Multi Power Supply IC with Amplifier for LCD

NO.EA-301-160107

OUTLINE

The R1293K is a multi power supply IC dedicated for mid-size TFT LCD panels. The R1293K consists of a PWM control step-up DC/DC converter, an LDO regulator, a VCOM amplifier and six GAMMA amplifiers. The output noise can be reduced by SEL pin. (SEL pin "H": normal mode, SEL pin "L": low noise mode.) The MOSFET for step-up DC/DC converter is built-in and, low power operation is realized by standby mode. The package is 4 mm square $\mathrm{QFN}(P L P) 0404-32$.

FEATURES

Step-up DC/DC converter part

- Input Voltage Range ..2.2V to 5.5V (Vin_dc pin)
- Adjustable Output Voltage Range with external resistors..................... up to 16 V
- Feedback Voltage .. 1.0V
- Feedback Voltage Accuracy...
- Adjustable Oscillator Frequency with external resistors for RT pin $\cdots \cdots 300 \mathrm{kHz}$ to 1 MHz
- Adjustable Phase compensation with external components
- Internal Soft Start Time

TYP. 10ms

- Adjustable Soft Start Time with external capacitors for DTC pin
- Oscillator Maximum Duty Cycle

Set with external resistors for
DTC pin (Limit TYP. 90\%)

- UVLO detector threshold

TYP. 1.9V

- Internal 2A/16V capability Nch MOSFET Driver.................................TYP. 0.2Ω
- Built-in Peak Current Limit Circuit
- Short Protection with timer latch function (Adjustable delay time with external capacitors for Delay pin)

LDO part

- Input Voltage Range
2.2V to 5.5 V (Vin_ldo pin)
- Output Voltage Range 1.8 V to 2.5 V (Selectable / 0.1V Step)
- Output Voltage Accuracy $\pm 1.0 \%$
- Maximum Output Current

Min. 350mA guaranteed

- Ripple Rejection... 65db (Frequency $=1 \mathrm{kHz}$)
- Built-in Fold-back Protection Circuit...TYP. 70 mA (Current at short mode)

Buffer Amplifier part

- Output Current Range for VCOM Amplifier... to 100 mA
- Output Current Range for GAMMA Amplifier.. to 10mA

Others

- Built-in Thermal Shutdown Circuit
- Stand-by function by ENB pin
- Package...

APPLICATIONS

- Power sources of the medium and small sized TFT LCD panels

R1293K

NO.EA-301-160107

BLOCK DIAGRAM

R1293K Block Diagram

SELECTION GUIDE

The output voltage (Vout) for the ICs is a user-selectabe option.

Selection Guide

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R1293Kxx1A-E2	QFN(PLP)0404-32	$2,000 \mathrm{pcs}$	Yes	Yes

xx : Designation of the LDO output voltage (Vout)
Vout can be set within the range of 1.8 V to 2.5 V in 0.1 V steps.

PIN CONFIGURATION

R1293K

NO.EA-301-160107

PIN DESCRIPTIONS

R1293K Pin Description

Pin No	Symbol	Description	Notes
1	PGND	Power GND Pin	Make the PGND pin a short-circuit with the GND pin.
2	PGND	Power GND Pin	Make the PGND pin a short-circuit with the GND pin.
3	Vo_ldo	LDO Output Pin	
4	Vin_ldo	LDO Power Input Pin	Input 2.2V to 5.5 V to $\mathrm{Vin}_{\text {_lo. }}$. Make Vin_ldo a short-circuit with the Vin_dc pin.
5	IN_GM1 ${ }^{*}{ }^{1}$	GAMMA1 Input Pin	
6	IN_GM2 ${ }^{* 1}$	GAMMA2 Input Pin	
7	IN_GM3 ${ }^{*}{ }^{\text {a }}$	GAMMA3 Input Pin	
8	IN -Gm4 ${ }^{*}{ }^{1}$	GAMMA4 Input Pin	
9	IN_Gm5 ${ }^{* 1}$	GAMMA5 Input Pin	
10	IN_Gm6* ${ }^{*}$	GAMMA6 Input Pin	
11	Vo_gm1	GAMMA1 Output Pin	
12	Vo_gm2	GAMMA2 Output Pin	
13	Vo_gm3	GAMMA3 Output Pin	
14	Vo_gm4	GAMMA4 Output Pin	
15	Vo_gm5	GAMMA5 Output Pin	
16	Vo_gm6	GAMMA6 Output Pin	
17	GND	GND Pin	
18	Vbuff	Buffer Amplifier Power Source Pin	Connect the $\mathrm{V}_{\text {buff }}$ pin to Boost Output.
19	IN_com ${ }^{* 1}$	VCOM Input Pin	
20	Vo_com	VCOM Output Pin	
21	GND	GND Pin	
22	RT	Oscillator Frequency Setting Pin	Connect a resistor to the RT pin to set the operation frequency.
23	DTC	Maxduty/ Soft-start Time Setting Pin	By adding a resistor, the Maxduty limit can be set; otherwise the Maxduty limit will be the preset value set inside the ICs. By adding a capacitor, Maxduty can start from 0 which means startup-time can be set longer.
24	SEL ${ }^{* 1}$	Noise Reduction Level Selection Pin	"L" Input: Low Noise Mode "H" Input: Normal Mode

Pin No	Symbol	Description	Notes
25	DELAY	Short-circuit Protection Delay Time Setting Pin	By adding a capacitor, the DELAY pin can set a protection delay time.
26	ENB $^{* 1}$	Chip Enable Pin (DC/DC or Buffer Amplifier)	"L" Input: Active
27	$V_{\text {FB }}$	DC/ DC Feedback Pin	
28	AMPOUT	DC/ DC Phase Compensation Pin	
29	GND	GND Pin	Input voltage should be 2.2V to 5.5V. Make the VIN_Dc pin a short-circuit with the VIN_LDo pin.
30	VIN_DC	DC/ DC Power Source Pin	
31	Lx	DC/ DC Switching Pin	
32	Lx	DC/ DC Switching Pin	

The exposed tab on the bottom of the package enhances thermal performance and is electrically connected to GND(substrate level). It is recommended that the exposed tab be connected to the ground plane on the board otherwise be left open.
${ }^{\star 1}$ Do not leave the $\operatorname{IN} _$ям1 to IN _ямя, IN _сом, SEL and ENB pins open.

