RICOH

R1501x SERIES

1A LDO REGULATOR (Operating Voltage up to 24V)

NO.EA-184-160801

OUTLINE

The R1501x series are CMOS-based positive voltage regulator (VR) ICs. The R1501xxxxB has features of high input voltage operating, 1A output current drive, and low supply current.

A DMOS transistor is used for the driver, high voltage operating and low on resistance (0.6Ω at V_{OUT} =10V) device is realized. A standard regulator circuit with a current limit circuit and a thermal shutdown circuit are built in the R1501x series.

As the operating temperature range is from -40°C to 105°C and maximum input voltage is up to 24V, the R1501x series are suitable for the constant voltage source for digital home appliances and car accessories.

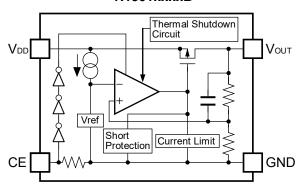
The regulator output voltage is fixed in the R1501x. Output voltage accuracy is ±2.0% and output voltage range is from 3.0V to 12.0V with a step of 0.1V, and from 12.5V to 18.0V with a step of 0.5V. The chip enable pin realizes ultra low supply current standby mode.

Since the packages for these ICs are the HSOP-6J for high density mounting of the ICs on boards, and the TO-252-5-P2.

*) The DMOS (Double Diffused MOS) transistor adopted by R1501x is characterized by a double diffusion structure which comprises a low density n-type (channel) diffused layer and a high density p-type (sources) diffused layer from the edge of the gate electrode. The R1501x series possess outstanding properties of high operating voltage and low on-resistance, which have been achieved by the channel length scaled down to submicron dimensions and decreased thickness of the gate oxide film.

FEATURES

Supply Current	Typ. 70μA
Standby Current	Typ. 0.1μA
Output Current	Min. 1A
Input Voltage Range	3.0V to 24.0V
Ripple Rejection	Typ. 60dB (Vset=5.0V)
Output Voltage Range	3.0V to 12.0V (0.1V steps)
	12.5V to 18.0V (0.5V steps)
	(For other voltages, please refer to MARK INFORMATIONS.)
Output Voltage Accuracy	±2%
• Temperature-Drift Coefficient of Output Voltage	Typ. ±100ppm/°C
Line Regulation	Typ. 0.05%/V
Packages	HSOP-6J, TO-252-5-P2
Operating Temperature range	40°C to 105°C
Built-in Current Limit Circuit	
Built-in Fold-Back Circuit	


APPLICATIONS

Built-in Thermal Shutdown Circuit

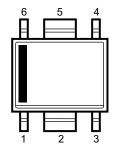
- Power source for home appliances such as refrigerators, rice cookers, electric water warmers, etc.
- Power source for car audio equipment, car navigation system, ETC system, etc.
- Power source for notebook PCs, digital TVs, cordless phones, and private LAN system, etc.
- Power source for office equipment machines such as copiers, printers, facsimiles, scanners, projectors, etc.

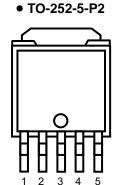
BLOCK DIAGRAMS

R1501xxxxB

SELECTION GUIDE

The output voltage, package, etc. for the ICs can be selected at the user's request.


Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R1501SxxxB-E2-FE	HSOP-6J	1,000 pcs	Yes	Yes
R1501JxxxB-T1-FE	TO-252-5-P2	3,000 pcs	Yes	Yes


xxx : The output voltage can be designated in the range from 3.0V(030) to 12.0V(120) in 0.1V steps and 12.5V(125) to 18.0V(180) in 0.5V steps.

(For other voltages, please refer to MARK INFORMATIONS.)

PIN CONFIGURATIONS

• HSOP-6J

PIN DESCRIPTIONS

• HSOP-6J

Pin No	Symbol	Pin Description
1	V _{DD}	Input Pin
2	GND*	Ground Pin
3	GND*	Ground Pin
4	CE	Chip Enable Pin ("H" Active)
5	GND*	Ground Pin
6	Vouт	Output Pin

^{*)} No.2, No.3 and No.5 pins must be wired short each other and connected to the GND plane when it is mounted on board.

• TO-252-5-P2

Pin No	Symbol	Pin Description
1	V _{DD}	Input Pin
2	GND*	Ground Pin
3	GND*	Ground Pin
4	CE	Chip Enable Pin ("H" Active)
5	Vоит	Output Pin

^{*)} No.2 and No.3 pins must be wired short each other and connected to the GND plane when it is mounted on board.

R1501x

NO.EA-184-160801

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Rating	Unit
Vin	Input Voltage	-0.3 to 36	V
Vce	Input Voltage (CE Pin) −0.3 to V _{IN} + 0.3 ≦		V
Vout	Output Voltage	-0.3 to $V_{\text{IN}} + 0.3 \leq 36$	V
D-	Power Dissipation (HSOP-6J)*	1700	m\A/
P□	Power Dissipation (TO-252-5-P2)*	1900	mW
Topt	Operating Temperature Range	-40 to 105	°C
Tj	Operating Junction Temperature Range —40 to 125		°C
Tstg	Storage Temperature Range	-55 to 125	°C

^{*)} For Power Dissipation, please refer to PACKAGE INFORMATION.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field.

The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

ELECTRICAL CHARACTERISTICS

• R1501xxxxB

	unless otherwise noted.
The specification in] is checked and guaranteed by design engineering at -40° C \leq Topt \leq 105 $^{\circ}$ C.

