RICOH

R1180x-Y Series

150 mA LDO Regulator for Industrial Applications

NO.EA-340-210820

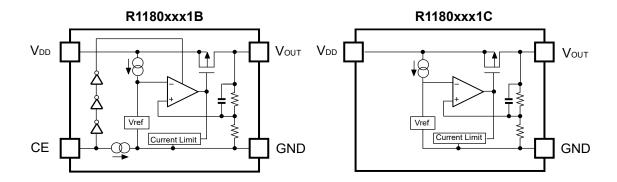
OUTLINE

The R1180x is a CMOS-based voltage regulator IC with high output voltage accuracy, extremely low supply current, and low ON-resistance. This IC consists of a voltage reference unit, an error amplifier, resistor-net for voltage setting, a current limit circuit which prevents the destruction by excess current, and so on.

The output voltage is fixed with high accuracy. B version has a chip enable pin, therefore ultra-low consumption current standby mode can be realized with the pin.

The R1180x is available in SOT-23-5 and SON1612-6 package which is possible to mount at high density.

This is a high-reliability semiconductor device for industrial applications (-Y) that has passed both the screening at high temperature and the reliability test with extended hours. This line of products operate in a wide temperature range from low temperature to high temperature to support harsh environment applications.


FEATURES

Input Voltage (Maximum Rating)	1.7V to 6.0V (6.5V)
Operating Temperature Range	−50°C to 105°C
Supply Current	Typ. 1.0μA
	(Except the current through CE pull-down circuit)
Standby Mode	Typ. 0.1μA
Dropout Voltage	Typ. 0.25V (Іоυт=150mA 3.0V Output type)
Temperature-Drift Coefficient of Output Voltage	Typ. ±100ppm/°C
Line Regulation	Typ. 0.05%/V
Output Voltage Accuracy	±2.0%
Output Voltage Range	1.2V, 1.5V, 1.8V, 1.85V, 2.0V, 2.3V, 2.5V, 2.8V, 3.0V, 3.3V,
	3.4V
	Contact our sales representatives for other voltages.
Package	SOT-23-5, SON1612-6
Built-in Fold Back Protection Circuit	Typ. 40mA (Current at short mode)
Recommended Ceramic Capacitor to IC	0.1μF or more

APPLICATIONS

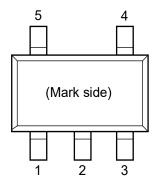
- · Industrial equipments such as FAs and smart meters
- Equipments used under high-temperature conditions such as surveillance camera and vending machine
- · Equipments accompanied by self-heating such as motor and lighting

BLOCK DIAGRAMS

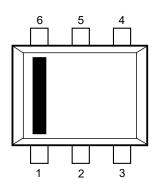
SELECTION GUIDE

The output voltage and CE pin polarity for the ICs can be selected at the user's request.

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R1180Nxx1*-TR-YE	SOT-23-5	3,000 pcs	Yes	Yes
R1180Dxx1*-TR-YE	SON1612-6	4,000 pcs	Yes	Yes


xx: The set output voltage (V_{SET}) can be designated by 1.2V (12), 1.5V (15), 1.8V (18), 1.85V (181*5), 2.0V (20), 2.3V (23), 2.5V (25), 2.8V (28), 3.0V (30), 3.3V (33), and 3.4V (34).

- * : CE pin polarity is options as follows.
 - (B) "H" Active
 - (C) without CE pin


^{*} Contact our sales representatives for other voltages.

PIN DESCRIPTIONS

• SON1612-6

• SOT-23-5

Pin No	Symbol	Pin Description		
1	V _{DD}	Input Pin		
2	GND	Ground Pin		
3	CE or NC	Chip Enable Pin or No Connection		
4	NC	No Connection		
5	Vоит	Output pin		

• SON1612-6

Pin No	Symbol	Pin Description		
1	V _{DD}	Input Pin		
2	GND	Ground Pin		
3	Vоит	Output pin		
4	NC	No Connection		
5	GND	Ground Pin		
6	CE or NC	Chip Enable Pin or No Connection		

ABSOLUTE MAXIMUM RATINGS

Symbol	Item		Rating	Rating	
VIN	Input Voltage		6.5		V
Vce	Input Voltage (CE Pin)		6.5		V
Vouт	Output Voltage		-0.3 to V _{IN} +0.3		V
Іоит	Output Current		180		mA
Б	SOT-23-5		Standard Land Pattern	525	\A/
P _D	Power Dissipation*1 SON1612		Standard Land Pattern	625	mW
Tj	Junction Temperature		-50 to 150	-50 to 150	
Tstg	Storage Temperature Range		-55 to 150		°C

^{*1} For Power Dissipation, please refer to PACKAGE INFORMATION.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause permanent damage and may degrade the life time and safety for both device and system using the device in the field.

