift	$\begin{gathered} \Delta \mathrm{V}_{\text {IREF }} \\ / \Delta \mathrm{T} \end{gathered}$	$\mathrm{Ta}_{\mathrm{a}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-	30	-	ppm/ $/{ }^{\circ} \mathrm{C}$

Unless otherwise specified, all limits ensured for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {REFIN }}=\mathrm{V}_{\mathrm{REFA}}=3 \mathrm{~V}$, Auxiliary Differential Input Mode

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
PREAMP						
PREAMP Gain Error	$\mathrm{G}_{\text {ACCP }}$	PREAMP Gain = $1 \mathrm{~V} / \mathrm{V}$ to $8 \mathrm{~V} / \mathrm{N}$	-	± 0.1	-	\%
PREAMP Common Mode Rejection	CMRPRE	$\begin{gathered} \text { PREAMP Gain }=1 \mathrm{~V} / \mathrm{V} \\ \text { AUXIN+ = AUXIN- }= \\ \text { GND }+0.05 \text { to } \mathrm{V}_{\text {DD }}-1 \end{gathered}$	70	90	-	dB
PREAMP Common Mode Input Voltage	VICMP	$\begin{gathered} \text { PREAMP Gain }=1 \mathrm{~V} / \mathrm{V} \\ \text { CMRPRE } \geq 70 \mathrm{~dB} \end{gathered}$	$\begin{gathered} \text { GND } \\ +0.05 \end{gathered}$	-	Vcc-1	V

Unless otherwise specified, all limits ensured for $T_{a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {REFFIN }}=\mathrm{V}_{\text {REFA }}=3 \mathrm{~V}$, Auxiliary Input Mode
$A D C$ Chopping $=O N, A D C$ Reference Voltage $=$ External, $A D C$ Gain $=1 \mathrm{~V} / \mathrm{V}, \mathrm{ADC}$ Decimation Ratio = " 320 "

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
ADC						
Resolution	N	No missing code ${ }^{(5)}$	16	-	-	Bit
Noise Free Bit	NFB		-	16	-	Bit
Conversion Time	DR	See p. 22 "ADC Conversion Time"	-	-	-	SPS
Output Noise	$\mathrm{V}_{\text {nADC }}$	VREFA $+=3 \mathrm{~V}$	-	13.9	-	$\mu \mathrm{Vrms}$
Integral Non Linearity	INL		-	± 1	-	LSB
Gain Error		ADC Gain = 1V/V to 8V/V	-	± 0.1	-	\%
Offset Error		$\begin{gathered} \hline \mathrm{AUXIN}+=\mathrm{AUXIN}-= \\ \mathrm{V}_{\mathrm{DD}} / 2 \end{gathered}$	-	± 1	-	LSB
Differential Input Voltage Range	Vidadc	$\begin{gathered} \mathrm{V}_{\text {REF }}= \\ \|(\mathrm{VREFA}+)-(\mathrm{VREFA}-)\| \end{gathered}$	-	$\pm \mathrm{V}_{\text {ref }}$	-	V
ADC Common Mode Rejection	$\mathrm{CMR}_{\text {AdC }}$	$\begin{gathered} \text { AUXIN+ = AUXIN- }= \\ \text { GND to } \mathrm{V}_{\mathrm{DD}} \end{gathered}$	80	90	-	dB
ADC Common Mode Input Voltage Range	Vicadc	$\mathrm{CMR}_{\text {ADC }} \geq 80 \mathrm{~dB}$	GND	-	$V_{\text {D }}$	V

(5) This Parameter has not production tested, please refer to Typical Characteristics.

Unless otherwise specified, all limits ensured for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {REFIN }}=\mathrm{V}_{\text {REFA+ }}=3 \mathrm{~V}$

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
Power Supply / OSC							
Voltage Range	VDD		2.4	-	3.6	V	
Bias Resistance	RBIAS		-	1.5	-	$\mathrm{M} \Omega$	
Supply Current 1	IDD1	All Circuit Block Off	-	0.5	1	$\mu \mathrm{~A}$	
Supply Current 2	IDD2	OPA, OPB	-	4	5.5	$\mu \mathrm{~A}$	
Supply Current 3	IDD3	Internal Reference Voltage (2.048V)	-	31	40	$\mu \mathrm{~A}$	
Supply Current 4	IDD4	PREAMP	-	55	75	$\mu \mathrm{~A}$	
Supply Current 5	IDD5	ADC	-	150	200	$\mu \mathrm{~A}$	
OSC Frequency	fosc	$\pm 10 \%$	276	307	338	kHz	

-CHARACTERISTICS OF I/O STAGES FOR I²C BUS Compatible (SDA, SCL)

$I^{2} \mathrm{C}$ BUS Load Conditions
STANDARD MODE: Pull up resistance $4 \mathrm{k} \Omega$ (Connected to V_{DD}), Load capacitance 200pF (Connected to GND)
FAST MODE: Pull up resistance $4 \mathrm{k} \Omega$ (Connected to Vod), Load capacitance 50pF (Connected to GND)

PARAMETER	$\begin{aligned} & \text { SYM } \\ & \mathrm{BOL} \end{aligned}$	Standard Mode			Fast Mode			UNIT
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Low Level Input Voltage	VIL	0.0	-	$0.3 \mathrm{~V}_{\mathrm{DD}}$	0.0	-	1.5	V
High Level Input Voltage	V_{IH}	$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	5.5	2.7	-	5.5	V
Low Level Output Voltage (3mA at SDA pin)	Vol	0	-	0.4	0	-	0.4	V
Input current each I/O pin with an input voltage between $0.1 \mathrm{~V}_{\mathrm{DD}}$ and $0.9 \mathrm{~V}_{\mathrm{DD}} \max$.	li	-10	-	10	-10	-	10	$\mu \mathrm{A}$

■CHARACTERISTICS OF BUS LINES (SDA, SCL) FOR I²C BUS Compatible Devices

${ }^{2}{ }^{2} \mathrm{C}$ BUS Load Conditions
STANDARD MODE: Pull up resistance $4 \mathrm{k} \Omega$ (Connected to V_{DD}), Load capacitance 200pF (Connected to GND)
FAST MODE:
Pull up resistance $4 \mathrm{k} \Omega$ (Connected to V_{DD}), Load capacitance 50 pF (Connected to GND)

PARAMETER	$\begin{aligned} & \text { SYM } \\ & \text { BOL } \end{aligned}$	Standard Mode			Fast Mode			UNIT
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
SCL clock frequency	fscl	10	-	100	10	-	400	kHz
Hold time (repeated) START condition	thD:STA	4.0	-	-	0.6	-	-	$\mu \mathrm{s}$
Low period of the SCL clock	tıow	4.7	-	-	1.3	-	-	$\mu \mathrm{s}$
High period of the SCL clock	tHIGH	4.0	-	-	0.6	-	-	$\mu \mathrm{s}$
Set-up time for a repeated START condition	tsu:STA	4.7	-	-	0.6	-	-	$\mu \mathrm{s}$
Data hold time	thd:DAT	0	-	-	0	-	-	$\mu \mathrm{s}$
Data set-up time	tsu:Dat	250	-	-	100	-	-	ns
Rise time of both SDA and SCL signals	tr	-	-	1000	-	-	300	ns
Fall time of both SDA and SCL signals	t_{f}	-	-	300	-	-	300	ns
Set-up time for STOP condition	tsu:sto	4.0	-	-	0.6	-	-	$\mu \mathrm{s}$
Bus free time between a STOP and START condition	tBuF	4.7	-	-	1.3	-	-	$\mu \mathrm{s}$
Capacitive load for each bus line	Cb	-	-	400	-	-	400	pF
Noise margin at the Low Level	V_{nL}	0.5	-	-	0.5	-	-	V
Noise margin at the High Level	V_{nH}	1	-	-	1	-	-	V

Cb_{b} : Total capacitance of one bus line in pF .
-TIMING ON THE ${ }^{2}$ ² BUS (SDA, SCL)

-CHARACTERISTICS OF I/O STAGES FOR EEPROM I ${ }^{2}$ C BUS (EXSDA, EXSCL)
${ }^{2} \mathrm{C}$ BUS Load Conditions
Pull up resistance $4 \mathrm{k} \Omega$ (Connected to V_{DD}), Load capacitance 50pF (Connected to GND)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Low Level Input Voltage	V_{IL}	0.0	-	$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
High Level Input Voltage	V_{IH}	$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	-	V
Low Level Output Voltage $(3 \mathrm{~mA}$ at SDA pin)	VOL	0	-	0.4	V
Input current each I/O pin with an input voltage between $0.1 \mathrm{~V}_{\mathrm{DD}}$ and $0.9 \mathrm{~V}_{\mathrm{DD}}$ max.	I_{i}	-10	-	10	$\mu \mathrm{~A}$

-CHARACTERISTICS OF BUS LINES (EXSDA, EXSCL)
$I^{2} \mathrm{C}$ BUS Load Conditions
Pull up resistance $4 \mathrm{k} \Omega$ (Connected to V_{DD}), Load capacitance 50 pF (Connected to GND)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
EXSCL clock frequency	ffCL	92	102.3	112.7	kHz
Hold time (repeat) START condition	thi:STA	7.2	6.5	5.9	$\mu \mathrm{S}$
Low period of the EXSCL clock	tow	7.2	6.5	5.9	$\mu \mathrm{s}$
High period of the EXSCL clock	thigh	3.6	3.3	3.0	$\mu \mathrm{s}$
Set-up time for a repeated START condition	tsu:STA	7.2	6.5	5.9	$\mu \mathrm{s}$
Data hold time (EXSDA input)	thd:dat	0	-	-	$\mu \mathrm{s}$
Data hold time (EXSDA output)	thd:dat	7.2	6.5	5.9	$\mu \mathrm{s}$
Data Set-up time (EXSDA input)	tsu:dat	0	-	-	$\mu \mathrm{S}$
Data Set-up time (EXSDA output)	tsu:dat	7.2	6.5	5.9	$\mu \mathrm{S}$
Rise time of both EXSDA and EXSCL signals	tr	-	-	300	ns
Fall time of EXSDA and EXSCL signals	t_{f}	-	-	300	ns
Set-up time for STOP condition	tsu:sto	7.2	6.5	5.9	$\mu \mathrm{s}$
Bus free time between a STOP and START condition	tbuF	7.2	6.5	5.9	$\mu \mathrm{S}$
Capacitive load for each bus line	$\mathrm{Cb}_{\text {b }}$	-	-	400	pF
Noise margin at the Low level	V_{nL}	0.5	-	-	V
Noise margin at the High level	V_{nH}	1	-	-	V

C_{b} : total capacitance of one bus line in pF .
-TIMING ON THE EEPROM I²C BUS (EXSDA, EXSCL)

-REGISTER DESCRIPTION

NJU9101 has register (list shown below) which can access it through $I^{2} \mathrm{C}$ bus.
It can control the external EEPROM address corresponding to each register address from NJU9101.