Topt=25°C

Symbol	Item	Conditions		Min.	Тур.	Max.	Unit	
Vin	Input Voltage	Conditions		3	. 76.	24	V	
	par venage		Topt=25°C		×0.98		×1.02	V
Vоит	Output Voltage	IOUT=1mA	-40°C ≦ To	opt ≦ 105°C	×0.965		×1.035	V
Iss	Supply Current	VIN=24V, IOUT=	0A			70	160	μА
Istandby	Standby Current	VIN=24V, VCE=	OV			0.1	1.0	μΑ
		0.1mA ≦ louт ≦	≤ 200mA			25	60	mV
Δ V ουτ/Δ I ουτ	Load Regulation	0.1mA ≦ louт ≦		nteed by design eering		125	300	mV
ΔVουτ/ΔVιν	Line Regulation	Vset+1V ≦ Vin	≤ 24V , l ou	=10mA		0.05	0.1	%/V
			3.0V ≦	€ V _{SET} < 5.0V		0.135	0.135 0.225	
		1 000 A	5.0V ≦	5.0V ≤ V _{SET} < 9.0V		0.115	0.180	V
	Draw out Valtage	Iouт=200mA	9.0V ≦	9.0V ≤ V _{SET} < 12.0V		0.095	0.155	
V _{DIF}			12.0V ≦	$V_{\text{SET}} \leq 18.0V$		0.090	0.140]
V DIF	Dropout Voltage		3.0V ≦	$3.0V \le V_{SET} < 5.0V$		0.675	1.125	
		Іоит=1А	5.0V ≦	$5.0V \leq V_{\text{SET}} < 9.0V$		0.575	0.900	V
		*guaranteed by design engineering	9.0V ≦	V _{SET} < 12.0V		0.475	0.775	V
			12.0V ≦	12.0V ≦ Vset ≦ 18.0V		0.450	0.700	
ΔVουτ/ΔTopt	Output Voltage Temperature Coefficient	Ioυτ=1mA -40°C ≤ Topt ≤ 105°C			±100		ppm /°C	
Інм	Output Current				1			Α
Isc	Short Current Limit	Vout=0V			65		mA	
DD	Dinnla Daigation			$V_{\text{SET}} \le 6.0 V$		60		dB
RR Ripple Rejection	Ripple Rejection				50		иБ	
Vceh	CE Input Voltage "H"			2.0		VIN	V	
Vcel	CE Input Voltage "L"			0		0.5	V	
TTSD	Thermal Shutdown Temperature	Junction Temperature			160		°C	
T _{TSR}	Thermal Shutdown Released Temperature	Junction Temperature			135		°C	

All of unit are tested and specified under load conditions such that Topt=25°C except for Output Voltage Temperature Coefficient, Ripple Rejection, Thermal Shutdown Temperature, Thermal Shutdown Released Temperature, Load Regulation at $0.1\text{mA} \leq \text{IOUT} \leq 1\text{A}$, Dropout Voltage at IOUT=1A.

TYPICAL APPLICATION

(External Components)

C2: Ceramic 10µF MURATA: GRM32DB31E106K (size: 3225)

TECHNICAL NOTES

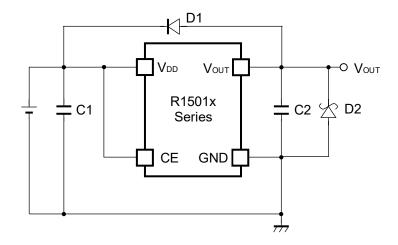
When using these ICs, consider the following points:

Phase Compensation

In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor C2 with good frequency characteristics and ESR (Equivalent Series Resistance).

If you use a tantalum type capacitor and ESR value of the capacitor is large, output might be unstable. Evaluate your circuit with considering frequency characteristics.

Depending on the capacitor size, manufacturer, and part number, the bias characteristics and temperature characteristics are different. Evaluate the circuit with actual using capacitors.

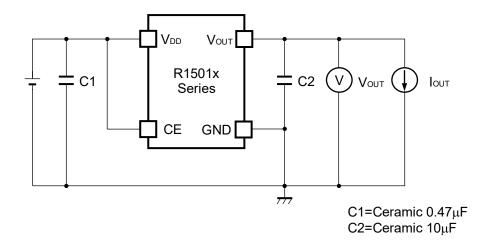

PCB Layout

Make V_{DD} and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor C1 with a capacitance value as much as $0.47\mu F$ or more between V_{DD} and GND pin, and as close as possible to the pins.

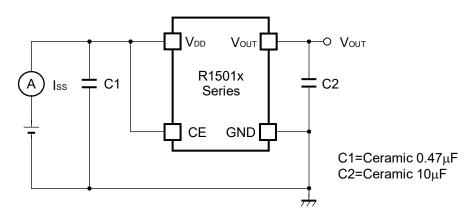
Set external components, especially the output capacitor C2, as close as possible to the ICs, and make wiring as short as possible.

No.2 pin, No.3 pin and No.5 pin of HSOP-6J package must be wired to the GND plane when it is mounted on board. No.2 pin and No.3 pin of TO-252-5-P2 package must be wired to the GND plane when it is mounted on board.