The functional operation at or over these absolute maximum rating is not assured.

RECOMMENDED OPERATING CONDITIONS

Symbol	Item	Rating	Unit
V _{IN}	Input Voltage	1.7 to 6.0	V
Та	Operating Temperature Range	-50 to 105	°C

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

ELECTRICAL CHARACTERISTICS

 $V_{\text{IN}}=V_{\text{SET}}+1.0V$, $C_{\text{IN}}=1.0\mu\text{F}$, $C_{\text{OUT}}=0.1\mu\text{F}$, unless otherwise noted. The specifications surrounded by _____ are guaranteed by design engineering at $-50^{\circ}\text{C} \le \text{Ta} \le 105^{\circ}\text{C}$.

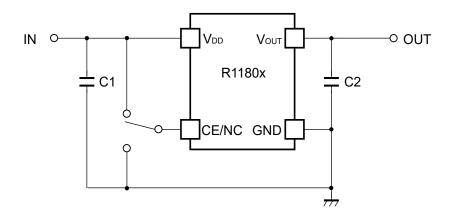
• R1180xxx1B/C (Ta=25°C)

Symbol	Item	Cond	Conditions		Тур.	Max.	Unit
Vout	Output Voltage	4. 4.4. <20 4	Ta=25°C	×0.980		×1.020	٧
VOUT	Output Voltage	1μA≤Iουτ≤30mA	−50°C≤Ta≤105°C	×0.965		×1.035	V
Іоит	Output Current	VIN=VSET+1.0V(VS VIN=2.4V(VSET<1.5	,	150			mA
ΔVουτ/ΔΙουτ	Load Regulation		V _{IN} =V _{SET} +1.0V(V _{SET} ≥1.5V) V _{IN} =2.4V(V _{SET} <1.5V) 1µA≤louτ≤150mA		20	50	mV
VDIF	Dropout Voltage	Іоит=150mA	Іоит=150mA			roduct-sp aracteris	
Iss	Supply Current	Iouт=0mA			1.0	1.85	μΑ
Istandby	Supply Current (Standby)	Vce=GND	Vce=GND		0.1	1.0	μΑ
ΔVουτ/ΔVιν	Line Regulation	Iout=30mA V _{SET} +0.5V≤V _{IN} ≤6.0V (V _{SET} ≥1.5V) 2.0V≤V _{IN} ≤6.0V (1.2V≤V _{SET} ≤1.4V)			0.05	0.20	%/V
Isc	Short Current Limit	Vout=0V			40		mA
lрD	CE Pull-down Constant Current	(R1180xxx1B)			0.35		μΑ
Vceh	CE Input Voltage "H"	(R1180xxx1B)		1.2		6	V
VCEL	CE Input Voltage "L"	(R1180xxx1B)	(R1180xxx1B)			0.3	V

All test items listed under Electrical Characteristics are done under the pulse load condition (Tj≈Ta=25°C).

R1	1	8	N	Y	_\	1
•		u	u	•	- 1	

NO.EA-340-210820


Product-specific Electrical Characteristics

The specifications surrounded by \square are guaranteed by design engineering at -50° C \leq Ta \leq 105 $^{\circ}$ C.

(Ta = 25°C)

	V _{OUT} [V]					V	F\/1
Product Name	(Ta = 25°C)			(−50°C ≤ Ta ≤ 105°C)		V _{DIF} [V]	
1305	MIN.	TYP.	MAX.	MIN.	MAX.	TYP.	MAX.
R1180x121x	1.176	1.200	1.224	1.158	1.242	0.85	1.20
R1180x151x	1.470	1.500	1.530	1.448	1.553	0.60	0.90
R1180x181x	1.764	1.800	1.836	1.737	1.863	0.50	0.75
R1180x181x5	1.813	1.850	1.887	1.786	1.914	0.50	0.75
R1180x201x	1.960	2.000	2.040	1.930	2.070	0.40	0.65
R1180x231x	2.254	2.300	2.346	2.220	2.380	0.35	0.55
R1180x251x	2.450	2.500	2.550	2.413	2.588	0.33	0.55
R1180x281x	2.744	2.800	2.856	2.702	2.898		
R1180x301x	2.940	3.000	3.060	2.895	3.105	0.25	0.40
R1180x331x	3.234	3.300	3.366	3.185	3.416	0.25	0.40
R1180x341x	3.332	3.400	3.468	3.281	3.519		