REGISTER ADDRESS	EEPROM ADDRESS	REGISTER NAME	BIT							
			D7	D6	D5	D4	D3	D2	D1	D0
0x00	-	CTRL	-	RST	SENSCK [1:0]		MEAS	MEAS_SEL[1:0]		MEAS_SC
0x01	-	STATUS	-	-	BOOT	CLKRUN	RDYB	OV	CERR	OFOV
0x02	-	AMPDATAO	AMPDATA [15:8]							
0x03	-	AMPDATA1	AMPDATA [7:0]							
0x04	-	AUXDATAO	AUXDATA [15:8]							
0x05	-	AUXDATA1	AUXDATA [7:0]							
0x06	-	TMPDATAO	TMPDATA [9:2]							
0x07	-	TMPDATA1	TMPDATA [1:0]		-	-	-	-	-	-
0x08	-	ID	ID [7:0]							
0x09	-	ROMADR0	-	-	-	-	-	ROMADR [10:8]		
$0 \times 0 \mathrm{~A}$	-	ROMADR1	ROMADR [7:0]							
$0 \times 0 \mathrm{~B}$	-	ROMDATA	ROMDATA [7:0]							
$0 \times 0 \mathrm{C}$	-	ROMCTRL	-	-	ROMERR	ROMBUSY	ROMSTOP	ROMACT	ROMMODE [1:0]	
0x0D	-	TEST	TEST [7:0]							
0x0E	0x000	ANAGAIN	-	-	-	-	PRE_GAIN [1:0]		ADC_GAIN [1:0]	
0x0F	0x001	BLKCONNO	-	-	BIASSWA	BIASSWB	PRE_BIAS [3:0]			
0x10	0x002	BLKCONN1	OPA_BIAS [2:0]			OPB_BIAS [4:0]				
0×11	0x003	BLKCONN2	PREMODE	INPSWA	INPSWB	ANASW	BIASSWN	PAMPSEL	BIASSEL	VREFSEL
0x12	0x004	BLKCTRL	BLKCTRL[7:0]							
0×13	0x005	ADCCONV	-	ADCCHOP	CLKDIV [1:0]		REJ [1:0]		OSR [1:0]	
0x14	0x006	SYSPRESET	RDYBOE	RDYBDAT	RDYBMODE [1:0]		-	-	-	AMPAUX
0x15	0x007	SCAL1A0	-	-	-	-	-	-	-	SCAL1A [8]
0x16	0x008	SCAL1A1	SCAL1A [7:0]							
0x17	0x009	SCAL2AO	-	-	-	-	-	-	-	SCAL2A [8]
0x18	0x00A	SCAL2A1	SCAL2A [7:0]							
0x19	0x00B	SCAL3A0	-	-	-	-	-	-	-	SCAL3A [8]
$0 \times 1 \mathrm{~A}$	0x00C	SCAL3A1	SCAL3A [7:0]							
$0 \times 1 \mathrm{~B}$	0x00D	SCAL4A0	-	-	-	-	-	-	-	SCAL4A [8]
$0 \times 1 \mathrm{C}$	0x00E	SCAL4A1	SCAL4A [7:0]							
0x1D	0x00F	SCAL1B0	SCAL1B [15:8]							
0x1E	0x010	SCAL1B1	SCAL1B [7:0]							
$0 \times 1 \mathrm{~F}$	0x011	SCAL2B0	SCAL2B [15:8]							
0x20	0×012	SCAL2B1	SCAL2B [7:0]							
0×21	0×013	SCAL3B0	SCAL3B [15:8]							
0×22	0x014	SCAL3B1	SCAL3B [7:0]							
0×23	0×015	SCAL4B0	SCAL4B [15:8]							
0x24	0x016	SCAL4B1	SCAL4B [7:0]							
0x25	0x017	OCAL1A0	-	-	-	-	-	-	OCAL1A [9:8]	
0x26	0x018	OCAL1A1	OCAL1A [7:0]							

0x27	0x019	OCAL2AO	-	-	-	-	-	-	OCAL2A [9:8]
0x28	0x01A	OCAL2A1	OCAL2A [7:0]						
0x29	0x01B	OCAL3AO	-	-	-	-	-	-	OCAL3A [9:8]
0x2A	0x01C	OCAL3A1	OCAL3A [7:0]						
0x2B	0x01D	OCAL4AO	-	-	-	-	-	-	OCAL4A [9:8]
0x2C	0x01E	OCAL4A1	OCAL4A [7:0]						
0x2D	0x01F	OCAL1B0	-				1B [
0x2E	0x020	OCAL1B1	OCAL1B [7:0]						
0x2F	0x021	OCAL2B0	-				OCAL2B [14.8]		
0x30	0x022	OCAL2B1	OCAL2B [7:0]						
0x31	0x023	OCAL3B0	OCAL3B [14:8]						
0x32	0x024	OCAL3B1	OCAL3B [7:0]						
0x33	0x025	OCAL4B0	-				OCAL4B [14.8]		
0x34	0x026	OCAL4B1	OCAL4B [7:0]						
0x35	0x027	SCAL1	SCAL1 [7:0]						
0x36	0x028	SCAL2	SCAL2 [7:0]						
0x37	0x029	SCAL3	SCAL3 [7:0]						
0x38	0x02A	OCAL1	OCAL1 [7:0]						
0x39	0x02B	OCAL2	OCAL2 [7:0]						
0x3A	0x02C	OCAL3	OCAL3 [7:0]						
0x3B	0x02D	AUXSCALO	AUX_SCAL [15:8]						
0x3C	0x02E	AUXSCAL1	AUX_SCAL [7:0]						
0x3D	0x02F	AUXOCALO	AUX_OCAL [15:8]						
0x3E	0x030	AUXOCAL1	AUX_OCAL [7:0]						
0x3F	-	CHKSUM	CHKSUM [7:0]						

■EVERY REGISTER DESCRIPTION

CTRL Register
Register Address: 0x00, EEPROM Address: -

CTRL								
BIT	$[7]$	$[6]$	$[5]$	$[4]$	$[3]$	$[2]$	$[1]$	$[0]$
BIT NAME	-	RST	SENSCK [1:0]	MEAS	MEAS_SEL[1:0]	MEAS_SC		
R/W	-	WS	RW	RW	RW	RW		
RESET	-	-	$0 x 0$	0	0×0	0		

BIT	BIT NAME	FUNCTION
[6]	RST	Write Software Reset. When read this bit, always return " 0 ". 0: No effect 1: Reset
[5:4]	SENSCK	Change offset voltage of OPB to check sensor diagnostic. 00: OFF (No change) 01: Plus Offset (Change Offset Voltage $\approx+5.0 \mathrm{mV}$) 10: Minus Offset (Change Offset Voltage $\approx-5.0 \mathrm{mV}$) 11: Reserve

Measurement Switch
When write " 1 ", ADC conversion starts.
When read this bit, returns " 1 " in case of under conversion, " 0 " in case of idle condition.
When select "Single Conversion" mode, this bit is set to " 0 " automatically after conversion
completion. When select "Continuous Conversion" mode and write " 0 ", ADC conversion
stop and return to an idol state.

0: Measurement OFF
(Operating condition of this chip follows "BLKCTRL" condition)
1: Measurement ON
Measurement Mode Selection.

00: Temperature sensor input mode
01: Amplifier input mode
10: Auxiliary input mode
11: Reserve
Measurement Mode for ADC
[0]
MEAS_SC
0: Single Conversion
1: Continuous Conversion

STATUS Register

Register Address: 0x01, EEPROM Address: -

STATUS								
BIT	$[7]$	$[6]$	$[5]$	$[4]$	$[3]$	$[2]$	$[1]$	$[0]$
BIT NAME	-	-	BOOT	CLKRUN	RDYB	OV	CERR	OFOV
R/W	-	-	R	R	R	R	R	R
RESET	-	-	1	-	1	0	0	0

BIT	BIT NAME	FUNCTION
[5]	BOOT	Booting flag for IC. NJU9101 reads initial register value from external EEPROM as booting. This bit returns " 1 " until the reading of the initial register value is completed from start. 0 : Completion of booting 1: Under booting
[4]	CLKRUN	System Clock Condition. 0: System Clock is sleeping 1: System Clock is operating
[3]	RDYB	Data Ready Flag. When conversion data is updated, this bit is cleared to " 0 ". When either "AMPDATA0", "AUXDATA0", or "TMPDATA0" is read, this bit is set to " 1 ". 0: New ADC data is ready 1: New ADC data is not ready
[2]	OV	Overflow flag in sensitivity calibration of ADC output data. When over flow is occurred in sensitivity calibration of ADC conversion data, this bit is set to " 1 ". When this bit is " 1 ", ADC output data ("AMPDATA" or "AUXDATA") is set to $0 x 7 F F F$ (positive over flow) or 0x8000 (negative over flow). When either "AMPDATAO", "AUXDATA0", or "TMPDATA0" is read, this bit is cleared to " 0 ". 0: ADC conversion data is valid 1: ADC conversion data is over flow (set 0x7FFF or 0x8000)
[1]	CERR	Overflow flag in calibration coefficient data. When over flow is occurred in setting of calibration coefficient data, this bit is set to " 1 ". In case of " 1 ", ADC output data is invalid value. When either "AMPDATA0", "AUXDATA0" or "TMPDATA0" is read, this bit is cleared to " 0 ". 0: No overflow in calibration coefficient calculation 1: Overflow in calibration coefficient calculation (Output data is invalid)
[0]	OFOV	Overflow flag in offset calibration of ADC output data. When over flow is occurred in offset calibration of ADC conversion data, this bit is set to "1". In case of "1", ADC output data is invalid value. When either "AMPDATAO", "AUXDATAO" or "TMPDATA0" is read, this bit is cleared to " 0 ". 0: No overflow in offset calibration data 1: Overflow in offset calibration data (Output data is invalid)

AMPDATA0 / AMPDATA1 Register
Register Address: 0x02 / 0x03, EEPROM Address: -

AUXDATA0 / AUXDATA1 Register
Register Address: 0x04 / 0x05, EEPROM Address: -

	AUXDATA0							AUXDATA1							
	Register Address: 0x04							Register Address: 0x05							
BIT [7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
BIT NAME	AUXDATA [15:0]														
R/W	R														
RESET	-														
BIT	BIT NAME			FUNCTION											
$\begin{gathered} \hline \text { AUXDATA0 [7:0] } \\ + \\ \text { AUXDATA1 [7:0] } \end{gathered}$	AUXDATA[15:0]			ADC output data register for Auxiliary input mode. Signed 16-Bit data.											

TMPDATA0 / TMPDATA1 Register
Register Address: 0x06 / 0x07, EEPROM Address: -

ID Register					Register Address: 0×08, E		EEPROM Address:-	
ID								
BIT	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
BIT NAME	ID [7:0]							
R/W	R							
RESET	0x55							
BIT	BIT NAME	FUNCTION						
[7:0]	ID [7:0]	Fixed value "0x55" is stored as a chip identification code in this register.						

ROMADR0 / ROMADR1 Register
Register Address: $0 \times 09 / 0 \times 0$ A, EEPROM Address: -

	ROMADRO								ROMADR1							
	Register Address: 0×09								Register Address: 0x0A							
BIT	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
BIT NAME	-	-	-	-	-	ROMADR [10:0]										
R/W	-	-	-	-	-	RW										
RESET	-	-	-	-	-	0x0										
BIT		BIT NAME			FUNCTION											
ROMADR1 [7:0]		ROMADR[10:0]			This is EEPROM address selection register that read/write from/to EEPROM.											

*Be sure to set ROMADRO[4:3] = "00" to control EEPROM.
ROMDATA Register

ROMDATA								
BIT	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
BIT NAME	ROMDATA [7:0]							
R/W	RW							
RESET	0x00							
BIT	BIT NAME	FUNCTION						
[7:0]	ROMDATA [7:0]	In read mode, return a reading data from EEPROM. In write mode, set a writing data to EEPROM.						

*Be sure to set ROMADRO[4:3] = "00" to control EEPROM.