R1293K

NO.EA-301-160107

ABSOLUTE MAXIMAM RATINGS

${ }^{{ }^{*}}$ For more information about the Power Dissipation, please refer to PACKAGE INFORMATION.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\text {IN_DC }}=3.6 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ unless otherwise noted.
R1293K Electrical Characteristics

Symbol	Item	Conditions	Min.	Typ.	Max.	Unit
Vin	Vis Input Voltage	Vin $=$ VIn_dc $=$ VIn_LDo	2.2		5.5	V
lin	Vin Supply Current	$\mathrm{VIN}_{\text {I }} \mathrm{dc}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=1.1 \mathrm{~V}$		300	550	$\mu \mathrm{A}$
Іstb	Standby Vin Current	Vin_dc $=5.5 \mathrm{~V}$		60	90	$\mu \mathrm{A}$
Vuvlo1	UVLO Detector Threshold	$\mathrm{V}_{\text {In_dc }}=2.2 \mathrm{~V} \rightarrow 1.7 \mathrm{~V}$	1.8	1.9	2.0	V
Vuvloz	UVLO Release Voltage	VIN_dc $=1.7 \mathrm{~V} \rightarrow 2.2 \mathrm{~V}$		2.05	2.15	V

DCI DC CONVERTER

$V_{\text {fb }}$	V FB Voltage		0.985	1.000	1.015	V
Av	Opened-loop Voltage Grain			90		dB
f_{T}	Single Gain-bandwidth Range	$\mathrm{A}_{\mathrm{v}}=0 \mathrm{~dB}$		1.8		MHz
IAmph	AMP "H" Output Current	$\mathrm{V}_{\mathrm{AMP}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.9 \mathrm{~V}$	0.3	1.4	3.5	mA
IAMPL	AMP "L" Output Current	$\mathrm{V}_{\mathrm{AMP}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=1.1 \mathrm{~V}$	50	90	150	$\mu \mathrm{A}$
fosc	Oscillator Frequency	$V_{\text {delay }}=\mathrm{V}_{\text {Fb }}=0 \mathrm{~V}, \mathrm{R} 6=24 \mathrm{k} \Omega$	630	700	770	kHz
DTC_duty	DTC Maximum Duty Cycle	$\mathrm{R} 6=24 \mathrm{k} \Omega, \mathrm{R} 5=100 \mathrm{k} \Omega$	62	72	82	\%
Maxduty	Oscillator Maximum Duty Cycle	$\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$	85	90	95	\%
tss	Soft-start Time		3.5	10	16	ms
Idiy	DELAY Pin Charge Current	$\mathrm{V}_{\text {delay }}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0 \mathrm{~V}$	2	4	6	$\mu \mathrm{A}$
Vdly	DELAY Pin Detector Threshold Voltage	$V_{\text {Fb }}=0 \mathrm{~V}$	0.95	1.0	1.05	V
Ron	Lx ON Resistance			0.2		Ω
Ilxlim	Lx Limit Current		2.0	3.0	3.7	A
Vovp1	OVP Detector Threshold Voltage	Vout rising		21	23	V
Vovp2	OVP Release Voltage	Vout falling	18	Vovp1-1		V
Vsell	SEL "L" Input Voltage	Vin_dc $=2.2 \mathrm{~V}$			0.4	V
Vselh	SEL "H" Input Voltage	Vin_dc=5.5V	1.5			V

LDO

Vo_LDo	LDO Output Voltage	VIN_DC= Vo_{-}LDo +1.0 V , Io_LDo=1mA		$\times 0.99$		x 1.01	V
V ${ }_{\text {diF }}$	Dropout Voltage	Io_LDo=250mA	$\mathrm{V}_{\text {SET }}{ }^{*}<2.4 \mathrm{~V}$		600	700	mV
			$\mathrm{V}_{\text {SET }} \geq 2.4 \mathrm{~V}$		400	500	mV
Δ Vo_LDo I $\Delta \mathrm{V}$ in	Line Regulation	lo_Loo=30mA, Vo_LDo+0.5V $\leq \mathrm{V}_{\text {In }}$ LDo 55.5 V				0.2	\%/V
Δ Vo_LDo I Δ Iout	Load Regulation	$\begin{aligned} & \text { VIN_DC= Vo_LDO }+1.0 \mathrm{~V} \text {, } \\ & 1 \mathrm{~mA} \leq \text { lo_LDo }^{250 \mathrm{~mA}} \end{aligned}$				0.4	$\begin{aligned} & \mathrm{mV} \\ & / \mathrm{mA} \end{aligned}$
RR	Ripple Rejection	$\mathrm{f}=1 \mathrm{kHz}$, Ripple Rejection $0.2 \mathrm{Vp}-\mathrm{p}, \mathrm{lo}$ _Lo $=30 \mathrm{~mA}$			65		dB
ILim_ldo	LDO Output Current Limit	VIn_dc $=$ Vo_LDo +1.0 V		350			mA
Isc_LDo	LDO Short Current	VIn_dc $=$ Vo_LDo +1.0 V			70		mA

R1293K

NO.EA-301-160107
$\mathrm{V}_{\text {IN_Dc }}=3.6 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ unless otherwise noted.
R1293K Electrical Characteristics