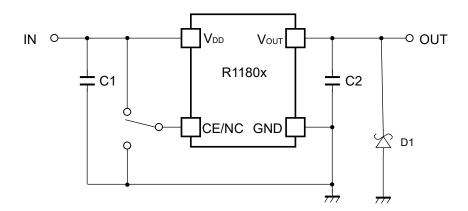
TYPICAL APPLICATION

External Parts Example:

C1	1.0µF (Ceramic)
C2	0.1µF (Ceramic)

TECHNICAL NOTES

When using these ICs, consider the following points:


Phase Compensation

In this device, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor C2 with good frequency characteristics and ESR (Equivalent Series Resistance). (Note: If additional ceramic capacitors are connected with parallel to the output pin with an output capacitor for phase compensation, the operation might be unstable. Because of this, test this device with as same external components as ones to be used on the PCB.)

PCB Layout

Ensure the V_{DD} and GND lines are sufficiently robust. If their impedance is too high, noise pickup or unstable operation may result. Connect a 1.0 μ F input capacitor (C1) between the V_{DD} and GND pins, and as close as possible to the pins. Connect C2 as close as possible to the IC to make the wiring as short as possible. Please refer to the Basic Circuit Diagram as above.

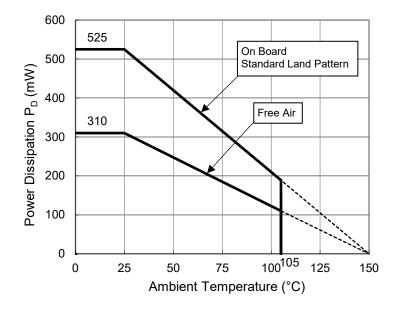
TYPICAL APPLICATION FOR IC CHIP BREAKDOWN PREVENTION

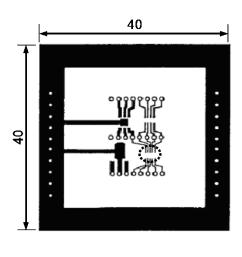
When a sudden surge of electrical current travels along the V_{OUT} pin and GND due to a short-circuit, electrical resonance of a circuit involving an output capacitor (C2) and a short circuit inductor generates a negative voltage and may damage the device or the load devices. Connecting a schottky diode (D1) between the V_{OUT} pin and GND has the effect of preventing damage to them.

PACKAGE INFORMATION

POWER DISSIPATION (SOT-23-5)

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement.

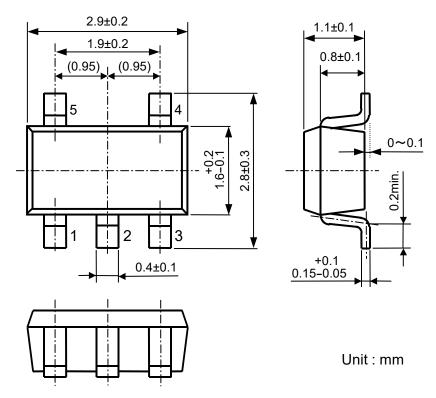

Measurement Conditions


	Standard Test Land Pattern
Environment	Mounting on Board (Wind Velocity = 0 m/s)
Board Material	Glass Cloth Epoxy Plastic (Double-Sided Board)
Board Dimensions	40 mm × 40 mm × 1.6 mm
Copper Ratio	Top Side: Approx. 50% Bottom Side: Approx. 50%
Through-holes	φ 0.5 mm × 44 pcs

Measurement Result

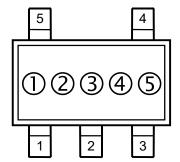
 $(Ta = 25^{\circ}C, Tjmax = 150^{\circ}C)$

	Standard Test Land Pattern	Free Air
Power Dissipation	525 mW	310 mW
Thermal Resistance	θja = (150 - 25°C) / 0.525 W = 238°C/W	400°C/W



() IC Mount Area (mm)

Power Dissipation vs. Ambient Temperature


Measurement Board Pattern

PACKAGE DIMENSIONS (SOT-23-5)

MARK SPECIFICATION (SOT-23-5)

①②③: Product Code \cdots Refer to R1180N MARK SPECIFICATION TABLE ④⑤: Lot Number \cdots Alphanumeric Serial Number

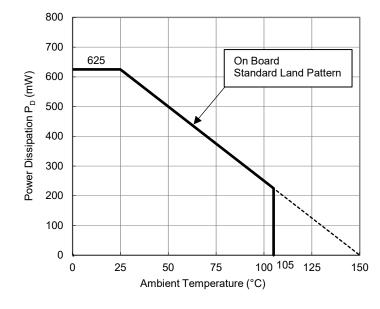
R1180N MARK SPECIFICATION TABLE (SOT-23-5)