ROMCTRL Register

Register Address: 0x0C, EEPROM Address: -

ROMCTRL								
BIT	$[7]$	$[6]$	$[5]$	$[4]$	$[3]$	$[2]$	$[1]$	$[0]$
BIT NAME	-	-	ROMERR	ROMBUSY	ROMSTOP	ROMACT	ROMMODE [1:0]	
R/W	-	-	RC	R	WS	WS	W	
RESET	-	-	-	-	0×0	0×0	0×0	

BIT	BIT NAME	FUNCTION
[5]	ROMERR	When $I^{2} \mathrm{C}$ bus communication error occurs during accessing to external EEPROM, this bit is set to " 1 ". It is communication error in the following cases, 1) When NJU9101 outputs address, data, acknowledge data, it receives the EXSDA data different from the EXSDA data which outputs. 2) NJU9101 receives NACK response in the timing which it is expected to receive ACK response. And, It is cleared to " 0 " when this bit is written in " 1 ". 0: $\quad{ }^{2} \mathrm{C}$ communication is not error 1: $I^{2} \mathrm{C}$ communication is error
[4]	ROMBUSY	This bit shows accessing status to external EEOPROM. 0 : Completion of the access 1: Under accessing
[3]	ROMSTOP	When write " 1 " to "ROMSTOP" bit, stop accessing to external EEPROM. "ROMBUSY" bit is cleared to " 0 " immediately. When it stops accessing during writing to external EEPROM, ROM data is not guaranteed. In the read mode, this bit always returns " 0 ". 1: stop accessing to external EEPROM
[2]	ROMACT	When write "1" to ROMACT bit, start accessing to external EEPROM with following "ROMMODE[1:0]" data. In write " 0 " case, it is not started accessing. And, to start accessing to external EEPROM, it is necessary that it is not accessing timing to external EEPROM ("ROMBUSY" bit = "0"), and system clock is during operation ("CLKRUN" bit = " 1 "). In the read mode, this bit always returns " 0 ". 1: start accessing to external EEPROM
[1:0]	ROMMODE	Write operation for external EEPROM. In the read mode, this bit returns " 0 ". 00: Read one byte data from external EEPROM (address ROMADR[10:0]), and, store this one byte data to ROMDATA[7:0] bit register in NJU9101. 01: Write ROMDATA[7:0] bit data to register in external EEPROM which is assigned by ROMADR[10:0] address. 10: Load external EEPROM data to Host-register (ex. MPU) 11: Store Host-register setting (ex. MPU) into external EEPROM data.

*Be sure to set ROMADRO[4:3] = "00" to control EEPROM.

TEST								
BIT	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
BIT NAME	TEST [7:0]							
R/W	RW							
RESET	0x00							

*This register is for production test purpose. Do not write data to this register.

ANAGAIN Register

Register Address: 0x0E, EEPROM Address: 0x000

ANAGAIN								
BIT	$[7]$	$[6]$	$[5]$	$[4]$	$[3]$	$[2]$	$[1]$	[0]
BIT NAME	-	-	-	-	PRE_GAIN [1:0]	ADC_GAIN [1:0]		
R/W	-	-	-	-	RW	RW		
RESET	-	-	-	-	0×0	0×0		

BIT	BIT NAME	FUNCTION
[3:2]	PRE_GAIN	Pre-amplifier gain selection 00: $1 \mathrm{~V} / \mathrm{N}$ 01: $2 \mathrm{~V} / \mathrm{V}$ 10: $4 \mathrm{~V} / \mathrm{V}$ 11: $8 \mathrm{~V} / \mathrm{V}$
[1:0]	ADC_GAIN	Programmable-gain-amplifier in ADC selection 00: $1 \mathrm{~V} / \mathrm{N}$ 01: $2 \mathrm{~V} / \mathrm{V}$ 10: $4 \mathrm{~V} / \mathrm{V}$ 11: $8 \mathrm{~V} / \mathrm{V}$

BLKCONNO Register					Register Address: 0x0F, EEPROM Address: 0x001			
BLKCONNO								
BIT	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
BIT NAME	-	-	BIASSWA	BIASSWB	PRE_BIAS [3:0]			
R/W	-	-	RW	RW	RW			
RESET	-	-	0x0	0x0	0x0			
BIT	BIT NAME	FUNCTION						
[5]	BIASSWA	This is Switch for connecting "BIASRES" and "OPA positive input" Open "BIASRES" and "OPA positive input" Connect "BIASRES" and "OPA positive input"						
[4]	BIASSWB	This is Switch for connecting "BIASRES" and "OPB positive input" 0 : Open "BIASRES" and "OPB positive input" 1: Connect "BIASRES" and "OPB positive input"						
[3:0]	PRE_BIAS	$\begin{aligned} & \text { Nega } \\ & \text { This } \\ & \\ & \text { V REFII }^{2} \\ & 0000 \\ & 0001 \\ & 0010 \\ & 0011 \\ & : \\ & : \\ & 1101 \\ & 1110 \\ & 1111 \end{aligned}$	input bias le level is set by 3 V or at INTV GND 0.3 V 0.4 V 0.5 V 1.5 V 1.6 V 1.7V	el for PREAM "BIASRES" REF(2.048V)		$7 \mathrm{Va}$	V ste	

BLKCONN1 Register

BLKCONN1								
BIT	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
BIT NAME	OPA_BIAS [2:0]			OPB_BIAS [4:0]				
R / W	RW			RW				
RESET	0x0			0x0				

BIT	BIT NAME	FUNCTION
[7:5]	OPA_BIAS	Bias Level for OPA, This bias level is set by "BIASRES" Block. $\mathrm{V}_{\text {REFIN }}=3 \mathrm{~V}$ or at $\operatorname{INTVREF}(2.048 \mathrm{~V})$ as follows 000: GND 001: 0.3 V 010: 0.5 V 011: 0.7 V 100: 1.0 V 101: 1.3 V 110: 1.5 V 111: 1.7V
[4:0]	OPB_BIAS	Bias Level for OPB (From 0.25 V to 1.75 V are 50 mV steps). ```VREFIN \(=3 \mathrm{~V}\) or at INTVREF(2.048V) as follows 00000: GND 00001: 0.25V 00010: 0.3 V 00011: 0.35V 11101: 1.65 V 11110: 1.7 V 11111: 1.75V```

BLKCONN2								
BIT	$[7]$	$[6]$	$[5]$	$[4]$	$[3]$	$[2]$	$[1]$	$[0]$
BIT NAME	PREMODE	INPSWA	INPSWB	ANASW	BIASSWN	PAMPSEL	BIASSEL	VREFSEL
R/W	RW							
RESET	0×0							

BIT	BIT NAME	FUNCTION
[7]	PREMODE	Select PREAMP mode 0: Non-Inverted Amplifier mode 1: Instrumentation Amplifier mode
[6]	INPSWA	OPA positive input connection 0: GND Positive input is connected to GND. 1: AIN+ Positive input is connected to AIN+ Pin.
[5]	INPSWB	OPB positive input connection$0:$ GND Positive input is connected to GND. 1: BIN+ Positive input is connected to BIN+ Pin.
[4]	ANASW	Build in Analog Switch Status 0: Switch OFF 1: Switch ON On Resistance is 10Ω typ. Absolute Maximum Input Current is $\pm 50 \mathrm{~mA}$.

[3]	BIASSWN	Select switch for PREAMP / ADC Negative Input at AMP / AUX input mode. 0: OPB Output/ AUXIN- 1: BIASRES This is selectable bias level set by "PRE BIAS".
[2]	PAMPSEL	Enable / Disable PREAMP for signal path. 0: Disable (Bypass PREAMP) 1: Enable
[1]	BIASSEL	Reference Voltage selection for Bias Register 0: Internal Reference (2.048V) 1: External Reference
[0]	VREFSEL	Reference Voltage selection for ADC 0: Internal Reference (2.048V) 1: External Reference

BLKCTRL Register
Register Address: 0x12, EEPROM Address: 0x004

BLKCTRL								
BIT	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
BIT NAME	BLKCTRL [7:0]							
R / W	RW							
RESET	0x00							

BIT	BIT NAME	FUNCTION
[7:0]	BLKCTRL	Circuit Block Powered down selection. When ADC is in the idle state, circuit block which this bit is set to " 0 " is automatically powered down. The circuit block which this bit is set to " 1 " is kept powered on state even in case of ADC idle state. When all bits are "0", NJU9101 goes "power down mode" except for Digital block. [7]: BIASRES block [6] : OPB block [5]: OPA block [4]: OSC block [3] : PREAMP block [2]: INTVREF(2.048V) block [1] : ADC block [0]: Temperature Sensor block Refer to "• Power-Down Control" for details.

ADCCONV								
BIT	$[7]$	$[6]$	$[5]$	$[4]$	$[3]$	$[2]$	$[1]$	$[0]$
BIT NAME	-	ADCCHOP	CLKDIV [1:0]	REJ [1:0]	OSR [1:0]			
R/W	-	RW	RW	RW	RW			
RESET	-	0×0	0×0	0×0	0×0			

BIT	BIT NAME	FUNCTION
[6]	ADCCHOP	ADC CHOP Switch. It is effective in reducing offset Voltage of PREAMP and ADC. Reduce offset voltage by chopping input signal. When this bit is " 1 ", conversion time becomes long. (ex. 16.2ms(ADCCHOP="0") -> 31.1ms(ADCCHOP="1")) 0: CHOP OFF 1: CHOP ON
[5:4]	CLKDIV	Select operation clock frequency for sigma-delta modulator. fosc=307.2kHz typ. 00: $\quad f_{\text {mod }}=(1 / 2) \times$ fosc 01: $\quad f_{\text {mod }}=(1 / 4) \times$ fosc 10: $\quad f_{\text {mod }}=(1 / 8) \times$ fosc 11: $\quad f_{\text {mod }}=(1 / 16) \times$ fosc
[3:2]	REJ	Select rejection mode for Sinc3 filter 00: 50/60Hz Rejection 01: 50 Hz Rejection 10: 60 Hz Rejection 11: Reserved
[1:0]	OSR	Select Decimation ratio for Sinc3 filter. Total Decimation Ratio is decided by OSR / REJ bits combination.