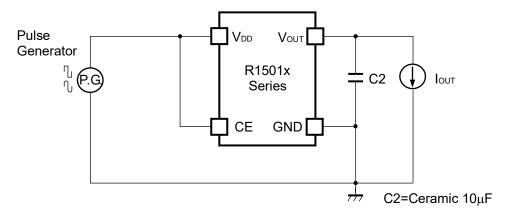
TYPICAL APPLICATION FOR PREVENTING IC DESTRUCTION

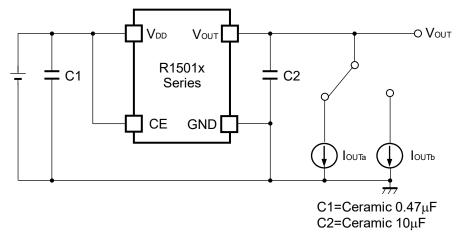


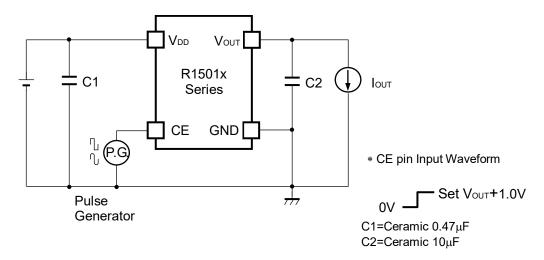
C1: $0.47\mu F$ or more (preventing for unstable operation) C2: $10\mu F$ or more (preventing for unstable operation)


D1: If V_{OUT} pin could be higher than V_{IN} pin, D1 is necessary. D2: If V_{OUT} pin could be lower than GND pin, SBD is necessary.

Note: Do not force the voltage to VouT pin.

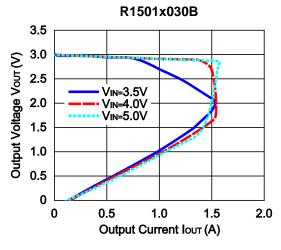

TEST CIRCUITS

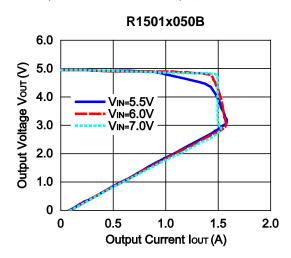

Basic Test Circuit

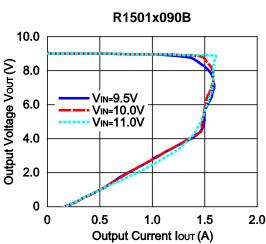

Test Circuit for Supply Current

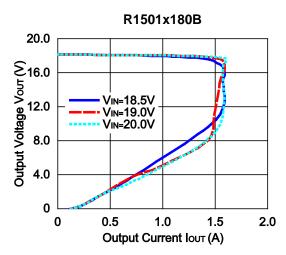
Test Circuit for Ripple Rejection, Input Transient Response

Test Circuit for Load Transient Response

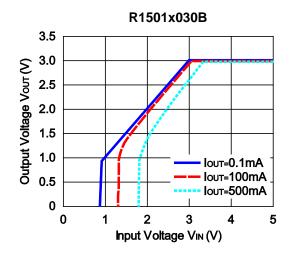


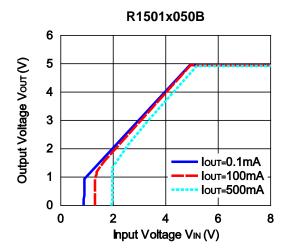

Test Circuit for Turn On Speed with CE pin

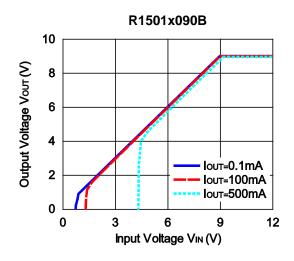

TYPICAL CHARACTERISTICS

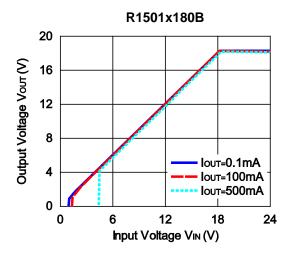

*Topt=25°C, unless otherwise noted.

1) Output Voltage vs. Output Current (C1=Ceramic 0.47μF, C2=Ceramic 10μF)

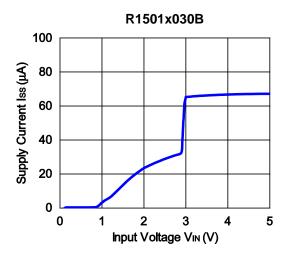


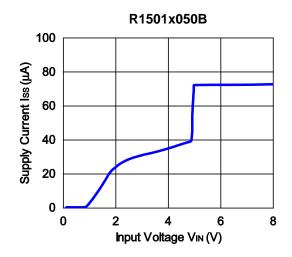


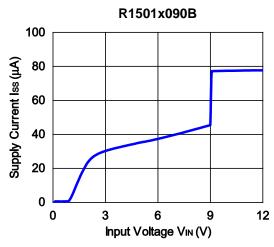


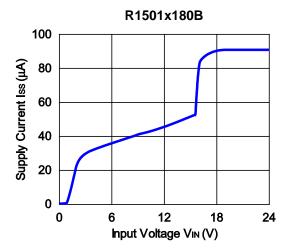


2) Output Voltage vs. Input Voltage (C1=Ceramic $0.47\mu F$, C2=Ceramic $10\mu F$)

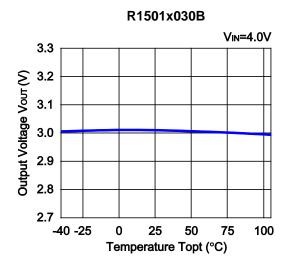


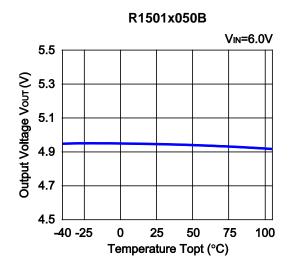


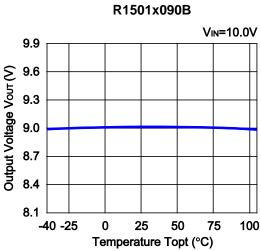


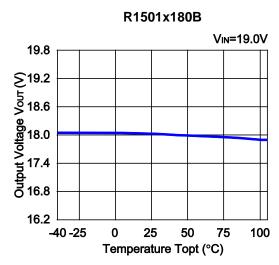


3) Supply Current vs. Input Voltage (C1=Ceramic 0.47 μ F, C2=Ceramic 10 μ F)