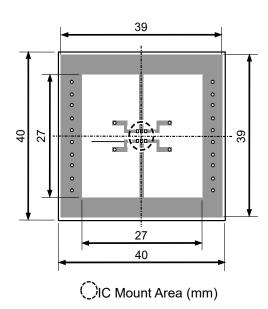
Product Name	0 2 3	V _{SET}
R1180N121B	C 1 2	1.2 V
R1180N151B	C 1 5	1.5 V
R1180N181B	C 1 8	1.8 V
R1180N181B5	C 3 7	1.85 V
R1180N201B	C 2 0	2.0 V
R1180N231B	C 2 3	2.3 V
R1180N251B	C 2 5	2.5 V
R1180N281B	C 2 8	2.8 V
R1180N301B	C 3 0	3.0 V
R1180N331B	C 3 3	3.3 V
R1180N341B	C 3 4	3.4 V

Product Name	0 2 3	V _{SET}
R1180N121C	D 1 2	1.2 V
R1180N151C	D 1 5	1.5 V
R1180N181C	D 1 8	1.8 V
R1180N181C5	D 3 7	1.85V
R1180N201C	D 2 0	2.0 V
R1180N231C	D 2 3	2.3 V
R1180N251C	D 2 5	2.5 V
R1180N281C	D 2 8	2.8 V
R1180N301C	D 3 0	3.0 V
R1180N331C	D 3 3	3.3 V
R1180N341C	D 3 4	3.4 V

POWER DISSIPATION (SON1612-6)

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement.

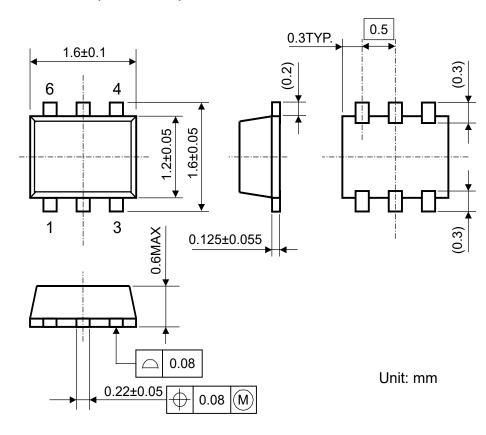

Measurement Conditions


	Standard Test Land Pattern	
Environment	Mounting on Board (Wind Velocity = 0 m/s)	
Board Material	Glass Cloth Epoxy Plastic (Double-Sided Board)	
Board Dimensions	40 mm × 40 mm × 1.6 mm	
Copper Ratio Top Side: Approx. 50% Bottom Side: Approx. 50%		
Through-holes	n-holes φ 0.5 mm × 24 pcs	

Measurement Result

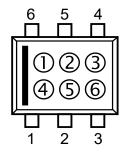
(Ta = 25°C, Tjmax = 150°C)

	Standard Test Land Pattern
Power Dissipation	625 mW
Thermal Resistance	θja = (150 - 25°C) / 0.625 W = 200°C/W



Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

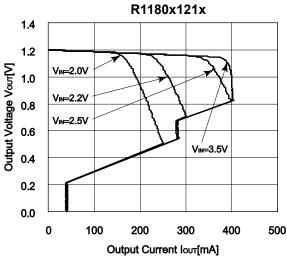

PACKAGE DIMENSIONS (SON1612-6)

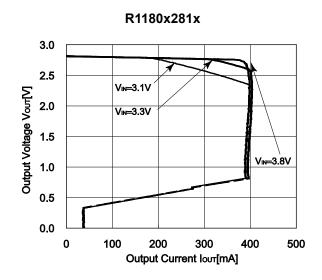
MARK SPECIFICATION (SON1612-6)

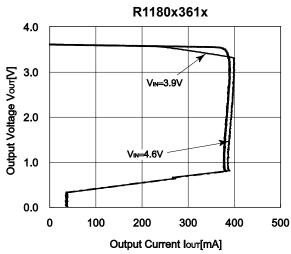
 $\textcircled{1234}: \textbf{Product Code} \ \cdots \underline{ \ \textbf{Refer to} \ \textbf{\textit{R1180D MARK SPECIFICATION TABLE} }$

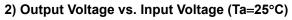
⑤⑥: Lot Number · · · Alphanumeric Serial Number