NJU9101

ADC Decimation Ratio

OSR [1:0]	REJ [1:0]			
	00	01	10	11
	768	768	640	-
01	384	384	320	-
10	192	192	160	-
11	96	96	80	-

ADC Conversion Time [ms]

OSR	REJ [1:0]															
[1:0]	00	01	10	11	00	01	10	11	00	01	10	11	00	01	10	11
00	16.2	16.2	13.7	-	31.3	31.3	26.3	-	5	5	4.2	-	15.3	15.3	12.8	-
01	8.7	8.7	7.5	-	16.3	16.3	13.8	-	2.5	2.5	2.1	-	7.8	7.8	6.5	-
10	5.0	5.0	4.3	-	8.8	8.8	7.6	-	1.3	1.3	1.0	-	4.0	4.0	3.4	-
11	3.1	3.1	2.8	-	5.1	5.1	4.5	-	0.6	0.6	0.5	-	2.1	2.1	1.8	-
State	Single Conversion								Continuous Conversion							
State	CHOP: OFF				CHOP: ON				CHOP: OFF				CHOP: ON			

Conversion Time vs Resolution (ADC)

ADC Conversion Time	CHOP: ON					CHOP: OFF			
	$1 \mathrm{~V} / \mathrm{V}$	$2 \mathrm{~V} / \mathrm{V}$	$4 \mathrm{~V} / \mathrm{V}$	$8 \mathrm{~V} / \mathrm{V}$	$1 \mathrm{~V} / \mathrm{V}$	$2 \mathrm{~V} / \mathrm{V}$	$4 \mathrm{~V} / \mathrm{V}$	$8 \mathrm{~V} / \mathrm{V}$	
	$16 /(16)$	$16 /(16)$	$16 /(16)$	$16 /(16)$	$16 /(16)$	$16 /(16)$	$15.6 /(16)$	$15.3 /(16)$	
13.8 ms	$16 /(16)$	$16 /(16)$	$15.2 /(16)$	$16 /(16)$	$16 /(16)$	$16 /(16)$	$15 /(16)$	$14.8 /(16)$	
7.6 ms	$15 /(16)$	$14.7 /(16)$	$14.5 /(16)$	$14 /(16)$	$15 /(16)$	$14.7 /(16)$	$14.1 /(16)$	$13.5 /(16)$	
4.5 ms	$14 /(16)$	$14 /(16)$	$13.5 /(16)$	$12 /(14.7)$	$14 /(16)$	$14 /(16)$	$13.6 /(16)$	$12 /(14.7)$	

Noise Free Bit / (Effective Number of Bits), Unit: bit

SYSPRESET								
BIT	$[7]$	$[6]$	$[5]$	$[4]$	$[3]$	$[2]$	$[1]$	$[0]$
BIT NAME	RDYBOE	RDYBDAT	RDYBMODE [1:0]	-	-	-	AMPAUX	
R / W	RW	RW	RW	-	-	-	RW	
RESET	0×0	-	0×1	-	-	-	0×0	

BIT	BIT NAME	FUNCTION
[7]	RDYBOE	RDYB terminal direction of GPIO mode 0: RDYB terminal is input mode 1: RDYB terminal is Output mode
[6]	RDYBDAT	Return RDYB terminal level in input mode. Store RDYB terminal level in Output mode.
[5:4]	RDYBMODE	Select function of RDYB terminal 00: RDYB terminal outputs "RDYB" bit in STATUS register. 01: RDYB terminal outputs "RDYB" bit in STATUS register. with open-drain circuit style. 10: RDYB terminal is used as GPIO. Output condition is set by "RDYBDAT" and "RDYBOE". 11: Reserved
[0]	AMPAUX	Select Calibration channel coefficient assignment. 0: AMPDATA uses SCAL/OCAL calibration coefficient. AUXDATA uses AUX_SCAL / AUX_OCAL calibration coefficient. 1: AMPDATA uses AUX_SCAL / AUX_OCAL calibration coefficient. AUXDATA uses SCAL/OCAL calibration coefficient.

SCALxA0 / SCALxA1 Register
Register Address: 0×15 to 0x1C, EEPROM Address: 0×007 to $0 \times 00 \mathrm{E}$

	SCALxA0 ($\mathrm{x}=1$ to 4)								SCALxA1 ($\mathrm{x}=1$ to 4)							
	Register Address: $0 \times 15,0 \times 17,0 \times 19,0 \times 1 \mathrm{~B}$EEPROM Address: $0 \times 007,0 \times 009,0 \times 00 \mathrm{~B}, 0 \times 00 \mathrm{D}$								Register Address: 0x16, 0x18, 0x1A, 0x1C EEPROM Address: $0 \times 008,0 \times 00 \mathrm{~A}, 0 \times 00 \mathrm{C}, 0 \times 00 \mathrm{E}$							
BIT	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
BIT NAME	-	-	-	-	-	-	-					,				
R/W	-	-	-	-	-	-	-					RW				
RESET	-	-	-	-	-	-	-					-				

BIT	BIT NAME	FUNCTION
SCALxA0 [0] +	SCALxA [8:0] $(x=1$ to 4)	$1^{\text {st }}$ order Gain Calibration parameter for AMPDATA. This parameter is signed 9-Bit data.

SCALxB0 / SCALxB1 Register
Register Address: 0x1D to 0x24, EEPROM Address: 0x00F to 0x016

	SCALxB0 ($\mathrm{x}=1$ to 4)								SCALxB1 ($\mathrm{x}=1$ to 4)							
	Register Address: 0x1D, 0x1F, 0x21, 0x23 EEPROM Address: $0 \times 00 \mathrm{~F}, 0 \times 011,0 \times 013,0 \times 15$								Register Address: 0x1E, 0x20, 0x22, 0x24 EEPROM Address: 0x010, 0x012, 0x014, 0x016							
BIT	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
BIT NAME	SCALxB [15:0]															
R/W	RW															
RESET	-															
BIT		BIT NAME			FUNCTION											
$\begin{gathered} \hline \text { SCALxB0 [7:0] } \\ + \\ \text { SCALxB1 [7:0] } \end{gathered}$		$\begin{aligned} & \text { SCALxB [15:0] } \\ & \quad(x=1 \text { to } 4) \end{aligned}$			Zero-order Gain Calibration parameter for AMPDATA. This parameter is unsigned 16-Bit data.											

OCALxA0 / OCALxA1 Register
Register Address: 0×25 to 0x2C, EEPROM Address: 0×017 to $0 \times 01 \mathrm{E}$

	OCALxA0 ($\mathrm{x}=1$ to 4)								OCALxA1 ($\mathrm{x}=1$ to 4)							
	Register Address: 0x25 to 0x28 EEPROM Address: 0×017 to 0x01A								Register Address: 0x29 to 0x2C EEPROM Address: 0x01B to 0x01E							
BIT	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
BIT NAME	-	-	-	-	-	-	OCALxA [9:0]									
R/W	-	-	-	-	-	-	RW									
RESET	-	-	-	-	-	-	-									
BIT		BIT NAME			FUNCTION											
$\begin{gathered} \hline \text { OCALxA0 [1:0] } \\ + \\ \text { OCALxA1 [7:0] } \\ \hline \end{gathered}$		$\begin{aligned} & \text { OCALxA [9:0] } \\ & (x=1 \text { to } 4) \end{aligned}$			$1^{\text {st }}$ order Offset Calibration parameter for AMPDATA. This parameter is signed 10-Bit data.											

SCALx Register
Register Address: 0x35 to 0x37, EEPROM Address: 0x027 to 0x029

SCALx (x=1 to 3)								
BIT	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
BIT NAME	SCALx [7:0]							
R / W	RW							
RESET	-							
BIT	BIT NAME	FUNCTION						
[7:0]	$\begin{aligned} & \text { SCALX } \\ & (x=1 \text { to } 3) \end{aligned}$	Threshold Temperature for AMPDATA Sensitivity Calibration. Signed 8.0 fixed point format. $\left(-45^{\circ} \mathrm{C}\right.$ to $\left.+127^{\circ} \mathrm{C}\right)$$-45^{\circ} \mathrm{C} \leq \text { SCAL1 }<\text { SCAL2 }<\text { SCAL3 } \leq+127^{\circ} \mathrm{C}$						

OCALx Register Register Address: 0×38 to 0x3A, EEPROM Address: $0 \times 02 \mathrm{~A}$ to 0x02C								
OCALx ($\mathrm{x}=1$ to 3)								
BIT	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
BIT NAME	OCALx [7:0]							
R/W	RW							
RESET	-							
BIT	BIT NAME	FUNCTION						
[7:0]	$\begin{aligned} & \text { OCAL } \mathrm{x} \\ & (\mathrm{x}=1 \text { to } 3) \end{aligned}$	Threshold Temperature for AMPDATA Offset Calibration. Signed 8.0 fixed point format. ($-45^{\circ} \mathrm{C}$ to $+127^{\circ} \mathrm{C}$) $-45^{\circ} \mathrm{C} \leq$ OCAL $1<$ OCAL2 $<$ OCAL $3 \leq+127^{\circ} \mathrm{C}$						

AUX_SCALO / AUX_SCAL1 Register Register Address: 0x3B / 0x3C, EEPROM Address: 0x02D / 0x02E

	AUX_SCALO								AUX_SCAL1							
	Register Address: 0x3B EEPROM Address: 0x02D								Register Address: $0 \times 3 \mathrm{C}$ EEPROM Address: 0x02E							
BIT	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
BIT NAME	AUXSCAL [15:0]															
R/W	RW															
RESET																
BIT		BIT NAME			FUNCTION											
$\begin{gathered} \text { AUX_SCALO }[7: 0] \\ + \\ \text { AUX_SCAL1 }[7: 0] \\ \hline \end{gathered}$		AUXSCAL [15:0]			Sensitivity Calibration for AUXDATA. (Auxiliary calibration does not have temperature coefficient).											

AUX_OCALO / AUX_OCAL1 Register Register Address: 0x3D / 0x3E, EEPROM Address: 0x02F / 0x030

	AUX_OCALO								AUX_OCAL1							
	Register Address: 0x3D EEPROM Address: 0x02F								Register Address: 0x3E EEPROM Address: 0x030							
BIT	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
BIT NAME	AUXOCAL [15:0]															
R/W	RW															
RESET	-															
BIT		BIT NAME			FUNCTION											
$\begin{gathered} \text { AUX_OCALO [7:0] } \\ + \\ \text { AUX_OCAL1 [7:0] } \end{gathered}$		AUXOCAL [15:0]			Offset Calibration for AUXDATA. (Auxiliary calibration does not have temperature coefficient.)											

CHKSUM Register

CHKSUM								
BIT	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
BIT NAME	CHKSUM [7:0]							
R/W	R							
RESET	-							

BIT	BIT NAME	FUNCTION
$[7: 0]$	CHKSUM	Check Sum value of register set value is showed which is read from external EEPROM. Check Sum value is updated in following cases, when start up, when finish reading saved data from in external EEPROM, and when finish to road setting data to host-register from external EEPROM. Check Sum result value is finally showed as 1's complement. This result is summed unsigned data of each address byte (0x000 to 0x030) in external EEPROM.