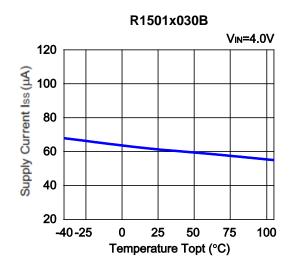


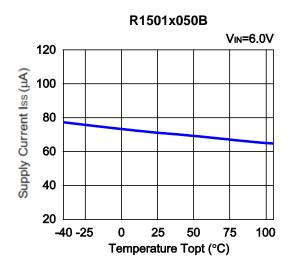


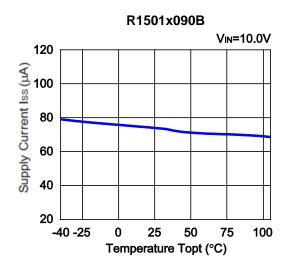


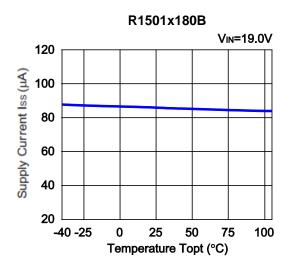


4) Output Voltage vs. Temperature (C1=Ceramic 0.47μF, C2=Ceramic 10μF, Ιουτ=1mA)

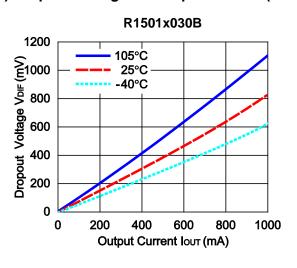


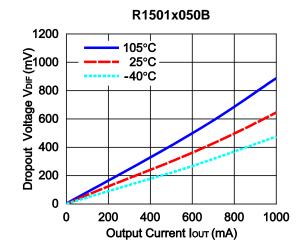


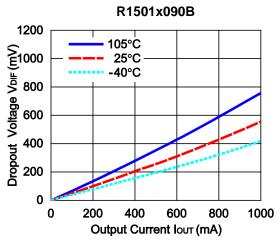


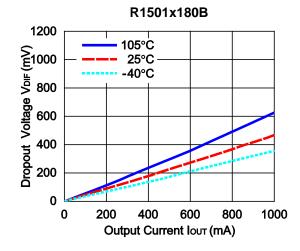


5) Supply Current vs. Temperature (C1=Ceramic 0.47μF, C2=Ceramic 10μF, Ιουτ=0mA)

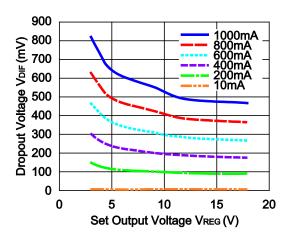


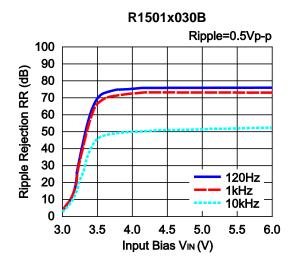


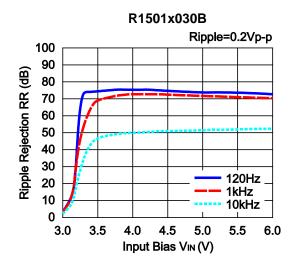


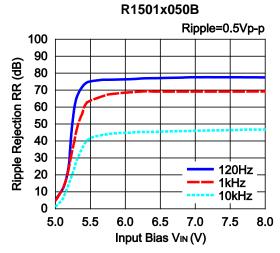


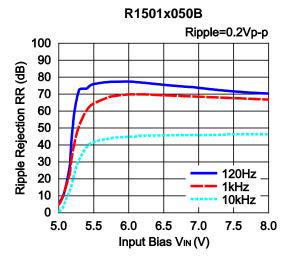
6) Dropout Voltage vs. Output Current (C1=Ceramic 0.47μF, C2=Ceramic 10μF)

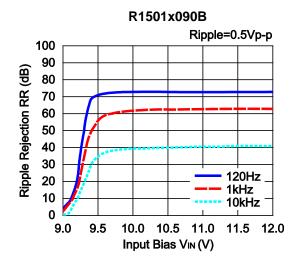


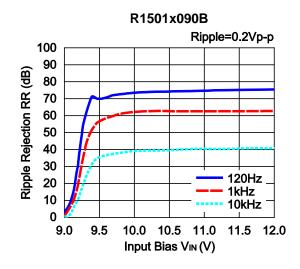


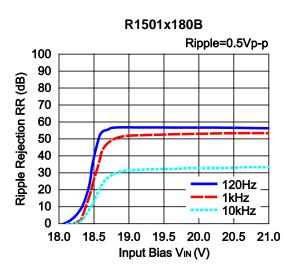


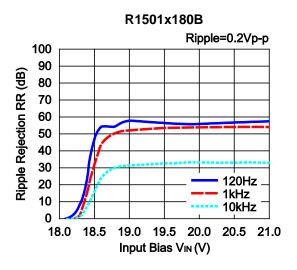

7) Dropout Voltage vs. Set Output Voltage (C1=Ceramic 0.47μF, C2=Ceramic 10μF)