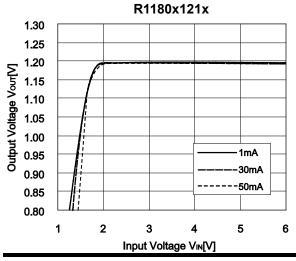
R1180D MARK SPECIFICATION TABLE (SON1612-6)

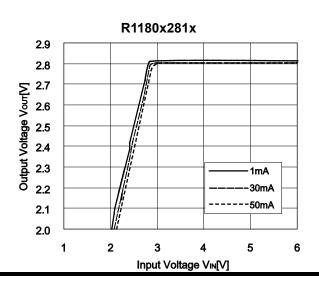

Product Name	0234	V _{SET}
R1180D121B	G 1 2 B	1.2 V
R1180D151B	G 1 5 B	1.5 V
R1180D181B	G 1 8 B	1.8 V
R1180D181B5	G 0 0 B	1.85 V
R1180D201B	G 2 0 B	2.0 V
R1180D231B	G 2 3 B	2.3 V
R1180D251B	G 2 5 B	2.5 V
R1180D281B	G 2 8 B	2.8 V
R1180D301B	G 3 0 B	3.0 V
R1180D331B	G 3 3 B	3.3 V
R1180D341B	G 3 4 B	3.4 V

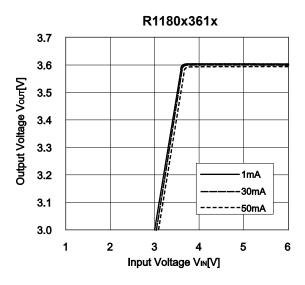

Product Name	①	2	3	4	V _{SET}
R1180D121C	G	1	2	С	1.2 V
R1180D151C	G	1	5	С	1.5 V
R1180D181C	G	1	8	С	1.8 V
R1180D181C5	G	0	0	С	1.85 V
R1180D201C	G	2	0	С	2.0 V
R1180D231C	G	2	3	С	2.3 V
R1180D251C	G	2	5	С	2.5 V
R1180D281C	G	2	8	С	2.8 V
R1180D301C	G	3	0	С	3.0 V
R1180D331C	G	3	3	С	3.3 V
R1180D341C	G	3	4	С	3.4 V

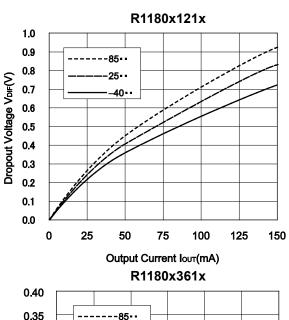

TYPICAL CHARACTERISTICS

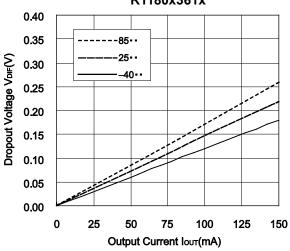

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

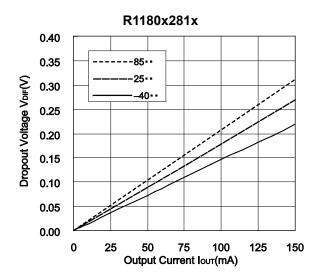

1) Output Voltage vs. Output Current (Ta=25°C)

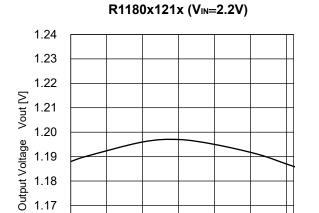




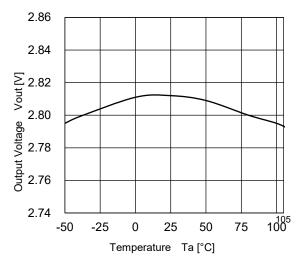


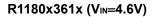





3) Dropout Voltage vs. Output Current

4) Output Voltage vs. Temperature (Iouт=30mA)

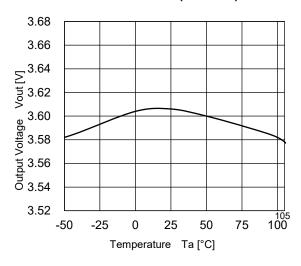

1.16


-50

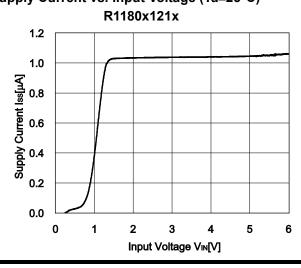
-25

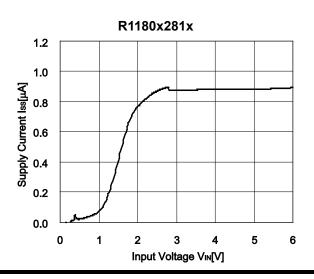
0

R1180x281x (Vin=3.8V)