Symbol	Item	Conditions	Min.	Typ.	Max.	Unit

BUFFER AMP

Vbuff	Amplifier Power Source Voltage		5		16	V
Idd_buff	Amplifier Supply Current	$\begin{aligned} & \text { VBuFF }=16 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=8 \mathrm{~V} \text {, } \\ & \text { VCOM } 1 \mathrm{ch}+\text { GAMMA } 1 \text { to } 6 \mathrm{ch} \end{aligned}$		0.6		mA
Vos	Offset Voltage	$\mathrm{V}_{\text {I }}=\mathrm{V}_{\text {buff }} / 2$		1		mV
Vсм_сом	VCOM Common-mode Input Voltage Range	VCOM ch	1.5		$\begin{gathered} \hline \text { VBuFF } \\ -1.5 \end{gathered}$	V
Vcm_gm	GAMMA Common-mode Input Voltage Range	GAMMA ch	0		Vbuff	V
Io_com	VCOM Output Current	$\mathrm{V}_{\text {buff }}=10 \mathrm{~V}, \mathrm{Vi}=5 \mathrm{~V}$	-100		100	mA
lo_gm	GAMMA Output Current	$\mathrm{V}_{\text {buff }}=10 \mathrm{~V}, \mathrm{Vi}=5 \mathrm{~V}$	-10		10	mA
Δ Vo_coml Δ lout	VCOM Load Regulation	$\begin{aligned} & \text { VBuFF }=10 \mathrm{~V}, \mathrm{Vi}=5 \mathrm{~V}, \\ & -50 \mathrm{~mA} \leq \text { lout } \leq+50 \mathrm{~mA} \end{aligned}$		0.5	1	$\begin{aligned} & \mathrm{mV} \\ & / \mathrm{mA} \end{aligned}$
Δ Vo_GM/ Δ lout	GAMMA Load Regulation	$\begin{aligned} & \hline \text { VBuFF }=10 \mathrm{~V}, \mathrm{Vi}=5 \mathrm{~V}, \\ & -10 \mathrm{~mA} \leq \text { lout } \leq+10 \mathrm{~mA} \end{aligned}$		0.5	1	$\begin{aligned} & \mathrm{mV} \\ & / \mathrm{mA} \end{aligned}$
CMRR	Input Voltage Ripple Rejection	$\begin{array}{\|l\|} \hline \mathrm{f}=0.1 \mathrm{kHz}, \\ \text { Vbuff=10V, Vi=5V, } \\ \text { Ripple Rejection 50mVp-p } \\ \hline \end{array}$		75		dB
PSRR	Power Source Ripple Rejection	$\begin{array}{\|l\|} \hline \mathrm{f}=0.1 \mathrm{kHz}, \\ \text { Vbuff }=10 \mathrm{~V}, \mathrm{Vi}=5 \mathrm{~V}, \\ \text { Ripple Rejection } 0.2 \mathrm{Vp}-\mathrm{p} \\ \hline \end{array}$		70		dB
VoL_com	VCOM "L" Output Voltage	V ${ }_{\text {buff }}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=1.5 \mathrm{~V}$, Io $=+50 \mathrm{~mA}$		1.5	1.55	V
Vol_Gm	GAMMA "L" Output Voltage	$V_{\text {buff }}=10 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$, $\mathrm{lo}=+5 \mathrm{~mA}$		0.1	0.2	V
		$\mathrm{V}_{\text {Buff }}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{l}}=0.2 \mathrm{~V}$, lo $=+10 \mathrm{~mA}$		0.2	0.25	V
		$\mathrm{V}_{\text {bufF }}=10 \mathrm{~V}, \mathrm{~V}_{1}=1.5 \mathrm{~V}$, Io $=+10 \mathrm{~mA}$		1.5	1.55	V
Vон_сом	VCOM "H" Output Voltage	$V_{\text {buff }}=10 \mathrm{~V}, \mathrm{~V}_{1}=8.5 \mathrm{~V}$, Io $=-50 \mathrm{~mA}$	8.45	8.5		V
Vон_GM	GAMMA "H" Output Voltage	$V_{\text {buff }}=10 \mathrm{~V}, \mathrm{~V}_{1}=10 \mathrm{~V}$, lo $=-5 \mathrm{~mA}$	9.8	9.9		V
		$\mathrm{V}_{\text {buff }}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=9.8 \mathrm{~V}$, Io $=-10 \mathrm{~mA}$	9.75	9.8		V
		$V_{\text {buff }}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{l}}=8.5 \mathrm{~V}$, Io $=-10 \mathrm{~mA}$	8.45	8.5		V

CONTROL

Venbl	ENB "L" Input Voltage	Vin_dc=2.2V			0.4	V
$V_{\text {ENBH }}$	ENB "H" Input Voltage	Vin_dc=5.5V	1.5			V
$T_{\text {TSD }}$	Thermal Shutdown Temperature	Junction Temperature		150		${ }^{\circ} \mathrm{C}$
$T_{\text {TSR }}$	Thermal Shutdown Released Temperature	Junction Temperature		100	${ }^{\circ} \mathrm{C}$	

All test items listed under Electrical Characteristics are done under the pulse load condition ($\mathrm{Tj} \approx \mathrm{Ta}=25^{\circ} \mathrm{C}$) except Opened-loop Voltage Gain (DC/ DC), Single Gain-bandwidth Range (DC/ DC), Ripple Rejection (LDO), Input Voltage Ripple Rejection (Buffer AMP) and Power Source Ripple Rejection (Buffer AMP).
${ }^{* 1}$ VSET=Set Output Voltage

TYPICAL APPLICATION

R1293K Typical Application

R1293K

NO.EA-301-160107

External Parts Example

Vout $[\mathrm{V}]$	Frequency $[\mathrm{kHz}]$	L1	CIN2	CO1	VO_GM $[\mathrm{pF}]$
$8 \sim 10$	300	VLF5014S-4R7M1R7	C1608JB0J106M	GRM21BB31E475KA75B	1000
$10 \sim 12$	300	VLF5014S-4R7M1R7	C1608JB0J106M	GRM21BB31E475KA75B *2	1000
$12 \sim 16$	300	NR6020T4R7N	C1608JB0J106M	GRM21BB31E475KA75B *2	1000
$8 \sim 10$	700	NR4018T4R7M	GRM21BB31E475KA75B	GRM21BB31E475KA75B	1000
$10 \sim 12$	700	NR4018T4R7M	GRM21BB31E475KA75B	GRM21BB31E475KA75B *2	1000
$12 \sim 16$	700	VLF5014S-4R7M1R7	GRM21BB31E475KA75B	GRM21BB31E475KA75B *2	1000
$8 \sim 10$	1000	NR4018T4R7M	GRM21BB31E475KA75B	GRM21BB31E475KA75B	1000
$10 \sim 12$	1000	NR4018T4R7M	GRM21BB31E475KA75B	GRM21BB31E475KA75B *2	1000
$12 \sim 16$	1000	VLF5014S-4R7M1R7	GRM21BB31E475KA75B	GRM21BB31E475KA75B *2	1000