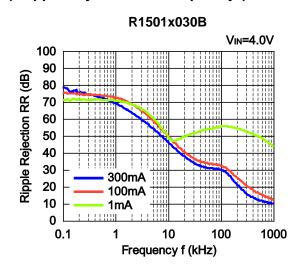


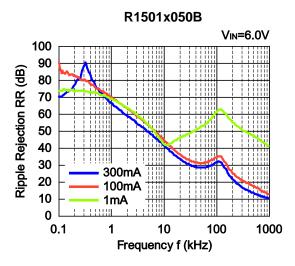

8) Ripple Rejection vs. Input Bias Voltage (C1=none, C2=Ceramic 10μF, Ιουτ=100mA)

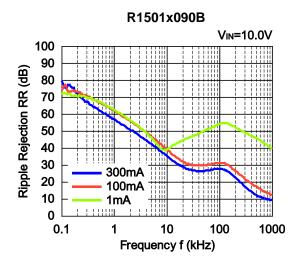












9) Ripple Rejection vs. Frequency (C1=none, C2=Ceramic 10μF, Ripple=0.5V_{p-p})

10V ↔ 14V

50

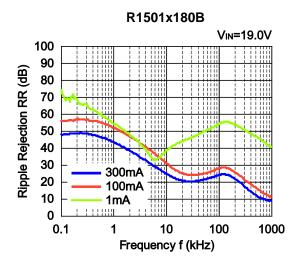
Output Voltage

100

Time t (µs)

150

200


9.1

9.0

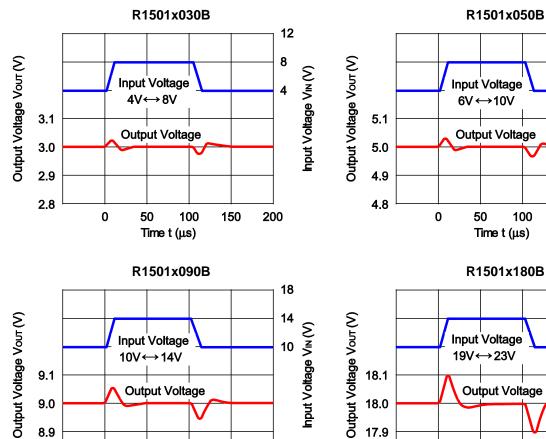
8.9

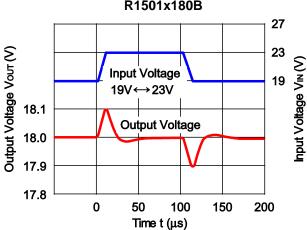
8.8

0

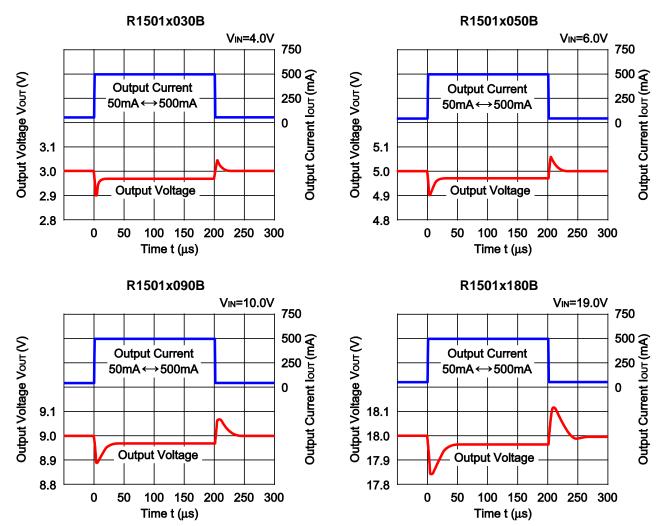
14

10

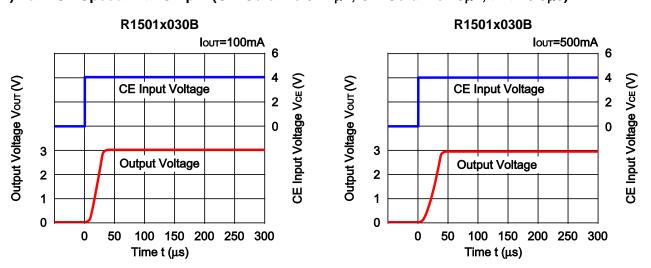

6

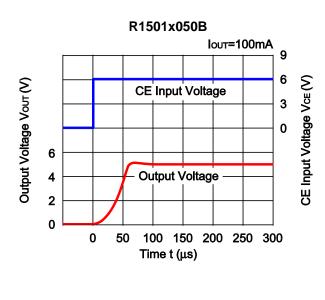

200

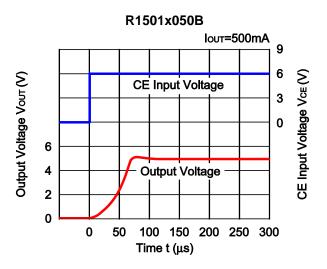
150

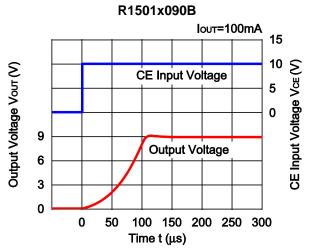

Input Voltage Vin (V)

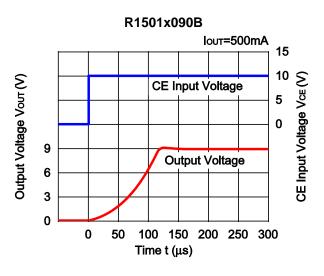
10) Input Transient Response (C1=none, C2=Ceramic 10μF, Ιουτ=100mA, tr=tf=10μs)