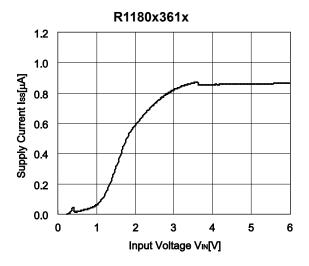

25

Temperature Ta [°C]

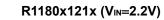

50

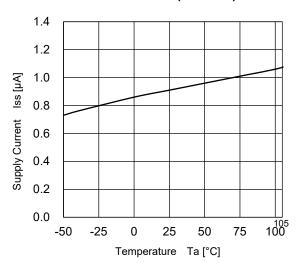

75

105 100

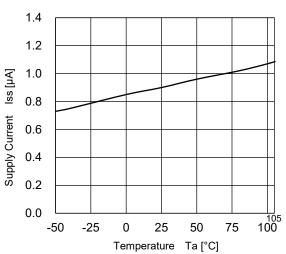


5) Supply Current vs. Input Voltage (Ta=25°C)

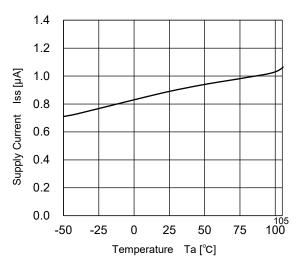


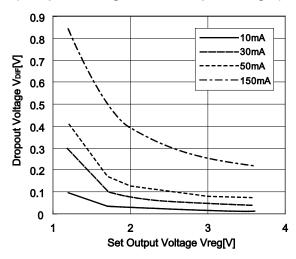


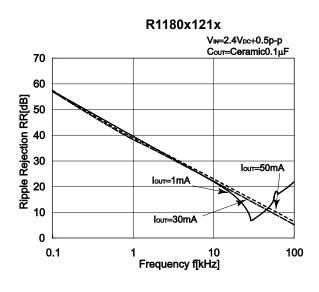
NO.EA-340-210820

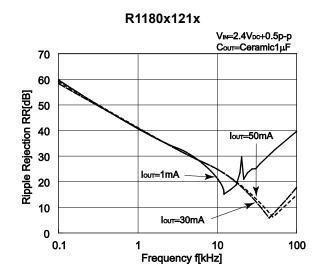


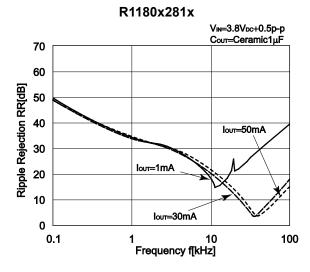
6) Supply Current vs. Temperature



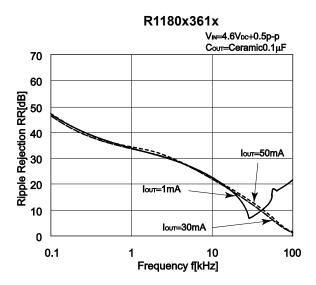

R1180x281x (V_{IN} =3.8V)

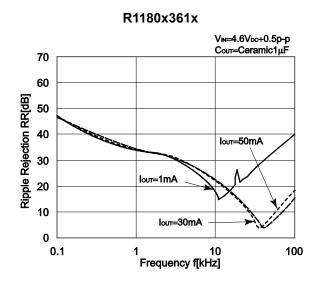

R1180x361x (Vin=4.6V)

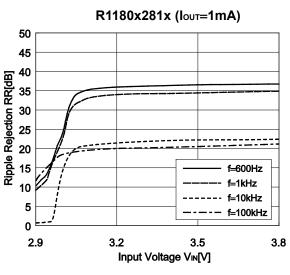

7) Dropout Voltage vs. Set Output Voltage (Ta=25°C)

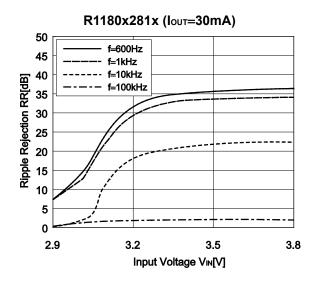


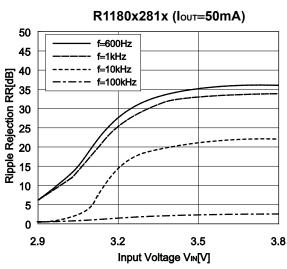
8) Ripple Rejection vs. Frequency (C1=none)