IDD vs VDD (STDBY (ALL OFF)
$\mathrm{VDD}=\mathrm{VREFA}+=\mathrm{VREFIN}, \operatorname{STDBY}(\mathrm{ALL}$ OFF) MODE

IDD vs VDD (INTVREF:2.048V)
VDD=VREFA+=VREFIN

IDD vs VDD (ADC)
VDD=VREFA $=$ VREFIN

IDD vs VDD (OPA/OPB) VDD=VREFA+=VREFIN

IDD vs VDD (PREAMP) VDD=VREFA+=VREFIN

Resitance vs VDD (BIASRES)
VDD=VREFA $=$ =VREFIN

Input Offset Voltage vs
Common-Mode Input Voltage (OPA/OPB) VDD $=$ VREFA $+=V R E F I N=3 V$

Pulse Response Rise edge (OPA/OPB)
$\mathrm{VDD}=3 \mathrm{~V}, \mathrm{RL}=10 \mathrm{k} \Omega, \mathrm{GV}=0 \mathrm{~dB}, \mathrm{Vin}=0 \rightarrow 2 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Voltage Gain vs Frequency (OPA/OPB)
$\mathrm{VDD}=3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Gv}=40 \mathrm{~dB}, \mathrm{RL}=10 \mathrm{k} \Omega, \mathrm{CL}=20 \mathrm{pF}$

Equivalent Input Noise Voltage vs Frequency (OPA/OPB)
$\mathrm{VDD}=3 \mathrm{~V}, \mathrm{RF}=10 \mathrm{k} \Omega, \mathrm{RG}=100 \Omega, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Pulse Response Fall edge (OPA/OPB) $\mathrm{VDD}=3 \mathrm{~V}, \mathrm{RL}=10 \mathrm{k} \Omega, \mathrm{GV}=0 \mathrm{~dB}, \mathrm{Vin}=2 \rightarrow 0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Voltage Gain vs Frequency (OPA/OPB)
$\mathrm{VDD}=3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Gv}=0 \mathrm{~dB}, \mathrm{RL}=10 \mathrm{k} \Omega, \mathrm{CL}=$ variable

NJU9101

BIAS Voltage Diffrence vs Temperature
(OPA-OPB) OPA_Bias $=$ OPB_Bias $=1 \mathrm{~V}$ VDD $=$ VREFA + VREFIN $=3 \mathrm{~V}$, Buffer Output

BIAS Voltage Diffrence vs Temperature
(OPA -OPB) OPA_Bias $=1 \mathrm{~V}$, OPB_Bias $=1.6 \mathrm{~V}$
VDD $=$ VREFA+=VREFIN $=3 \mathrm{~V}$, Buffer Output

Voltage vs Temperature (INTVREF:2.048V) VDD=3V

BIAS Voltage Diffrence vs Temperature (OPA-OPB) OPA_Bias $=1 \mathrm{~V}$, , OPB_Bias $=0.7 \mathrm{~V}$ VDD $=$ VREFA $+=$ VREFIN $=3$ V, Buffer Output

ON Resistance vs SWS pin Voltage (ANASW)
VDD=3V, ANASW="1", IDS=-10mA

Temp Error vs Temperature (TEMP SENSOR) VDD=VREFA $+=$ VREFIN $=3 \mathrm{~V}$,

Input Offset Voltage vs
Common-Mode Input Voltage (PREAMP)
VDD $=$ VREFA $+=3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, PREGAIN=x1(Buffer)

Output Noise Histogram (ADC bypass PREAMP)
VDD $=$ VREFA $+=3 V, T a=25^{\circ} \mathrm{C}, \mathrm{AUXIN}+=A U X I N=V D D / 2, \mathrm{~N}=1024$

Gain Error vs Temperature (PREAMP)
VDD $=$ VREFA $+=3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, Instrumantation-Amp Mode Vin=(AUXIN +)-(AUXIN-) $=1 \mathrm{~V} /$ ADC_GAIN

Gain Error vs Temperature (ADC bypass PREAMP)
VDD $=$ VREFA $+=3 V$, AUXDATA, Vin=(AUX+)-(AUX-) $=1 \mathrm{~V} /$ /ADC_GAIN

INL vs Input Voltage (ADC bypass PREAMP)
VDD $=$ VREFA $+=3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, Vin $=($ AUXN +)-(AUXIN-) PREAMP=OFF(bypass), $A D C C H O P=O N$, Bestrit

-APPLICATION NOTE / GLOSSARY

NJU9101 consists of the following circuit block.

CIRCUIT BLOCK NAME	SYMBOL
2 Low Current Operational Amplifiers	"OPA", "OPB"
Bias Level Setting Register	"BIASRES"
10Ω Analog Switch	"ANASW"
Variable Gain Pre-Amplifier	"PREAMP"
Temperature Sensor	"TempSensor"
Internal Reference	"INTVREF (2.048V)"
16-Bit sigma delta ADC	"16-Bit ADC"
Digital Control \& Calibration	"Control\&Calibration"
R$^{2} \mathrm{C}$ Bus Compatible Control	" ${ }^{2} \mathrm{C} "$

NJU9101 is suitable for many kinds of low power analog signal applications by using these circuit blocks.

1. Setting example following conditions

1.1 Temperature Sensor Measurement

Write below code to measure Temperature.

No.	CONTENTS	REGISTER ADDRESS	REGISTER NAME	BIT NAME	BIT	VALUE
1	Select Temperature Input Mode	0x00	CTRL	MEAS_SEL	[2:1]	00
2	Select ADC Conversion Mode (Exp. Single Conversion)			MEAS_SC	[0]	0
3	Start AD Conversion			MEAS	[3]	1
4	Check completion of the AD conversion ("MEAS" bit = "0")					-
5	Acquire AD conversion data. (TMPDATA)	$\begin{aligned} & 0 \times 06 \\ & 0 \times 07 \end{aligned}$	TMPDATAO TMPDATA1	TMPDATA	[9:0]	-

1.2 System Example 1 (Potentiostat Measurement)

Write below code to constitute "potentiostat" and "trans-impedance-amplifier"

No.	CONTENS	REGISTER ADDRESS	REGISTER NAME	BIT NAME	BIT	VALUE
1	Connect the switch "BIASRES" and "OPA"	0x0F	BLKCONNO	BIASSWA	[5]	1
2	Connect the switch "BIASRES" and "OPB"			BIASSWB	[4]	1
3	Select output of BIASRES	0×11	BLKCONN2	BIASSWN	[3]	1
4	Bias level for "trance-impedance-amplifie"' (GND to 1.7V)	0x10	BLKCONN1	OPA_BIAS	[7:5]	any
5	Bias level for "potentiostat" (GND to 1.75V)			OPB_BIAS	[4:0]	
6	Powered on BIASRES, OPA, OPB, OSC	0×12	BLKCTRL	BLKCTRL	[7:0]	0xF0
7	Enable PREAMP	0x11	BLKCONN2	PAMPSEL	[2]	1
8	Select Amp Input Mode	0x00	CTRL	MEAS_SEL	[2:1]	01
9	Set Measurement Mode for ADC (ex.: Single conversion)			MEAS_SC	[0]	0
10	Start measurement			MEAS	[3]	1
11	Check completion of the AD conversion ("MEAS" bit = "0")					-
12	Acquire AD conversion data (AMPDATA)	$\begin{aligned} & 0 \times 02 \\ & 0 \times 03 \\ & \hline \end{aligned}$	AMPDATA0 AMPDATA1	AMPDATA	[15:0]	-

1.3 System Example 2 (Differential Input)

Write below code to constitute "Differential Amplifier Input" by using OPA/OPB.

No.	CONTENTS	REGISTER ADDRESS	REGISTER NAME	BIT NAME	BIT	VALUE
1	Open OPA input switch	0x0F	BLKCONNO	BIASSWA	[5]	0
2	Open OPB input switch			BIASSWB	[4]	0
3	Select OPA sensor signal input	0x11	BLKCONN2	INPSWA	[6]	1
4	Select OPB sensor signal input			INPSWB	[5]	1
5	Select OPB output			BIASSWN	[3]	0
6	Powered on OPA, OPB, OSC	0x12	BLKCTRL	BLKCTRL	[7:0]	0x70
7	Enable PREAMP	0x11	BLKCONN2	PAMPSEL	[2]	1
8	Select Amp Input Mode	0x00	CTRL	MEAS_SEL	[2:1]	01
9	Set Measurement Mode for ADC (ex.: Single conversion)			MEAS_SC	[0]	0
10	Start measurement			MEAS	[3]	1
11	Check completion of the AD conversion ("MEAS" bit = "0")					-
12	Acquire AD conversion data (AMPDATA)	$\begin{aligned} & \hline 0 \times 02 \\ & 0 \times 03 \\ & \hline \end{aligned}$	AMPDATAO AMPDATA1	AMPDATA	[15:0]	-

1.4 System Example 3 (Single Input (Non-Inverting))

Write below code to constitute "Single Amplifier Input" by using OPA/OPB.

No.	CONTENTS	REGISTER ADDRESS	REGISTER NAME	BIT NAME	BIT	VALUE
1	Open OPA input switch	0x0F	BLKCONNO	BIASSWA	[5]	0
2	Close OPB input switch			BIASSWB	[4]	1
3	Select OPA sensor signal input	0x11	BLKCONN2	INPSWA	[6]	1
4	Connect OPB positive input to GND			INPSWB	[5]	0
5	Select BIASRES output			BIASSWN	[3]	1
6	Powered on BIASRES, OPA, OPB, OSC	0x12	BLKCTRL	BLKCTRL	[7:0]	0xF0
7	Enable PREAMP	0x11	BLKCONN2	PAMPSEL	[2]	1
8	Select Amp Input Mode	0x00	CTRL	MEAS_SEL	[2:1]	01
9	Set Measurement Mode for ADC (ex.: Single conversion)			MEAS_SC	[0]	0
10	Start measurement			MEAS	[3]	1
11	Check completion of the AD conversion ("MEAS" bit = "0")					-
12	Acquire AD conversion data (AMPDATA)	$\begin{aligned} & \hline 0 \times 02 \\ & 0 \times 03 \end{aligned}$	AMPDATAO AMPDATA1	AMPDATA	[15:0]	-

1.5 Auxiliary (external Input) Measurement

Write below code to constitute "Differential Amplifier Input" by using PREAMP.

No.	CONTENTS	REGISTER ADDRESS	REGISTER NAME	BIT NAME	BIT	VALUE
1	Select AUXIN input	0x11	BLKCONN2	BIASSWN	[3]	1
2	Enable PREAMP			PAMPSEL	[2]	1
3	Select Auxiliary input mode	0x00	CTRL	MEAS_SEL	[2:1]	10
4	Set Measurement Mode for ADC (ex.: Single conversion)			MEAS_SC	[0]	0
5	Start measurement			MEAS	[3]	1
6	Check completion of the AD conversion ("MEAS" bit = "0")					-
7	Acquire AD conversion data (AUXDATA)	$\begin{aligned} & \hline 0 \times 04 \\ & 0 \times 05 \end{aligned}$	AUXDATAO AUXDATA1	AUXDATA	[15:0]	-

2. Potentiostat \& Trans-impedance-amp circuit block

Potentiostat consists of "OPB", "Variable Bias Resister (BIASRES)". "Reference Electrode (RE)" bias voltage is set by "Variable Bias Resister (BIASRES)" using command in "OPB_BIAS" bits. "Trans-impedance-amp(OPA)" connected to the "Working Electrode (WE)" is used to provide an output voltage that is proportional to the cell current. Bias Voltage of OPA is also set by BIASRES using command in "OPA_BIAS" bits.
OPA gain is set by external resister ($R_{T I A}$). and, please connect R_{L} between WE and negative input of OPA.

3. Shorting FET Function

NJU9101 has Internal Analog Switch (ANASW). This switch can connect between WE and RE of Chemical Sensor Cell. This Switch is switched on/off by "ANASW" bit.
In discrete system, depletion FET (ex. J177) is usually used as shorting FET. But, this switch "ANASW" in NJU9101 is enhancement FET (not depletion FET).
Therefore, this switch "ANASW" is effective only during powered on. This means that "ANASW" can't turn on during powered off.
ON resistance of this switch "ANASW" is 10Ω typ. This is to get a quick stabilized time after powered on.

4. Regarding Sensor Diagnostic Function

NJU9101 has Sensor Diagnostic Function using "SENSCK" bits.
When "SENSCK" mode turns ON ("1"), Offset Voltage of "OPA" changes around $\pm 5 \mathrm{mV}$. To switch "SENSCK" bits to " 0 " \rightarrow " 1 " \rightarrow "0", you can get as below waveforms.
*This is one of way to Sensor Diagnostic that we propose only.