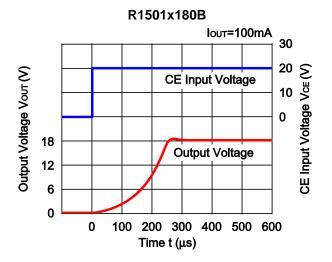


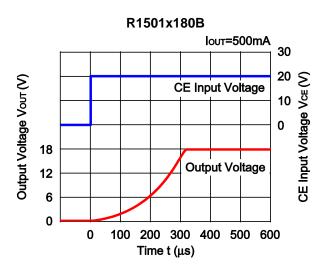


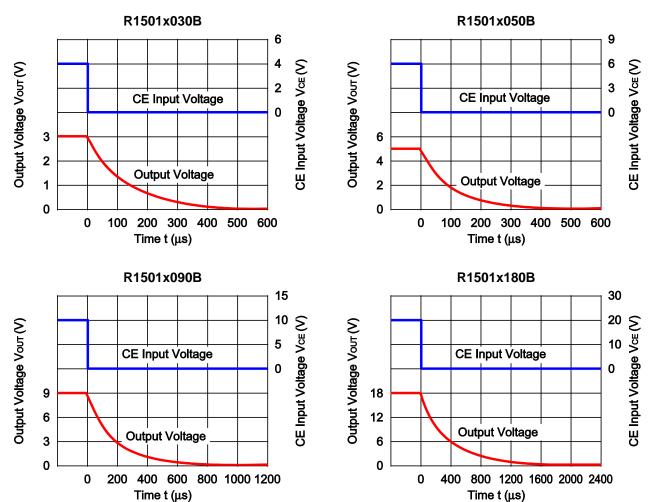

11) Load Transient Response (C1=Ceramic 0.47μF, C2=Ceramic 10μF, tr=tf=0.5μs)




12) Turn On Speed with CE pin (C1=Ceramic 0.47μF, C2=Ceramic 10μF, tr=tf=0.5μs)







13) Turn Off Speed with CE (C1=Ceramic 0.47μF, C2=Ceramic 10μF, Ιουτ=500mA, tr=tf=0.5μs)

R1501x

NO.EA-184-160801

ESR vs. Output Current

When using these ICs, consider the following points:

The relations between IOUT (Output Current) and ESR of an output capacitor are shown below.

The conditions when the white noise level is under the specified certain level are marked as the hatched area in the graph.

Measurement conditions

 $\begin{tabular}{ll} Input Voltage & : V_{OUT} + 1V to 24V \\ Frequency Band : 10Hz to 1MHz \\ Temperature & : -40 ^{\circ}C to 105 ^{\circ}C \\ Capacitor & : C1=Ceramic 0.47 \mu F \\ \end{tabular}$

C2=Ceramic 10μF

Noise level $\leq 40 \mu Vrms$

R1501x030B

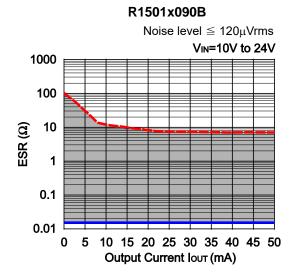
1000 100 100 2 10 2 1 0.1

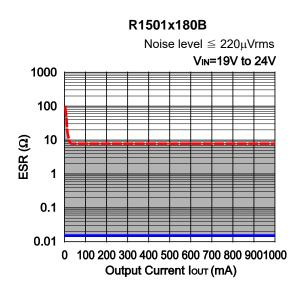
R1501x030B

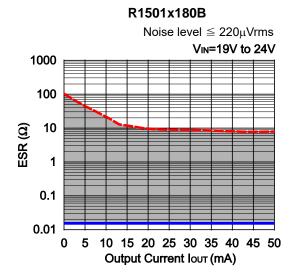
R1501x050B

0 100 200 300 400 500 600 700 800 9001000

Output Current lout (mA)


R1501x050B




0 100 200 300 400 500 600 700 800 9001000

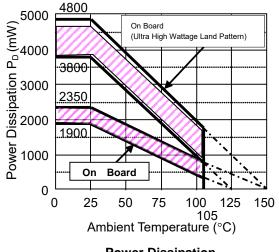
Output Current Iout (mA)

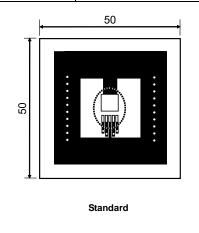
0.01

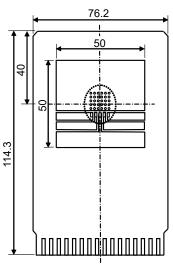
PACKAGE INFORMATION

Power Dissipation (TO-252-5-P2)

Power Dissipation (P_D) depends on conditions of mounting on board. This specification is based on the measurement at the condition below.