Vout $[\mathrm{V}]$	Frequency $[\mathrm{kHz}]$	CO3	CIN3	CO2
$8 \sim 10$	300	TMK316BJ106MD-TD	CM105B105K10AT	CM105B105K10AT
$10 \sim 12$	300	TMK316BJ106MD-TD	CM105B105K10AT	CM105B105K10AT
$12 \sim 16$	300	TMK316BJ106MD-TD	CM105B105K10AT	CM105B105K10AT
$8 \sim 10$	700	TMK316BJ106MD-TD	CM105B105K10AT	CM105B105K10AT
$10 \sim 12$	700	TMK316BJ106MD-TD	CM105B105K10AT	CM105B105K10AT
$12 \sim 16$	700	TMK316BJ106MD-TD	CM105B105K10AT	CM105B105K10AT
$8 \sim 10$	1000	TMK316BJ106MD-TD	CM105B105K10AT	CM105B105K10AT
$10 \sim 12$	1000	TMK316BJ106MD-TD	CM105B105K10AT	CM105B105K10AT
$12 \sim 16$	1000	TMK316BJ106MD-TD	CM105B105K10AT	CM105B105K10AT

Vout [V]	Frequency $[\mathrm{kHz}]$	$\begin{gathered} \mathrm{R} 4 \\ \mathrm{k} \Omega] \end{gathered}$	$\begin{gathered} \mathrm{C} 3 \\ {[\mathrm{pF}]} \end{gathered}$	$\begin{gathered} \mathrm{R} 3 \\ \mathrm{k} \Omega] \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{C} 2 \\ {[\mathrm{pF}]} \end{gathered}$	$\begin{gathered} \mathrm{R} 1 \\ {[k \Omega]} \end{gathered}$	$\begin{gathered} \mathrm{R} 2 \\ \mathrm{k} \Omega] \\ \hline \end{gathered}$	$\begin{array}{\|c} \mathrm{R} 6 \\ \mathrm{k} \Omega] \\ \hline \end{array}$	$\begin{gathered} \mathrm{R} 5 \\ {[\mathrm{k} \Omega]} \end{gathered}$	$\begin{gathered} \text { CDTC } \\ {[\mathrm{uF}]} \end{gathered}$	$\begin{gathered} \mathrm{C} 1 \\ {[\mathrm{uF}]} \end{gathered}$
8~10	300	3.3	1000	8.2	120	(VOUT-1) * R2	33	62	330	-	0.22
10~12	300	3.3	1000	8.2	120	(VOUT-1) * R2	33	62	330	-	0.22
12~16	300	4.7	1500	10	47	(VOUT-1) * R2	22	62	330	-	0.22
8~10	700	3.3	1000	8.2	120	(VOUT-1) * R2	33	24	130	-	0.22
10~12	700	3.3	1000	8.2	120	(VOUT-1) * R2	33	24	130	-	0.22
12~16	700	4.7	1500	10	47	(VOUT-1) * R2	22	24	130	-	0.22
8~10	1000	3.3	1000	8.2	120	(VOUT-1) * R2	33	16	91	-	0.22
10~12	1000	3.3	1000	8.2	120	(VOUT-1) * R2	33	16	91	-	0.22
12~16	1000	4.7	1500	10	47	(VOUT-1) * R2	22	16	91	-	0.22

TECHNICAL NOTES

Output Voltage Setting (DCI DC)

Vout controls the V_{FB} pin voltage to maintain $\mathrm{V}_{\mathrm{FB}}=1.0 \mathrm{~V}$. Vout can be set using R 1 and R 2 in the following equation. Vout voltage should be set between 5 V to 16 V . Also, the sum of R1 and R2 should be equal or less than $500 \mathrm{k} \Omega$.
$\mathbf{V}_{\text {out }}=\mathbf{V}_{\text {FB }} \mathbf{X}(\mathbf{R 1}+\mathbf{R} \mathbf{2}) / \mathbf{R} \mathbf{2}$

Phase Compensation Setting (DC/ DC)

A 180 degree phase shift may be caused by the inductor (L1) and the capacitor (C_{01}). The phase shift reduces phase margin and stability of the system. Thus, it is necessary to keep a leading phase margin. In the following equation, the pole is made by L 1 and C_{01}.
Fpole $\sim 1 /\{2 \times \pi \times \sqrt{ }(L 1 \times$ Coi $)\}$

The phase compensation and the system gain can be set by using R4, C3 and C2. Please refer to Typical Application (P.10,11) for positioning and setting value examples. In the following equation, the zero is made by R4 and C3.

Fzero ~ 1 / ($2 \times \pi \times R 4 \times$ C3)

When selecting the values for R4 and C3, please consider that the cutoff frequency of zero should be approximately equal to the cutoff frequency of pole.
For example, if $L 1=10 \mu \mathrm{H}$ and $\mathrm{C}_{01}=10 \mu \mathrm{~F}$, the cutoff frequency of pole is approximately 16 kHz .

The gain can be set by the resistance ratio of R4 and RT which is the combined resistance of R1 and R2 ($R T=R 1 x R 2 /(R 1+R 2)$). If $R 4$ is larger than $R T$, the gain becomes high. The high gain improves the response characteristic; however, the extremely high gain decreases stability of the operation. It is important to select an appropriate value for R4. In the following equation, zero is made by R1 and C2.

Fzero ~ 1 I ($\mathbf{~} \times \pi \times R 1 \times \mathrm{C} 2$)

Set the cutoff frequency of zero lower than the cutoff frequency of pole.