Sensor Condition	AOUT Voltage		BOUT
	SENSCK OFF	SENSCK ON	
ALL connected	1 V	0.6 V	Waveform1
WE opened	1 V	1 V	Waveform2
CE opened	1 V	1 V	
RE opened	0 V	0 V	Waveform3

All connected

Waveform2

WE or CE opened

Waveform3

RE opened

5. Variable Bias Register (BIASRES)

"Variable Bias Resister (BIASRES)" for "OPA", "OPB", and "PREAMP" are shown in below.
The Bias Voltage for these amplifiers are given by resister ladder ratio (total resister $=1.5 \mathrm{M} \Omega$). These resister ladder ratio are set by "OPA_BIAS", "OPB_BIAS", "PRE_BIAS" registers. Setting Name of these register (ex. 0.5V @ VREFIN=3V) is in VREFIN=3V condition.

If VREFIN is not 3 V (ex. VREFIN=2.5V), the selected Voltage is shifted as follow.
If register setting is " $1.5 \mathrm{~V} @$ VREFIN $=3 \mathrm{~V}$ " $\quad \rightarrow \quad$ Actual Voltage is $1.5 \mathrm{~V} *(2.5 \mathrm{~V} / 3.0 \mathrm{~V})=\underline{1.25 \mathrm{~V}}$

And, when "BIASSEL = 0", BIASSEL_SW is turned on and fixed voltage "INTVREF (2.048V)" is given to the resister ladder shown in figure below.

6. PREAMP Gain Calculation

"Non-Inverted Amplifier" or "Instrumentation Amplifier" is selected by "PREMODE" bit.
"Pre-Amplifier-Gain" is selected by "PRE_GAIN" bits.

Input Voltage range of INP\&INN is " 0 V " to "VDD-1V".
Output Voltage range of OUTP\&OUTN is " 0.05 V " to "VDD-0.05V".

* Please design not to exceed Input \& Output Voltage range.
6.1. $P R E M O D E=0$ (Non-Inverted Amplifier)
INP
 OUTP

$$
\begin{aligned}
& V(O U T P)=V(I N P)+\frac{R 2}{R 1} \times V(I N P-I N N) \\
& V(O U T N)=V(I N N) \\
& G A I N=\frac{V(O U T P-O U T N)}{V(I N P-I N N)}=1+\frac{R 2}{R 1}
\end{aligned}
$$

Gain	PRE_GAIN	R1	R2
$1 \mathrm{~V} / \mathrm{V}$	00	$320 \mathrm{k} \Omega$	0Ω
$2 \mathrm{~V} / \mathrm{V}$	01	$160 \mathrm{k} \Omega$	$160 \mathrm{k} \Omega$
$4 \mathrm{~V} / \mathrm{V}$	10	$80 \mathrm{k} \Omega$	$240 \mathrm{k} \Omega$
$8 \mathrm{~V} / \mathrm{V}$	11	$40 \mathrm{k} \Omega$	$280 \mathrm{k} \Omega$

6.2. $\operatorname{PREMODE}=1$ (Instrumentation Amplifier)

$$
\begin{aligned}
& V(\text { OUTP })=V(I N P)+\frac{R 2}{R 1} \times V(I N P-I N N) \\
& V(\text { OUTN })=V(I N N)+\frac{R 2}{R 1} \times V(I N N-I N P) \\
& G A I N=\frac{V(O U T P-O U T N)}{V(I N P-I N N)}=1+2 \times \frac{R 2}{R 1}
\end{aligned}
$$

Gain	PRE_GAIN	R1	R2
$1 \mathrm{~V} / \mathrm{V}$	00	$320 \mathrm{k} \Omega$	0Ω
$2 \mathrm{~V} / \mathrm{V}$	01	$160 \mathrm{k} \Omega$	$80 \mathrm{k} \Omega$
$4 \mathrm{~V} / \mathrm{V}$	10	$80 \mathrm{k} \Omega$	$120 \mathrm{k} \Omega$
$8 \mathrm{~V} / \mathrm{V}$	11	$40 \mathrm{k} \Omega$	$140 \mathrm{k} \Omega$

7. Low Power Management

NJU9101 is intended for use in portable devices, so the power consumption is as low as possible in order to ensure a long battery life. Following usage assumption of NJU9101 is in a portable gas detector. And its power consumption is summarized in below. The total power consumption for NJU9101 is below @3V average over time, this excludes any current drawn from any pin, please consider another device's consumption.
< Condition >

- The system is used about 8 hours a day, and 16 hours a day it is in Standby mode.
- Basically, Only "OPB" and "BIASRES" block are turned On in Standby mode.
- Potentiostat Measurement is once per second.
- Aux Data Measurement is one per minutes.
- Temperature Measurement is one per minutes.
- ADC conversion time uses approximately 16.6 ms . (OSR="01", REJ="10", ADCCHOP="1")

	Standby	3-Lead Potentiostat	Potentiostat Measurement	Aux Data Measurement	Temperature Measurement	Total Current Consumption
Current Consumption	$0.5 \mu \mathrm{~A}$	$10.5 \mu \mathrm{~A}$	$215.5 \mu \mathrm{~A}$	$160.5 \mu \mathrm{~A}$	$250.5 \mu \mathrm{~A}$	
Time On a Day	$16(\mathrm{~h})$	$8(\mathrm{~h})$	$480(\mathrm{~s})$	$8(\mathrm{~s})$	$8(\mathrm{~s})$	
	66.6%	33.3%	0.556%	0.009%	0.009%	
Average Current	$0.33 \mu \mathrm{~A}$	$3.5 \mu \mathrm{~A}$	$1.2 \mu \mathrm{~A}$	$0.01 \mu \mathrm{~A}$	$0.02 \mu \mathrm{~A}$	5.06
ANASW	ON	OFF	OFF	OFF	OFF	
BIASRES	OFF	ON	ON	ON	ON	
OPA	OFF	ON	ON	ON	ON	
OPB	OFF	ON	ON	ON	ON	
PREAMP	OFF	OFF	ON	OFF	ON	
ADC	OFF	OFF	ON	ON	ON	
Temp. sensor	OFF	OFF	OFF	OFF	ON	
RC \& Logic	ON	ON	ON	ON	ON	

8. $\quad I^{2} \mathrm{C}$-BUS Interface

NJU9101 has 2 types of $1^{2} \mathrm{C}$ bus, one bus communicates to host device such as MCU, the other bus communicates to external EEPROM which is to retain the IC configurations, calibration parameters, .etc. These 2 types of $\mathrm{I}^{2} \mathrm{C}$ bus operate independently. NJU9101 operates for host interface as $I^{2} \mathrm{C}$ slave device, and operates for EEPROM interface as $\mathrm{I}^{2} \mathrm{C}$ Master Device.
One $I^{2} \mathrm{C}$-bus which connects to host device is SCL/SDA, and the other $\mathrm{I}^{2} \mathrm{C}$-bus which connects to external EEPROM is EXSCL/EXSDA.

Communicate	$\mathrm{I}^{2} \mathrm{C}$ bus	I/O	Master/Slave
Host Device (e.g.: MCU)	SCL	Input	
	SDA	Input / Open-Drain Output	
External EEPROM	EXSCL	Open-Drain Output	NJU9101:Master
	EXSDA	Input / Open-Drain Output	

8.1. $\quad I^{2} C$ Slave Interface

This interface is used for the Host that accesses to registers in NJU9101. NJU9101 is a ${ }^{2} \mathrm{C}$ Slave device for the host MCU. The operation of which conversion trigger, conversion data reading, access external EEPROM, etc. are executed through reading and writing of registers in NJU9101. Registers in NJU9101 are register address 0×00 to $0 \times 3 F$ and each address has 8 bits width register.

- $1^{2} \mathrm{C}$ Protocol

$7 \mathrm{bit}-{ }^{2} \mathrm{C}$ C Slave address consists of a fixed four-bit '0x9(b1001)' and chip address pin 'AD2', 'AD1', 'AD1'.

In case of write operation, transmit the writing data in following,
'Slave address' + Write bit (0)' + Write Register address' + 'Write data'.
When more than 2 bites of write data are transmitted, register address are increment automatically, and write the date into corresponding registers. When register address is over $0 \times 3 F$, return to address 0×00 and lap around.

In case of read operation, transmit the data in following,
'Slave address' + Write bit (0)' + 'Read Register address' and then transmit 'repeat start' command.
When more than 2 bites of read data are read, register address are increment automatically, and read the date into corresponding address. When register address is over $0 \times 3 F$, return to address 0×00 and lap around.

- ${ }^{2} \mathrm{C}$ external EEPROM Interface

${ }^{2}$ C external EEPROM of 16k-Bit (2kByte) can be connected as a external storage device for NJU9101. 'Microchip 24LC16B' is used as a standard External EEPROM. Other ${ }^{2} \mathrm{C}$ Serial EEPROM with communication compatible can be used. Some areas in external EEPROM are used as preset area for configuration data of NJU9101. The remaining areas in external EEPROM can be used for any uses.

NJU9101 supports 4-operations for external EEPROM from host-interface (MCU).

- Read data from arbitrary address area in external EEPROM.
- Write data to arbitrary address area in external EEPROM.
- Load the all data from external EEPROM to host register (MCU).
- Store register data in host register (MCU) to external EEPROM.

See also, "EVERY REGISTER DESCRIPTION : ROMCTRL" to control the external EEPROM.

- External EEPROM operating flow \& External EEPROM ${ }^{12} \mathrm{C}$ bus timing

Flow chart of access to external EEPROM is shown in below. When access to external EEPROM, system clock has to be operating and 'ROMBUSY' bit has to be '0'. And it can also access to external EEPROM under ADC conversion (Except for reading the initial register value just after reset release.).

External EEPROM requires about 5 ms of write time internally after write operation. During this period, NJU9101 cannot read/write from/to external EEPROM and external EEPROM returns 'NACK' for address byte. When NJU9101 starts to access to external EEPROM, NJU9101 does polling until receive 'ACK', and wait for completion of writing time in external EEPROM.

When NJU9101 is not connected with external EEPROM, address byte of NJU9101 always receives 'NACK'. Therefore, External EEPROM Control block in NJU9101 cannot stop polling. In such case, stop accessing to external EEPROM quickly by writing " 1 " to "ROMSTOP" bit, or it can break out of the polling by generating communication error ("ROMERR"="1") with fixed " 0 " for EXSDA terminal.
${ }^{2} \mathrm{C}$-bus of external EEPROM uses 3-system clock every 1 bit transfer, therefore maximum translate is fin/3[bps].

- $\triangle \Sigma$ ADC control
$\Delta \Sigma$ ADC conversion flow is shown in below.

- Start-Up

After power-on reset or release ${ }^{2} \mathrm{C}$ reset, start internal clock (OSC) and load data from external EEPROM to NJU9101's register. During loading, 'ROMBUSY' shows '1'. After finish loading to NJU9101's register, NJU9101 becomes idle state or idle state with clock stop which are following BLKCNT [4] setting.

- Idle State

"Idle state" means in the state which is not conversion state. In the idle state, 'BLKCNT [4](OSC power down)'bit changes the powered-on/off of system clock. During stopping the system clock, NJU9101 is idle state with clock stop, and it cannot write the data of NJU9101 register except 'CTRL' and 'BLKCNT' register. This means that "Please write 'BLKCNT[4]'='1', when change the data of NJU9101 register".

- Conversion

When write 'MEAS' bit = '1', conversion starts with following NJU9101 register setting.