* Measurement conditions


Measurement condition	J113	
	Standard Land Pattern	Ultra High Wattage Land Pattern
Environment	Mounting on board (Wind velocity 0m/s)	
Board Material	Glass cloth epoxy plastic (Double layers)	Glass cloth epoxy plastic (Four-layers)
Board Dimensions	50mm x 50mm x 1.6mm	76.2mm x 114.3mm x 0.8mm
Copper Ratio	Top side: Approx. 50%, Back side: Approx. 50%	Top, Back side:50mmSquare Approx. 96%, 2nd, 3rd: 50mmSquare Approx. 100%
Through - hole	φ 0.5mm x 24pcs	φ 0.4mm x 30pcs


* Measurement Results

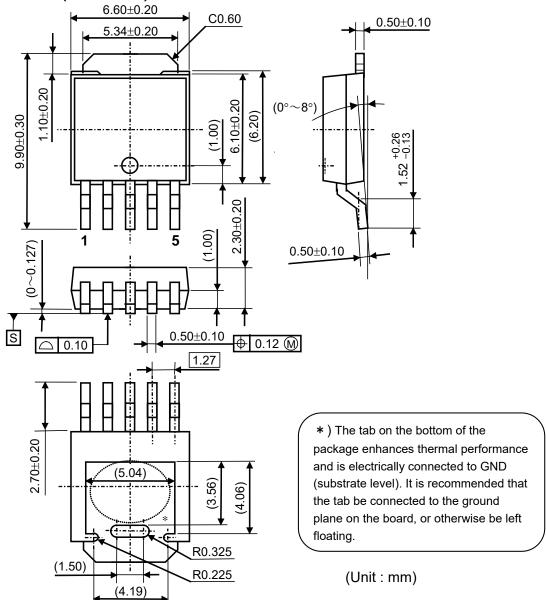
(Ta=25°C, Tjmax=125°C)

		, , , , ,
	Standard Land Pattern	Ultra High Wattage Land Pattern
Power Dissipation	1900mW	3800mW
Thermal Resistance	θja=(125-25°C)/1.9W= 53°C/W	θja= (125-25°C)/3.8W = 26°C/W
mermai Resistance	θjc= 17°C/W	θjc= 7°C/W

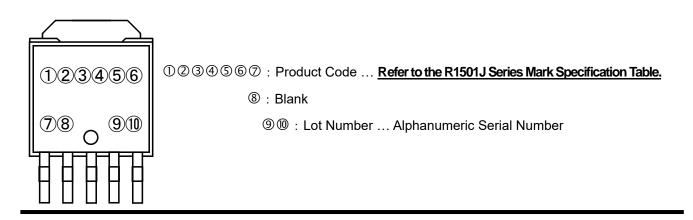
Power Dissipation

Ultra High Wattage

Measurement Board Pattern


CONTROL

Note: The second states and the second states are second sometimes. The second states are second sometimes are second sometimes. The second states are second sometimes are second sometimes. The second states are second sometimes are second sometimes. The second states are second sometimes are second sometimes. The second sometimes are second sometimes are second sometimes are second sometimes. The second sometimes are second sometimes are second sometimes are second sometimes. The second sometimes are second s


The above graph shows the Power Dissipation of the package based on Tjmax=125°C and Tjmax=150°C. Operating the IC in the shaded area in the graph might have an influence its lifetime. Operating time must be within the time limit described in the table below, in case of operating in the shaded area.

Operating Time	Estimated years (Operating four hours/day)
13,000 hours	9 years

Package Dimensions (TO-252-5-P2)

Mark Specification (TO-252-5-P2)

R1501J Series Mark Specification

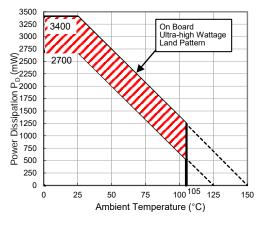
(PKG: TO-252-5-P2)

Product Name	1234567
R1501J030B	A 1 J 0 3 0 B
R1501J031B	A 1 J 0 3 1 B
R1501J032B	A 1 J 0 3 2 B
R1501J033B	A 1 J 0 3 3 B
R1501J034B	A 1 J 0 3 4 B
R1501J035B	A 1 J 0 3 5 B
R1501J036B	A 1 J 0 3 6 B
R1501J037B	A 1 J 0 3 7 B
R1501J038B	A 1 J 0 3 8 B
R1501J039B	A 1 J 0 3 9 B
R1501J040B	A 1 J 0 4 0 B
R1501J041B	A 1 J 0 4 1 B
R1501J042B	A 1 J 0 4 2 B
R1501J043B	A 1 J 0 4 3 B
R1501J044B	A 1 J 0 4 4 B
R1501J045B	A 1 J 0 4 5 B
R1501J046B	A 1 J 0 4 6 B
R1501J040B	A 1 J 0 4 7 B
R1501J047B	A 1 J 0 4 8 B
R1501J046B	A 1 J 0 4 9 B
R1501J050B R1501J051B	A 1 J 0 5 0 B A 1 J 0 5 1 B
R1501J052B	
R1501J053B	A 1 J 0 5 3 B
R1501J054B	A 1 J 0 5 4 B
R1501J055B	A 1 J 0 5 5 B
R1501J056B	A 1 J 0 5 6 B
R1501J057B	A 1 J 0 5 7 B
R1501J058B	A 1 J 0 5 8 B
R1501J059B	A 1 J 0 5 9 B
R1501J060B	A 1 J 0 6 0 B
R1501J061B	A 1 J 0 6 1 B
R1501J062B	A 1 J 0 6 2 B
R1501J063B	A 1 J 0 6 3 B
R1501J064B	A 1 J 0 6 4 B
R1501J065B	A 1 J 0 6 5 B
R1501J066B	A 1 J 0 6 6 B
R1501J067B	A 1 J 0 6 7 B
R1501J068B	A 1 J 0 6 8 B
R1501J069B	A 1 J 0 6 9 B
R1501J070B	A 1 J 0 7 0 B
R1501J071B	A 1 J 0 7 1 B
R1501J072B	A 1 J 0 7 2 B
R1501J073B	A 1 J 0 7 3 B
R1501J074B	A 1 J 0 7 4 B
R1501J075B	A 1 J 0 7 5 B
R1501J076B	A 1 J 0 7 6 B
R1501J077B	A 1 J 0 7 7 B
R1501J078B	A 1 J 0 7 8 B
R1501J079B	A 1 J 0 7 9 B