Reduction of Feedback Voltage Noise (DC/ DC)

If the system noise is large, it may wrap around the $V_{F B} p i n$ and causes unstable operation. In this case, set R1 and R2 resistance values lower to reduce the noise entering the $V_{F B}$ pin. Or, place R3 with $1 k \Omega$ to $5 k \Omega$ to reduce the noise entering the V_{FB} pin as shown in Typical Application (P.10,11).

Input Voltage Setting (DCI DC and LDO)

The input voltage ranges of the V_{IN} do and $\mathrm{V}_{\mathrm{I} __ \text {Ldo }}$ pins are from 2.2 V to 5.5 V . Place a bypass capacitor between V_{IN} and GND. Use Boost Output as the input voltage for the Vbuff pin.

R1293K

NO.EA-301-160107

Oscillator Frequency Setting (DC/ DC)

By connecting R6 to the the RT pin, fosc can be set in the range of 300 kHz to 1 MHz . R6 can be calculated by inserting a desired oscillator frequency value into fosc in the following equation.

```
R6 = 19.128 x 10 ^ 9/ Fosc - 3443
```

Example: Oscillator Frequency 700 kHz
$R 6=19.128 \times 10^{\wedge} 9 /\left(700 \times 10^{\wedge} 3\right)-3443=23883 \approx 24 \mathrm{k} \Omega$

Maxduty and Maxduty Soft-start Adjustment (DCI DC)

Maxduty is preset to 90% (Typ.); however, it can be set lower by adding R5 to the DTC pin. Maxduty is determined by R6 and R5 as shown in the equation below. The preset Maxduty is compared with the Maxduty set by the DTC pin, and the lower Maxduty will be selected.

Example: R6=24k Ω, R5 $=110 \mathrm{k} \Omega$
Maxduty $=(0.3267 \times 110000-0.6285 \times 24000+2367) / 24000+3550)$

$$
\approx 0.843 \rightarrow 84.3 \%
$$

By adding $C_{\text {dTc }}$ to the DTC pin, Maxduty can increase gradually and the inrush current can be controlled. (Maxduty Soft-start). After start-up, Maxduty after t-time (Maxduty (t)) can be calculated by the follwoing equation.

$$
\operatorname{Maxduty}(\mathrm{t})=\xrightarrow{0.3267 \times R 5 \times[1-\operatorname{EXP}(-t / \operatorname{Cdтс} \times R 5)]-0.6285 \times R 6+2367}
$$

$$
R 6+3550
$$

Example: $\mathrm{R} 6=24 \mathrm{k} \Omega, \mathrm{R} 5=110 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{DTC}}=0.047 \mu \mathrm{~F}$ to $0.47 \mu \mathrm{~F}$

Typical Application with

 RT Pin/ DTC Pin

When using Maxduty soft-start, it is recommended that latch protection delay time (tdLY) be set $t_{\text {dLy }}>6 \times(R 5 \times$ Cdtc). tdly should be longer than the soft-start time.

Overcurrent Protection (DC/ DC)

The overcurrent protection circuit monitors the Nch-swich current and immediately turns off if the Nch-switch current reaches the current limit. Nch-switch turns on every internal refernce clock cycle and turns off if the Nch-switch current reaches the current limit again.

Short Current Protection/ Protection Delay Time Setting (DC/ DC)

If Boost Output drops and causes the VFB voltage drop to 85% of the preset value, the IC recognizes a shortcircuit and starts to charge C 1 . If the short-circuit condition persists for a certain period of time and the DELAY pin voltage rechaes Voly, the latch-type protection circuit shuts down Boost Output. toly can be set by C1 shown in the following equations.
$t_{D L Y}=C \times V_{D L Y} / l_{D L Y}$
To release latch state, make $\mathrm{V}_{\text {woc }}$ voltage below the UVLO detector threshold and then restart, or set ENB "H" once and then set it back to "L".

Undervoltage Lock Out (DC/ DC)

If the $\mathrm{V}_{\text {wioc }}$ pin voltage becomes equal or lower than UVLO detector threshold, the UVLO circuit immediately disables the switching output.

Thermal Shutdown (LDO and Buffer AMP)

Thermal shutdown circuit detects overheating of the IC and turns off VCOM Output, GAMMA Output, and LDO Outputs to reset the IC if the junction temperature becomes more than the detector threshold. If the causes of overheating are removed and the junction temperature decreases to the release temperature, the IC restarts.

Standby Mode (DCI DC and Buffer AMP)

By setting the ENB pin "H", DC/ DC and Buffer AMP go into Standby mode and the output shuts down. LDO is always-on and outputs voltage.

SEL Pin Mode Switching (DC/ DC)

By setting the SEL pin voltage "L", the switching speed of a built-in MOSFET shifts to moderate mode to reduce the influences of noise to external parts. The SEL pin voltage operates in normal mode when " H ".

Diode, Inductor and Capacitor Selections (DC/ DC, LDO and Buffer AMP)

Efficiency and stability of system can be affected by the following conditions. Spike voltage may be generated by the influence of an inductor when Nch MOSFET turns off. Therefore, diodes, inductors and capacitors should not exceed the voltage tolerance of the capacitor connected to Vout or their respected rated values (voltage, current and power). Please refer to Operation of DC/ DC Converter and Output Current (P.15). Choose the diode with low forward voltage (schottky diode), small reverse current and fast switching speed.

R1293K

NO.EA-301-160107

Operation of DCI DC Converter and Output Current

Figure 1. Basic Circuit

Figure 2. The inductor current (IL) flowing through the inductor (L)

There are two operation modes in the PWM step-up DC/ DC converter: continuous mode and discontinuous mode. When a transistor is in the On-state, the voltage to be applied to L is described as Vin. An increase in the inductor current (i1) can be written as follows:
$\Delta \mathrm{i} 1=\mathrm{V}_{\mathrm{IN}} \times$ ton $/ \mathrm{L}$
Formula 1

In the step-up circuit, the energy accumulated during the On-state is transferred into the capacitor even in the Off-state. A decrease in the inductor current (i2) can be written as follows:
$\Delta i 2=\left(\right.$ Vout $\left.-\mathrm{VIN}^{\mathrm{IN}}\right) \times$ topen $/ \mathrm{L}$.