First, Wake up time of modulator $T_{\text {wu }}$ is required after conversion started.

$$
T_{w u}=20 / f_{\bmod } \quad[\mathrm{sec}]
$$

Tadc is the time which is divided 'decimation rate (set in OSR / REJ bit) by $f_{m o d}$ (normal modulation clock frequency of $\Delta \Sigma$ modulator $\approx 153.6 \mathrm{kHz}$).

$$
\mathrm{T}_{\text {adc }}=\text { Decimation rate } / \mathrm{f}_{\text {mod }} \quad[\mathrm{sec}]
$$

Standard timing of ADC conversion is defined as $T_{\text {adc. }}$.
And, after completion of conversion, it requires around 70 cycle of system clock (70 / fosc) to do data corrective calculation. This calculation time is defined as $\mathrm{T}_{\text {cal }}$.

$$
\mathrm{T}_{\text {cal }}=70 / \text { fosc } \approx 230 \mu \quad[\mathrm{sec}]
$$

- Single Conversion

Conversion time of 'Single conversion' is ' $T_{m u}+3$ * $T_{\text {adc }}+T_{\text {cal }}$ '. The settling time of ADC requires ' 3 * $T_{\text {adc }}$ '. After complete data correction, data register is updated, and RDYB bit is asserted.

- Single Conversion + Chopping Operation

Conversion time of 'Single Conversion + Chopping Operation' is ' $T_{w u}+6$ * $T_{\text {adc }}+T_{c a l}$ '. The settling time of ADC requires ' 6 * $T_{\text {adc }}$ '. After complete data correction, data register is updated, and 'RDYB' bit is asserted. And then, 'MEAS' bit turns to ' 0 ', become idle state again. Chopping operation can cancel offset voltage into ADC by swapping differential positive - negative input.

- Continuous Conversion

The first conversion time of 'Continuous Conversion' is ' $T_{w u}+3$ * $T_{\text {adc }}+T_{c a l}$ '. The setting time of ADC requires ' 3 * $T_{\text {adc }}$ '. After complete the first conversion data correction, data register is updated, and RDYB bit is asserted. And after that, data register is updated and RDYB bit is asserted every Tadc. Conversion rate after the first conversion is $1 / \mathrm{Tadc}$ [sps]. This conversion is continued until written 'MEAS $=0$ '.

- Continuous Conversion + Chopping Operation

The first conversion time of 'Continuous Conversion + Chopping Operation’ is ' $T_{w u}+6{ }^{*} T_{\text {adc }}+T_{\text {cal'. The }}$. The setling time of ADC requires ' 6 * $T_{\text {adcc }}$ '. After complete data correction, data register is updated, and RDYB bit is asserted. And after that, data register is updated and RDYB bit is asserted every ' 3 * $\mathrm{T}_{\text {adc }}$ '. Conversion rate after the first conversion is ' $1 /\left(3{ }^{*} \mathrm{~T}_{\text {adc }}\right.$ ' [sps]. This conversion is continued until written 'MEAS $=0$ '.

- Conversion at 'Idle state with Clock Stop’

In case of 'ldle state with Clock Stop (BLKCNT[4]=0)', it is necessary an additional time ($\approx 830 \mu \mathrm{~s}$) to wake up the clock circuit after start conversion trigger. When 'Single Conversion' is set, it turns 'Idle state with Clock Stop (BLKCNT [4] = 0)' automatically after complete the conversion.

- Power-Down Control

Power down control signal of each circuit block in NJU9101 is controlled by following registers value 'MEAS', 'MEAS_SEL', 'VREFSEL', 'PAMPSEL', and 'BLKCNT[7:0]'.

BIASRES circuit block power down

Block	BLKCNT $[7]$	Power Condition
BIASRES	0	PWR DOWN
	1	OPERATE

OPA circuit block power down

Block	MEAS	MEAS_SEL $[1: 0]$	BLKCNT $[5]$	Power Condition
	0	-	0	PWR DOWN
	1	$00 / 10$	0	
	1	01	0	OPERATE
	-	-	1	

OPB circuit block power down

Block	MEAS	MEAS_SEL $[1: 0]$	BLKCNT $[6]$	Power Condition
OPB	0	-	0	PWR DOWN
	1	$00 / 10$	0	
	1	01	0	OPERATE
	-	-	1	

OSC circuit block power down

Block	MEAS	BLKCNT [4]	BLKCNT [1]	Power Condition
		0	0	PWR DOWN
	1	0	0	
	-	1	-	OPERATE
	-	-	1	

PREAMP circuit block power down

Block	MEAS	MEAS_SEL $[1: 0]$	PAMPSEL	BLKCNT $[3]$	Power Condition
PREAMP	0	-	-	0	PWR DOWN
	1	00	-	-	OPERATE
	1	$01 / 10$	0	0	PWRDOWN
	1	$01 / 10$	1	0	OPERATE
	-	-	-	1	

2.048V INTVREF circuit block power down

Block	MEAS	MEAS_SEL $[1: 0]$	BIASSEL	VREFSEL	BLKCNT $[2]$	Power Condition
INTVREF	0	-	1	-	0	PWR DOWN
	1	00	1	-	0	OPERATE
	1	$01 / 10$	1	0	0	
	1	$01 / 10$	1	1	0	PWR DOWN
	-	-	1	-	1	OPERATE
	-	-	0	-	-	

ADC circuit block power down

Block	MEAS	BLKCNT $[1]$	Power Condition
ADC	0	0	PWR DOWN
	1	0	OPERATE
	-	1	

Temperature Sensor circuit power down

Block	MEAS	MEAS_SEL $[1: 0]$	BLKCNT $[0]$	Power Condition
Temp.	0	-	0	PWR DOWN
	1	00	0	OPERATE
	1	$01 / 10$	0	PWR DOWN
	-	-	1	OPERATE

- Data Processing

Analog Input is modulated to PDM signal by $2^{\text {nd }}$ Order $\triangle \Sigma$ modulator. And then, this PDM signal changes to $P C M$ signal by Sinc3 Digital Filter. Sinc3 Digital Output data is stored to AMPDATA / AUXDATA / TMPDATA register after data calibration.

- $\Delta \boldsymbol{\Sigma}$ Modulator

Normal modulation clock frequency of $\Delta \Sigma$ (Sigma Delta) modulator (fmod) is 153.6 kHz . This frequency (fmod) is the oversampling clock of the ADC which is divided OSC system clock (fosc) with setting of 'CLKDIV' bit. Modulated ratio of this modulator is 66.7%. When +1.5 Vpp of differential signal is input, modulated output goes to +1 Vpp .

- Sinc3 Digital Filter

Digital Filter in NJU9101 is $3^{\text {rd }}$ Order Sinc-Filter that has 768 of maximum decimation ratio. This decimation ratio can be set by ‘OSR’ and ‘REJ’ bit.

- Sinc3 filter frequency example 1 (CHOPPING OFF setting example)

Conversion Time $=7.5 \mathrm{~ms}$ (Single conversion)

Decimation Ratio=320
(OSR=01, REJ=10, CLKDIV=00, ADCCHOP=0)

- Sinc3 filter frequency example 2
(CHOPPING ON setting example)

Conversion Time $=13.8 \mathrm{~ms} \quad($ Single conversion)

Decimation Ratio $=320$
(OSR=01, REJ=10, CLKDIV=00, ADCCHOP=1)

- Sinc3 filter frequency example 3
($50 / 60 \mathrm{~Hz}$ Reduction setting example)

Conversion Time $=61.6 \mathrm{~ms} \quad($ Single Conversion $)$

Decimation Ratio $=768$
(OSR=00, REJ=00, CLKDIV=10, $\mathrm{ADCCHOP}=0$)

- Sinc3 filter frequency example 4
(Fastest Conversion Time setting example)

Conversion Time $=2.8 \mathrm{~ms}$ (Single Conversion)

Decimation Ratio $=80$
(OSR=11, REJ=10, CLKDIV=00, ADCCHOP=0)

- Data Calibration

Analog Input is modulated to PDM signal by $2^{\text {nd }}$ Order $\Delta \Sigma$ modulator. And then, this PDM signal is changed to signed 19 bit PCM signal (ADCDATA) by Sinc3 Digital Filter. The full-scale range of ADCDATA is -262144 to +262143 (0×40000 to 0x3FFFF). ADCDATA is stored to AMPDATA / AUXDATA/ TMPDATA register after data calibration.

Regarding calculation of ADCDATA, Voltage GAIN of PREAMP (Gpre) and Conversion GAIN of ADC (Gadc) are defined as below,

Gain of PREAMP		
PAMPSEL	PRE_GAIN	G $_{\text {pre }}$
0	XX	1
1	00	1
1	01	2
1	10	4
1	11	8

Gain of ADC	
ADC_GAIN	Gadc
00	1
01	2
10	4
11	8

When it is assumed that
"Vref" :Reference Voltage selected by "VREFSEL"bit.
"Vin" :Differential Input Voltage of PREAMP

Digital Filter Output (ADCDATA) is output as below, when ADCDATA range is limited as signed 19 bit range (min:262144(0x40000), max:+262143(0x3FFFF).

$$
\text { ADCDATA }=262144 \times G_{p r e} \times G_{a d c} \times \frac{2}{3} \times \frac{V_{i n}}{V_{r e f}}
$$

- AMPDATA Calibration

AMPDATA Calibration has temperature calibration of offset and Sensitivity for ADCDATA. And then, calibrated data is stored to AMPDATA[15:0] register. AMPDATA calibration path is shown in below.

Calibration coefficients for offset are set for four temperature areas. For these temperature areas, 0-order coefficient (offset value: OCALxB at OCALx[$\left.{ }^{\circ} \mathrm{C}\right]$) and 1st-order coefficient (temperature slope: OCALxA) are set. These temperature area are set by OCALx[$\left.{ }^{\circ} \mathrm{C}\right]\left(-45^{\circ} \mathrm{C} \leq\right.$ OCAL1 $<$ OCAL2 $<$ OCAL3 $\left.\leq 127^{\circ} \mathrm{C}\right)$. These coefficients are automatically selected by TEMPDATA value. Offset Calibration coefficient "OC" is signed 17-bits factor and calculated as below

Condition	Calculation
$-45 \leq$ TEMPDATA [9:2] $<$ OCAL1	OC $=[\{$ TEMPDATA $-(-45 \times 4)\} \times$ OCAL1A $]+($ OCAL1B $\times 4)$
OCAL1 \leq TEMPDATA $[9: 2]<$ OCAL2	OC $=[\{$ TEMPDATA $-($ OCAL1 $\times 4)\} \times$ OCAL2A $]+($ OCAL2B $\times 4)$
OCAL2 \leq TEMPDATA $[9: 2]<$ OCAL3	OC $=[\{$ TEMPDATA $-($ OCAL2 $\times 4)\} \times$ OCAL3A $]+($ OCAL3B $\times 4)$
OCAL3 \leq TEMPDATA $[9: 2]$	OC $=[\{$ TEMPDATA $-($ OCAL3 $\times 4)\} \times$ OCAL4A $]+($ OCAL4B $\times 4)$

* When "OC" value exceeds signed 17-bits range (-65536 to +65535 (0×10000 to $0 \times 0 F F F F$)), "CERR" bit is set as error flag of offset calibration coefficient. In this situation, AMPDATA is not correct value.

And then, ADCDATA and offset coefficient "OC" are summed. Converted DATA "D0" is calculated as below,
D0 = ADCDATA + (OC x 4)

* When "D0" value exceeds signed 19-bits range (-262144 to +262143 (0×40000 to 0x3FFFF)), "OFOV" bit is set as error flag. In this situation, AMPDATA is not correct value.