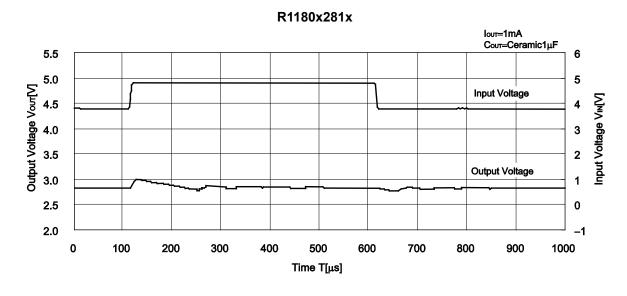


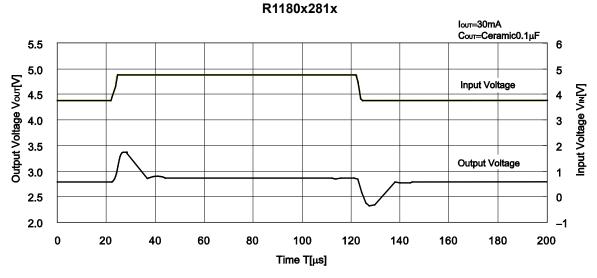


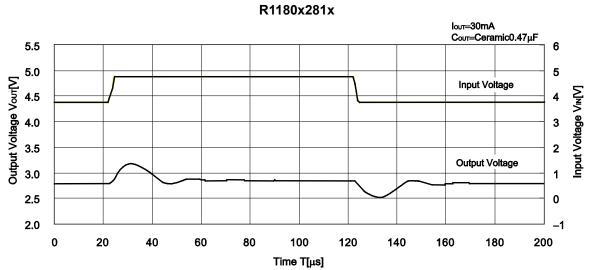


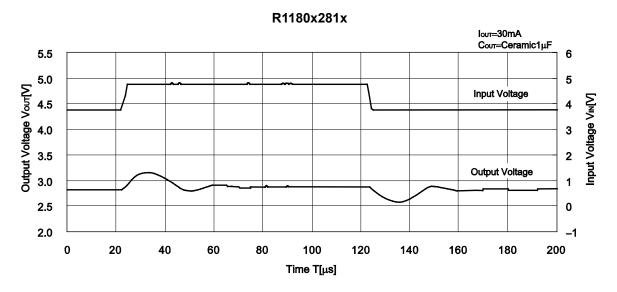

NO.EA-340-210820



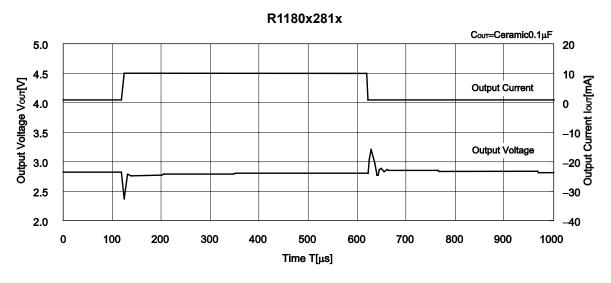

9) Ripple Rejection vs. Input Bias Voltage (Ta=25°C, C1=none, C2=Ceramic0.1μF)