In the PWM switching control, i1 and i2 become continuous when topen=toff, which is called continuous mode.

When the IC is in the continuous mode and operates in steady-state conditions, the variations of i1 and i2 are same:

V IN \times ton $/ \mathrm{L}=\left(\right.$ Vout $\left.-\mathrm{V}_{\text {IN }}\right) \times$ toff $/ \mathrm{L}$

Formula 3

Therefore, the duty cycle in the continuous mode is:

Duty $=$ ton $/($ ton + toff $)=($ Vout - Vin $) /$ Vout.
Formula 4

When topen=toff, the average of IL is:

IL (Ave.) $=\mathrm{V}_{\mathrm{IN}} \times \operatorname{ton} /(2 \times \mathrm{L})$
Formula 5

If the input voltage $\left(\mathrm{V}_{\text {IN }}\right)$ is equal to Vout, the output current (lout) is:
lout $=$ Vin $^{2} \times$ ton $/(2 \times L \times$ Vout $)$
Formula 6

If lout is larger than Formula 6, the IC switches to the continuous mode.

ILmax flowing through L is:

ILmax $=$ lout \times Vout $/ \mathrm{V}_{\text {IN }}+\mathrm{V}_{\text {IN }} \times \operatorname{ton} /(2 \times \mathrm{L})$

ILmax $=$ lout \times Vout $/ \mathrm{V}_{\text {IN }}+\mathrm{V}_{\text {In }} \times \mathrm{T} \times\left(\mathrm{V}_{\text {out }}-\mathrm{V}_{\text {IN }}\right) /\left(2 \times \mathrm{L} \times \mathrm{V}_{\text {out }}\right)$.
Formula 8

As a result, ILmax becomes larger compared to lout.

When considering the input and output conditions or selecting the external parts, please pay attention to ILmax.

The above calculations are based on the ideal operation of the ICs in the continuous mode. They do not include the losses caused by the external parts or $L x$ switch. The actual maximum output current will be 50% to 80% of the above calculation results. Especially, if IL is large or $V_{I N}$ is low, it may cause the switching losses. As for Vout, please consider V_{F} of the diode (approximately 0.8 V).

R1293K

NO.EA-301-160107

TYPICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IN} _\mathrm{Dc}}=\mathrm{V}_{\text {In_LDO }}$, unless otherwise noted.

1) Output Voltage vs. Output Current (DCDC)

R1293KxxxA
fosc $=700 \mathrm{kHz}$, Vout=8V, SEL=3.0V

fosc $=700 \mathrm{kHz}$, Vout=16V, SEL=3.0V

R1293KxxxA
fosc $=700 \mathrm{kHz}$, Vout $=10 \mathrm{~V}$, SEL=3.0V

fosc $=700 \mathrm{kHz}, \mathrm{V}$ In $=3.0 \mathrm{~V}$, Vout $=10 \mathrm{~V}, \mathrm{SEL}=3.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

2) Efficiency vs. Output Current (DCDC)

R1293KxxxA
VIN=3.0V, Vout=10V, SEL=3.0V

R1293KxxxA
Vin=5.5V, Vout=10V, SEL=5.5V

R1293KxxxA
fosc $=700 \mathrm{kHz}, \mathrm{VIN}=3.0 \mathrm{~V}$, Vout $=10 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

3) Output Voltage Waveform (DCDC)

R1293KxxxA
fosc $=700 \mathrm{kHz}, \mathrm{V}$ IN $=3.0 \mathrm{~V}$, Vout $=10 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ fosc $=700 \mathrm{kHz}, \mathrm{V}$ IN $=3.0 \mathrm{~V}$, Vout $=10 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$
SEL=0V, lout $=80 \mathrm{~mA}$

R1293KxxxA
VIN=5.5V, SEL=5.5V, $\mathrm{Ta}=25^{\circ} \mathrm{C}$

R1293K

NO.EA-301-160107
4) VFB Voltage vs. Temperature

5) Oscillator Frequency vs. Temperature R1293KxxxA
fosc $=300 \mathrm{kHz}, \mathrm{VIN}=3.6 \mathrm{~V}, \mathrm{~V} D E L A Y=V F B=0 V$

R1293KxxxA
fosc $=1 \mathrm{MHz}, \mathrm{VIN}=3.6 \mathrm{~V}$, VDELAY $=\mathrm{VFB}=0 \mathrm{~V}$

6) Oscillator Frequency vs. VIN Voltage

R1293KxxxA
fosc $=300 \mathrm{kHz}, \mathrm{Vin}_{\mathrm{in}}=3.6 \mathrm{~V}$, V delay $=\mathrm{V}_{\mathrm{Fb}}=0 \mathrm{~V}$, $\mathrm{Ta}=25^{\circ} \mathrm{C}$

R1293KxxxA
fosc $=1 \mathrm{MHz}, \mathrm{V}_{\text {in }}=3.6 \mathrm{~V}$, $\mathrm{V}_{\mathrm{del}} \mathrm{ay}=\mathrm{V}_{\mathrm{fb}}=0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

R1293KxxxA
fosc $=700 \mathrm{kHz}, \mathrm{V}_{\text {in }}=3.6 \mathrm{~V}$, $\mathrm{V}_{\mathrm{del}} \mathrm{AY}=\mathrm{V}_{\mathrm{Fb}}=0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

7) Oscillator Frequency vs. R6 Resistance R1293KxxxA
$\mathrm{VIN}=3.6 \mathrm{~V}$, $\mathrm{V}_{\mathrm{del}} \mathrm{fy}=\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

8) Standby VIN Current vs. Temperature 9) Supply VIN Current vs. Temperature

R1293KxxxA
$\mathrm{VIN}=\mathrm{ENB}=5.5 \mathrm{~V}$

R1293KxxxA
$\mathrm{V} \operatorname{IN}=5.5 \mathrm{~V}, \mathrm{ENB}=0 \mathrm{~V}$, $\mathrm{SEL}=0 \mathrm{~V}, \mathrm{VFB}=1.1 \mathrm{~V}$

R1293K

NO.EA-301-160107
10) UVLO Detector Threshold vs. Temperature 11) UVLO Released Voltage vs. Temperature