Calibration coefficients for sensitivity are set for four temperature areas. For these temperature areas, 0-order coefficient (sensitivity value: SCALxB at SCALx[$\left.{ }^{\circ} \mathrm{C}\right]$) and $1^{\text {st_order coefficient (temperature slope: SCALxA) are set. These temperature }}$ area are set by SCALx[$\left.{ }^{\circ} \mathrm{C}\right]\left(-45^{\circ} \mathrm{C} \leq\right.$ SCAL1 $<$ SCAL $2<$ SCAL $\left.3 \leq 127^{\circ} \mathrm{C}\right)$. These coefficients are automatically selected by TEMPDATA value. Sensitivity Calibration coefficient "SC" is unsigned 18-bits factor and calculated as below.

Condition	Caluculation
-45 \leq TEMPDATA [9:2] < SCAL1	SC $=[$ [TEMPDATA $-(-45 \times 4)\} \times$ SCAL1A $]+($ SCAL1B $\times 4)$
SCAL1 \leq TEMPDATA [9:2] < SCAL2	SC $=[\{$ TEMPDATA $-(S C A L 1 \times 4)\} \times$ SCAL2A $]+(S C A L 2 B \times 4)$
SCAL2 \leq TEMPDATA [9:2] < SCAL3	SC $=[\{$ TEMPDATA $-(S C A L 2 \times 4)\} \times$ SCAL3A $]+(S C A L 3 B \times 4)$
SCAL3 \leq TEMPDATA [9:2]	SC $=[\{$ TEMPDATA $-($ SCAL3 $\times 4)\}+(S C A L 4 B \times 4)$

* When "SC" value exceeds the range of 8192 to 262143 (0×2000 to $0 \times 3 F F F F$), "CERR" bit is set as error flag of sensitivity calibration coefficient. In this situation, AMPDATA is not correct value. And when "SC" value is regarded as signed 2.16 fixed point, this data range is equivalent to 4.0 to 0.125 .

For Sensitivity calculation, offset conversion data "D0" is divided by "SC". This result (quotient) is rounded to integer, and then, AMPDATA is decided.

$$
\text { AMPDATA }=\text { Round }\left(\frac{D 0 \times 2^{14}}{S C}\right)
$$

* When AMPDATA value exceeds signed 16-bits range (-32768 to +32767 (0×8000 to $0 x 7 F F F$)), "OV" bit is set as error flag. In this situation, ADCDATA value is limited to min: $-32768(0 \times 8000$) or max: $+32767(0 \times 7 F F F)$, and then stored to AMPDATA register.

Register	Calibration Range		Set Resolution		
		± 1.0 conv.	14 -Bit conv.	± 1.0 conv.	14 -Bit conv.

Offset coef.

$0^{\text {th }}$	OCALxB	± 1.0	± 8192	$1 /\left(2^{\wedge} 14\right)$	0.5 LSB
$1^{\text {st }}$	OCALxA	$\pm 0.03125 /{ }^{\circ} \mathrm{C}$	$\pm 256 \mathrm{LSB} /{ }^{\circ} \mathrm{C}$	$1 /(2$ to 14$) /{ }^{\circ} \mathrm{C}$	$0.5 \mathrm{LSB} /{ }^{\circ} \mathrm{C}$

Sens coef.

$0^{\text {th }}$	SCALxB	$x 0.125$ to $\times 4.0$	-	61 ppm	-
$1^{\text {st }}$	SCALxA	$\pm 15625 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	-	$61 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	-

- AUXDATA Calibration

AUXDATA Calibration has offset and Sensitivity calibration for ADCDATA. And then, calibrated data is stored to AUXDATA[15:0] register. AUXDATA calibration path is shown in below.

Conversion Data "D1" after offset calibration is calculated as below. (Low order 2-bit of ADCDATA are rounded down)

$$
\mathrm{D} 1=\text { Truncate }\left(\frac{A D C D A T A}{4}\right)-\text { AUX_OCAL }
$$

* When "D1" value exceeds signed 17-bits range (-65536 to +65535 (0×10000 to $0 x 0 F F F F$)), "OFOV" bit is set as error flag. In this situation, AUXDATA value is not correct value.

For sensitivity calibration, it is multiplied conversion data "D1" by "AUX_SCAL" coefficient. This result (product) is divided by $2^{\wedge} 16$, and is rounded to integer. And then, AUXDATA is decided.

$$
\operatorname{AUXDATA}=\operatorname{Round}\left(\frac{D 1 \times A U X_{_} S C A L}{2^{16}}\right)
$$

* When AUXDATA value exceeds signed 16-bits range (-32768 to +32767 (0×8000 to $0 \times 7 F F F$)), "OV" bit is set as error flag. In this situation, ADCDATA value is limited to min: -32768 (0x8000) or max: +32767(0x7FFF), and then stored to AUXDATA register.

	Register	Calibration Range		Set Resolution	
		± 1.0 conv.	14 -Bit conv.	± 1.0 conv.	14 -Bit conv.
Offset calibration coef.	AUX_OCAL	± 0.5	± 4096	$1 /\left(2^{\wedge 17}\right)$	0.125 LSB
Sensitivity calibration coef.	AUX_SCAL	$x 0.0$ to $\times 2.0$	-	$30.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	-

TMPDATA Calibration

TMPDATA data conversion are converted ADCDATA to temperature code. In TMPDATA conversion, fixed setting of these bits "VREFSEL", "ADC_GAIN", PRE_GAIN" are used. TMPDATA is converted to signed 10 -bits data shown as $0.25^{\circ} \mathrm{C} / L S B$. The data range of TMPDATA is $-45.00^{\circ} \mathrm{C}$ to $+127.75^{\circ} \mathrm{C}(0 \times 34 \mathrm{C}$ to $0 \times 1 \mathrm{FF})$. When converted value exceeds this range, "OV" bit is set as error flag. In this situation, ADCDATA value is limited to min: $-45.00^{\circ} \mathrm{C}(0 \times 34 \mathrm{C})$ or max: $+127.75^{\circ} \mathrm{C}(0 \times 1 \mathrm{FF})$, and then stored to TMPDATA register.
-EVALUATION BOARD PCB LAYOUT

(Note) Install the decoupling capacitor in the proximity of the NJU9101.
-PACKAGE DIMENSIONS

TAPING DIMENSIONS

SYMBOL	D MENSI ON	REMARKS
A	4.35 ± 0.05	BOTTOM D MENSI ON
B	4.35 ± 0.05	BOTTOM D MENSI ON
DO	$1.5_{0}^{+0.1}$	
D1	1.0 ± 0.1	
E	1.75 ± 0.1	
F	5.5 ± 0.05	
PO	4.0 ± 0.1	
P1	8.0 ± 0.1	
P2	2.0 ± 0.1	
T	0.3 ± 0.05	
T2	1.3 ± 0.05	
W	12.0 ± 0.3	
W1	9.5	TH CKNESS 0.1 max

REEL DIMENSIONS

SYMBOL	D MENSI ON
A	$\varphi 180_{-1.5}^{0}$
B	$\varphi \quad 60_{0}^{+1}$
C	$\varphi 13 \pm 0.2$
D	$\varphi 1+0.8$
E	$21+0.5$
W	$13^{+1.0}$
WL	1.2

TAPING STATE

PACKING STATE

* Recommended reflow soldering procedure

a :Temperature ramping rate
b Pre-heating temperature time
c :Temperature ramp rate d $220^{\circ} \mathrm{C}$ or higher time e $230^{\circ} \mathrm{C}$ or higher time
f Peak temperature
g :Temperature ramping rate
: 1 to $4^{\circ} \mathrm{C} / \mathrm{s}$
: 150 to $180^{\circ} \mathrm{C}$
: 60 to 120 s
: 1 to $4^{\circ} \mathrm{C} / \mathrm{s}$
: Shorter than 60s
: Shorter than 40s
: Lower than $260^{\circ} \mathrm{C}$
: 1 to $6^{\circ} \mathrm{C} / \mathrm{s}$

The temperature indicates at the surface of mold package.

[CAUTION]

1. New JRC strives to produce reliable and high quality semiconductors. New JRC's semiconductors are intended for specific applications and require proper maintenance and handling. To enhance the performance and service of New JRC's semiconductors, the devices, machinery or equipment into which they are integrated should undergo preventative maintenance and inspection at regularly scheduled intervals. Failure to properly maintain equipment and machinery incorporating these products can result in catastrophic system failures
2. The specifications on this datasheet are only given for information without any guarantee as regards either mistakes or omissions. The application circuits in this datasheet are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.
All other trademarks mentioned herein are property of their respective companies.
3. To ensure the highest levels of reliability, New JRC products must always be properly handled.

The introduction of external contaminants (e.g. dust, oil or cosmetics) can result in failures of semiconductor products.
4. New JRC offers a variety of semiconductor products intended for particular applications. It is important that you select the proper component for your intended application. You may contact New JRC's Sale's Office if you are uncertain about the products listed in this catalog.
5. Special care is required in designing devices, machinery or equipment which demand high levels of reliability. This is particularly important when designing critical components or systems whose failure can foreseeably result in situations that could adversely affect health or safety. In designing such critical devices, equipment or machinery, careful consideration should be given to amongst other things, their safety design, fail-safe design, back-up and redundancy systems, and diffusion design.
6. The products listed in the catalog may not be appropriate for use in certain equipment where reliability is critical or where the products may be subjected to extreme conditions. You should consult our sales office before using the products in any of the following types of equipment.

Aerospace Equipment
Equipment Used in the Deep sea
Power Generator Control Equipment (Nuclear, Steam, Hydraulic)
Life Maintenance Medical Equipment
Fire Alarm/Intruder Detector
Vehicle Control Equipment (airplane, railroad, ship, etc.)
Various Safety devices

7. New JRC's products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this catalog. Failure to employ New JRC products in the proper applications can lead to deterioration, destruction or failure of the products. New JRC shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of its products. Products are sold without warranty of any kind, either express or implied, including but not limited to any implied warranty of merchantability or fitness for a particular purpose.
8. Warning for handling Gallium and Arsenic(GaAs) Products (Applying to GaAs MMIC, Photo Reflector). This Products uses Gallium(Ga) and Arsenic(As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed, please follow the related regulation and do not mix this with general industrial waste or household waste.
9. The product specifications and descriptions listed in this catalog are subject to change at any time, without notice.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog Front End - AFE category:
Click to view products by Nisshinbo manufacturer:
Other Similar products are found below :
WM8255SEFL ADE9078ACPZ-RL ADA4355ABCZ MAX86176ENX+T MAX86176EVKIT\# TC500ACPE MCP3914A1-E/MV ISL51002CQZ-165 AFE5803ZCF TC500CPE AD73311ARSZ-REEL AFE4900YZT AD9961BCPZ ADAS1000-1BCPZ ADAS10003BCPZ ADAS1000BCPZ AD73311LARUZ AD5590BBCZ ADPD1080WBCPZR7 AD73311ARSZ AD73311LARSZ AD73311LARSZREEL7 AD73360ARZ AD73360ASUZ AD73360LARZ AD8232ACPZ-R7 AD8456ASTZ AD9082BBPZ-2D2AC AD9081BBPZ-4D4AC AD9670BBCZ AD9675KBCZ AD73360LARZ-REEL AD9822JRSZRL AD9826KRSZ AD9826KRSZRL AD9860BSTZ AD9861BCPZ-50 AD9862BSTZ AD9865BCPZ AD9867BCPZ AD9895KBCZ AD9923ABBCZ AD9942BBCZ AD9943KCPZ AD9945KCPZ AD9945KCPZRL7 AD9949KCPZ AD9963BCPZ AD9972BBCZ AD9974BBCZ