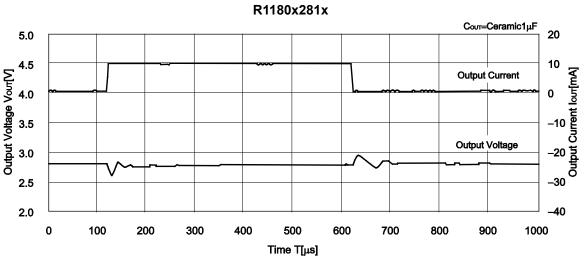


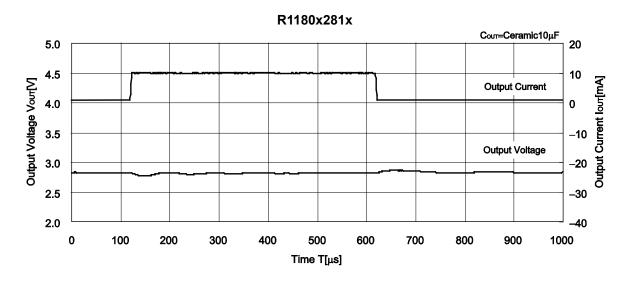


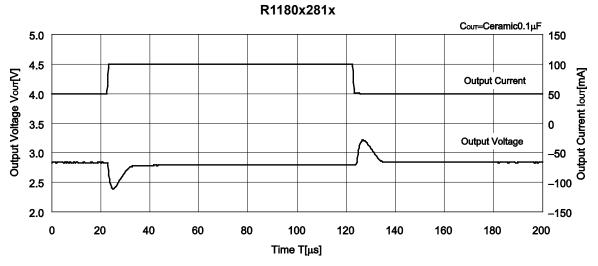


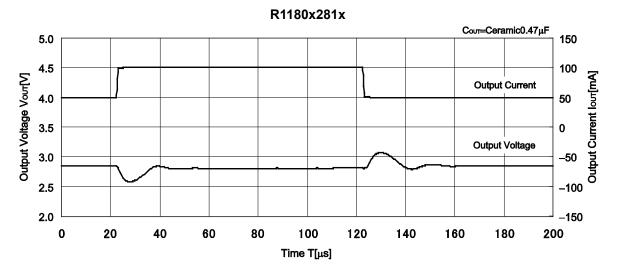
10) Input Transient Response (C1=none, tr=tf=5μs)

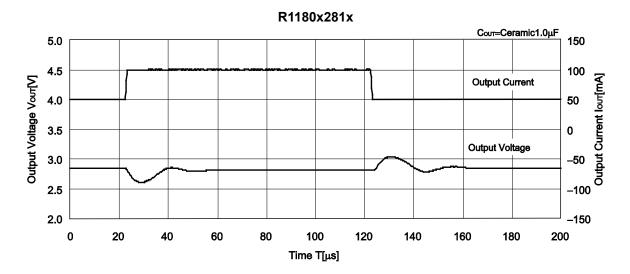




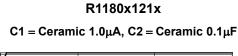


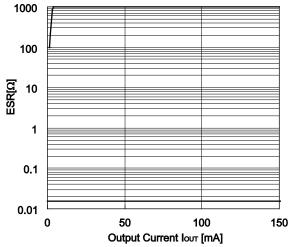


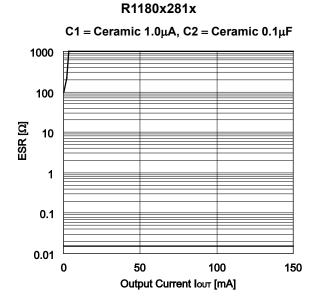

11) Load Transient Response (tr=tf=0.5µs V_{IN}=3.8V)



NO.EA-340-210820




ESR vs. Output Current


The relations between I_{OUT} (Output Current) and ESR of an output capacitor are shown below. The conditions when the white noise level is under $40\mu V$ (Avg.) are marked as the hatched area in the graph.

<Measurement conditions>

- (1) $V_{IN}=V_{OUT}+1V$
- (2) Frequency Band: 10Hz to 2MHz (BW=30Hz)
- (3) Temperature: -40°C to 85°C

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.
- 11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment.

Halogen Free

Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

Official website

https://www.n-redc.co.jp/en/

Contact us

https://www.n-redc.co.jp/en/buy/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LDO Voltage Regulators category:

Click to view products by Nisshinbo manufacturer:

Other Similar products are found below:

AP7363-SP-13 L79M05TL-E TCR3DF185,LM(CT TCR3DF24,LM(CT TCR3DF285,LM(CT TCR3DF31,LM(CT TCR3DF45,LM(CT MP2013GQ-33-Z 059985X NCP4687DH15T1G 701326R TCR2EN28,LF(S NCV8170AXV250T2G TCR3DF27,LM(CT TCR3DF19,LM(CT TCR3DF125,LM(CT TCR2EN18,LF(S AP2112R5A-3.3TRG1 AP7315-25W5-7 IFX30081LDVGRNXUMA1 NCV47411PAAJR2G AP2113KTR-G1 AP2111H-1.2TRG1 ZLDO1117QK50TC AZ1117IH-1.8TRG1 AZ1117ID-ADJTRG1 TCR3DG12,LF MIC5514-3.3YMT-T5 MIC5512-1.2YMT-T5 MIC5317-2.8YM5-T5 SCD7912BTG NCP154MX180270TAG SCD33269T-5.0G NCV8170BMX330TCG NCV8170AMX120TCG NCP706ABMX300TAG NCP153MX330180TCG NCP114BMX075TCG MC33269T-3.5G CAT6243-ADJCMT5T TCR3DG33,LF AP2127N-1.0TRG1 TCR4DG35,LF LT1117CST-3.3 TAR5S15U(TE85L,F) TAR5S18U(TE85L,F) TCR3UG19A,LF TCR4DG105,LF NCV8170AMX360TCG MIC94310-NYMT-T5