R1293KxxxA
VIN=2.2V $\rightarrow 1.7 \mathrm{~V}$

R1293KxxxA
VIN=1.7V $\rightarrow 2.2 \mathrm{~V}$

12) Oscillator Maximum Duty Cycle vs. Temperature

R1293KxxxA
$\mathrm{VIN}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{VFB}_{\mathrm{FB}}=0 \mathrm{~V}$

13) LX Limit Current vs. VIN Voltage

R1293KxxxA
$\mathrm{Ta}=25^{\circ} \mathrm{C}$

14) DELAY Pin Charge Current
vs. Temperature
R1293KxxxA
$\mathrm{VIN}_{\mathrm{IN}}=3.6 \mathrm{~V}$, Vdel $A Y=0.8 \mathrm{~V}$, $\mathrm{VFB}=0 \mathrm{~V}$

15) DELAY Pin Discharge Current
vs. Temperature
R1293KxxxA
VIN=3.6V, VDELAY=0.1V

16) DELAY Pin Detector Threshold Voltage vs. Temperature

R1293KxxxA
$\mathrm{VIN}=3.6 \mathrm{~V}, \mathrm{VFB}=0 \mathrm{~V}$

17) ENB "L" Input Voltage
vs. Temperature
R1293KxxxA
VIN=2.2V

18) ENB "H" Input Voltage
vs. Temperature
R1293KxxxA
$\mathrm{VIN}=5.5 \mathrm{~V}$

R1293K

NO.EA-301-160107
19) DTC Maximum Duty Cycle vs. Temperature 20) DTC Maximum Duty Cycle vs. R5/R6

R1293KxxxA
VIN=3.6V, R6=24k $\Omega, \mathrm{Ta}=25^{\circ} \mathrm{C}$

21) Soft Start Time vs. Temperature

R1293KxxxA
Vin=3.6V

22) OVP Detector Threshold Voltage vs Temperature

23) OVP Release Voltage vs Temperature

24) SEL "L" Input Voltage vs. Temperature 25) SEL "H" Input Voltage vs. Temperature
 R1293K251A

Vin=5.5V

26) Output Voltage vs Output Current (LDO) R1293K181A
$\mathrm{Ta}=25^{\circ} \mathrm{C}$

R1293K

NO.EA-301-160107
27) Output Voltage vs. Temperature (LDO)

28) Output Voltage vs. VIN Voltage (LDO)

29) LDO Ripple Rejection vs. Frequency R1293K181A
$\mathrm{V}_{\mathrm{I}}=2.8 \mathrm{~V}$, Ripple $0.2 \mathrm{Vp}-\mathrm{p}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

R1293K251A
IO_LDO=1mA

R1293K 251A
$\mathrm{Ta}=25^{\circ} \mathrm{C}$

R1293K 251A
Vin $=3.5 \mathrm{~V}$, Ripple $0.2 \mathrm{Vp}-\mathrm{p}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

30) Amplifier Supply Current vs. Temperature (BUFFER AMP)

R1293KxxxA

31) VCOM Offset Voltage vs. Temperature R1293KxxxA
VIN $=3.6 \mathrm{~V}, \mathrm{VBUFF}=7 \mathrm{~V}, I \mathrm{IN}$ COM=3.5V, 1 O _COM $=0 \mathrm{~m} \mathrm{~A}$

32) GAMMA Offset Voltage vs. Temperature R1293K xxxA
VIN $=3.6 \mathrm{~V}, \mathrm{VBUFF}=7 \mathrm{~V}, I \mathrm{IN}_{-} \mathrm{GM}^{*}=3.5 \mathrm{~V}, I O_{-} G \mathrm{C}^{*}=0 \mathrm{~mA}$

33) VCOM Output Voltage vs. Temperature

R1293KxxxA
$\mathrm{VIN}=3.6 \mathrm{~V}, \mathrm{VBUFF}=10 \mathrm{~V}, \mathrm{IN} _C O M=1.5 \mathrm{~V}, I O _C O M=+50 \mathrm{~mA}$

R1293K xxxA
$\mathrm{VIN}=3.6 \mathrm{~V}, \mathrm{VBUFF}=10 \mathrm{~V}, I \mathrm{I} _C O M=8.5 \mathrm{~V}, 1 \mathrm{O} _\mathrm{COM}=-50 \mathrm{~mA}$

R1293K

NO.EA-301-160107
34) GAMMA Output Voltage vs. Temperature R1293KxxxA

R1293KxxxA

VIN $=3.6 \mathrm{~V}, \mathrm{VBUFF}=10 \mathrm{~V}, I \mathrm{IN} \mathrm{GM}^{*}=8.5 \mathrm{~V}, 10 _G M^{*}=-10 \mathrm{~mA}$

35) VCOM Output Voltage vs. Output Current R1293KxxxA
VIN=3.6V, VBUFF=10V, IN_COM=5V, $\mathrm{Ta}=25^{\circ} \mathrm{C}$

R1293KxxxA
R1293KxxxA

36) GAMMA Output Voltage vs. Output Current R1293KxxxA
VIN=3.6V, Vbuff=10V, IN_GM*=5V, Ta $=25^{\circ} \mathrm{C}$

R1293KxxxA
R1293KxxxA
VIN=3.6V, VBUFF=10V, IN_GM*=0.2V, $\mathrm{Ta}=25^{\circ} \mathrm{C}$ VIN=3.6V, VBUFF=10V,IN_GM*=9.8V, $\mathrm{Ta}=25^{\circ} \mathrm{C}$

R1293K

NO.EA-301-160107

37) DCDC Turn-on/Turn-off WaveForm by ENB

 R1293KxxxA
R1293KxxxA

$V_{\text {In }}=3.6 \mathrm{~V}$, Vout $=V_{b u f f}=10 \mathrm{~V}$, fosc $=700 \mathrm{kHz}, \mathrm{SEL}=0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ Vin $=3.6 \mathrm{~V}$, Vout=Vbuff $=10 \mathrm{~V}$, fosc $=700 \mathrm{kHz}, \mathrm{SEL}=0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

38) DCDC Turn-on/Turn-off WaveForm (DTC Soft Start) by VIN

 R1293KxxxAR1293KxxxA
Vin $=3.6 \mathrm{~V}$, Vout $=\mathrm{V}$ buff $=10 \mathrm{~V}$,fosc $=700 \mathrm{kHz}$, SEL=0V, $\mathrm{Ta}=25^{\circ} \mathrm{C}$ Vin $=3.6 \mathrm{~V}$, Vout=Vbuff $=10 \mathrm{~V}$, fosc $=700 \mathrm{kHz}, \mathrm{SEL}=0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

$$
\mathrm{R}_{5}=130 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{DTC}}=0.22 \mathrm{uF}, \text { Iout }=0 \mathrm{~mA}
$$

39) LDO Turn-on/Turn-off WaveForm by VIN

$R 5=130 \mathrm{k} \Omega, \mathrm{CDTC}=0.22 \mathrm{uF}$, IOUT $=80 \mathrm{~mA}$

40) VCOM Turn-on/Turn-off WaveForm by ENB

41) GAMMA Turn-on/Turn-off WaveForm by ENB

42) DCDC Load Tranjent Response

VIn $=3.3 \mathrm{~V}$, Vout $=\mathrm{VbuFF}=10 \mathrm{~V}$, fosc $=700 \mathrm{kHz}$, lout $=10 \mathrm{~mA} \Leftrightarrow 100 \mathrm{~mA}, \mathrm{SEL}=0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

lout $=1 \mathrm{~mA}$

VIN $=5.0 \mathrm{~V}$, Vout $=$ VBUFF $=10 \mathrm{~V}$, fosc $=700 \mathrm{kHz}$, lout $=10 \mathrm{~mA} \Leftrightarrow 100 \mathrm{~mA}$. SEL=0V. Ta= $25^{\circ} \mathrm{C}$

R1293K

NO.EA-301-160107

43) LDO Load Tranjent Response

VIN $=2.9 \mathrm{~V}, \mathrm{Vo}$ _LDO $=2.4 \mathrm{~V}$

Io_LDo $=1 \mathrm{~mA} \rightarrow 150 \mathrm{~mA}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

44) VCOM Load Tranjent Response

Vin $=3.6 \mathrm{~V}$, VBUFF $=10 \mathrm{~V}$, IN_com $=\mathrm{VBUFF} / 2 \mathrm{~V}$,

V IN $=2.9 \mathrm{~V}, \mathrm{VO}$ _LDO $=2.4 \mathrm{~V}$
IO_LDO $=150 \mathrm{~mA} \rightarrow 1 \mathrm{~mA}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

VIN $=5.5 \mathrm{~V}, \mathrm{VO}$ _LDO $=2.4 \mathrm{~V}$
Io_LDO $=150 \mathrm{~mA} \rightarrow 1 \mathrm{~mA}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

45) GAMMA Load Tranjent Response

VIn $=3.6 \mathrm{~V}$, Vbuff $=10 \mathrm{~V}$, IN_GM* $=\mathrm{VbuFf} / 2 \mathrm{~V}$,

1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
7. Anti-radiation design is not implemented in the products described in this document.
8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.
11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment.
Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

https://www.e-devices.ricoh.co.jp/en/

Sales \& Support Offices

Ricoh Electronic Devices Co., Ltd.
Shin-Yokohama Office (International Sales)
2-3, Shin-Yokohama 3-chome, Kohoku-ku, Yokohama-shi, Kanagawa, 222-8530, Japan Phone: +81-50-3814-7687 Fax: +81-45-474-0074
Ricoh Americas Holdings, Inc.
675 Campbell Technology Parkway, Suite 200 Campbell, CA 95008, U.S.A.
Phone: +1 -408-610-3105
Ricoh Europe (Netherlands) B.V.
Semiconductor Support Centre
rof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands
Phone: +31-20-5474-309
Ricoh International B.V. - German Branch
Semiconductor Sales and Support Centre
Oberrather Strasse 6, 40472 Düsseldorf, Germany
Phone: +49-211-6546-0
Ricoh Electronic Devices Korea Co., Ltd. 3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea Phone: +82-2-2135-5700 Fax: +82-2-2051-5713
Ricoh Electronic Devices Shanghai Co., Ltd. Room 403, No. 2 Building, No. 690 Bibo Road, Pu Dong New District, Shanghai 201203 ,
People's Republic of China
Phone: +86-21-5027-3200 Fax: +86-21-5027-3299
Ricoh Electronic Devices Shanghai Co., Ltd.
Shenzhen Branch
1205, Block D(Jinlong Building), Kingkey 100, Hongbao Road, Luohu District,
Phone + 86 -755-
Ricoh Electronic Devices Co., Ltd.
Taipei office
Room 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.)
Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623 \square

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LCD Drivers category:
Click to view products by Nisshinbo manufacturer:

Other Similar products are found below :
LC75836WH-E CD4056BE LC75829PW-H LC75852W-E LC79430KNE-E LC79431KNE-E FAN7317BMX LC75839PW-H LC75884W-
E LC75814VS-TLM-E MAX25520ATEC/V + MAX25520ATEB/VY + BU9795AFV-E2 PCF8566T/1.118 TPS65132A0YFFR
BU9795AKV-E2 34801000 BU97510CKV-ME2 BU97520AKV-ME2 ICL7136CM44Z BL55070 BL55066 MAX1605ETT+T MAX16928BGUP/V+ ICL7129ACPL+ MAX131CMHD MAX138CMH+D MAX1491CAI + MAX1518BETJ+ MAX1606EUA+ MAX138CQH+TD MAX25520ATEB/V+ MAX16929AGUI/V+ MAX16929CGUI/V+ MAX16929DGUI/V+ BU97530KVT-E2 MAX8570ELT+T MAX8570EUT+T MAX8575EUT+T MAX8795AGCJ/V+ MAX138CPL+ AY0438/L HV66PG-G HV881K7-G TC7106CKW TC7106CPL TC7116CPL TC7126CLW TC7126CPL TC7129CKW