Droduct Name	0234567
Product Name R1501J080B	A 1 J 0 8 0 B
R1501J081B	A 1 J 0 8 1 B
R1501J082B	A 1 J 0 8 2 B
R1501J083B	A 1 J 0 8 3 B
R1501J084B	A 1 J 0 8 4 B
R1501J085B	A 1 J 0 8 5 B
R1501J086B R1501J087B	A 1 J 0 8 6 B A 1 J 0 8 7 B
R1501J088B	A 1 J 0 8 8 B
R1501J089B	A 1 J 0 8 9 B
R1501J090B	A 1 J 0 9 0 B
R1501J091B	A 1 J 0 9 1 B
R1501J092B	A 1 J 0 9 2 B
R1501J093B R1501J094B	A 1 J 0 9 3 B A 1 J 0 9 4 B
R1501J094B	A 1 J 0 9 5 B
R1501J096B	A 1 J 0 9 6 B
R1501J097B	A 1 J 0 9 7 B
R1501J098B	A 1 J 0 9 8 B
R1501J099B	A 1 J 0 9 9 B
R1501J100B R1501J101B	A 1 J 1 0 0 B A 1 J 1 0 1 B
R1501J101B	A 1 J 1 0 1 B
R1501J103B	A 1 J 1 0 3 B
R1501J104B	A 1 J 1 0 4 B
R1501J105B	A 1 J 1 0 5 B
R1501J106B	A 1 J 1 0 6 B
R1501J107B R1501J108B	A 1 J 1 0 7 B A 1 J 1 0 8 B
R1501J109B	A 1 J 1 0 9 B
R1501J110B	A 1 J 1 1 0 B
R1501J111B	A 1 J 1 1 1 B
R1501J112B	A 1 J 1 1 2 B
R1501J113B	A 1 J 1 1 3 B
R1501J114B R1501J115B	A 1 J 1 1 4 B A 1 J 1 1 5 B
R1501J116B	A 1 J 1 1 6 B
R1501J117B	A 1 J 1 1 7 B
R1501J118B	A 1 J 1 1 8 B
R1501J119B	A 1 J 1 1 9 B
R1501J120B	A 1 J 1 2 0 B
R1501J125B R1501J130B	A 1 J 1 2 5 B A 1 J 1 3 0 B
R1501J135B	A 1 J 1 3 5 B
R1501J140B	A 1 J 1 4 0 B
R1501J145B	A 1 J 1 4 5 B
R1501J150B	A 1 J 1 5 0 B
R1501J155B	A 1 J 1 5 5 B
R1501J160B R1501J165B	A 1 J 1 6 0 B A 1 J 1 6 5 B
R1501J170B	A 1 J 1 7 0 B
R1501J175B	A 1 J 1 7 5 B
R1501J180B	A 1 J 1 8 0 B

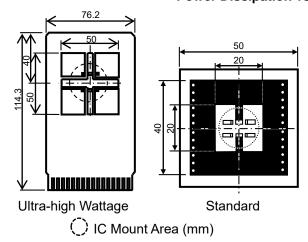
Power Dissipation (HSOP-6J)

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement.


Measurement Conditions

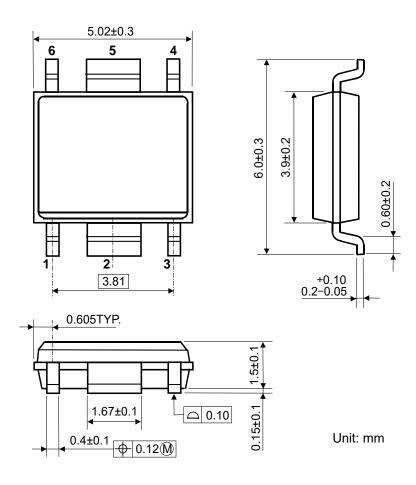

	Ultra-high Wattage Land Pattern	Standard Land Pattern
Environment	Mounting on Board (Wind Velocity = 0 m/s)	Mounting on Board (Wind Velocity = 0 m/s)
Board Material	Glass Cloth Epoxy Plastic (Four-layer Board)	Glass Cloth Epoxy Plastic (Double-sided Board)
Board Dimensions	76.2 mm × 114.3 mm × 0.8 mm	50 mm × 50 mm × 1.6 mm
Copper Ratio	96%	50%
Through-holes	φ 0.3 mm × 28 pcs	φ 0.5 mm × 24 pcs

Measurement Result


(Ta = 25°C, Tjmax = 125°C)

	Ultra-high Wattage Land Pattern	Standard Land Pattern	Free Air
Power Dissipation	2700 mW	1700 mW	540 mW
Thermal Resistance	37°C/W	59°C/W	185°C/W

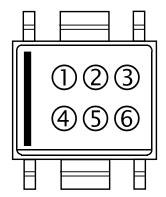
Power Dissipation vs. Ambient Temperature



The above graph shows the power dissipation of the package at Tjmax = 125°C and Tjmax = 150°C. Operating the device in the hatched range might have a negative influence on its lifetime. The total hours of use and the total years of use must be limited as follows:

Total Hours of Use	Total Years of Use (4 hours/day)	
13,000 hours	9 years	

Measurement Board Pattern


Package Dimensions (HSOP-6J)

Mark Specification (HSOP-6J)

 $\textcircled{10234} : \textbf{Product Code} \dots \textbf{\underline{Refer to the R1501S Series Mark Specification Table.}$

⑤⑥: Lot Number ... Alphanumeric Serial Number

R1501S Series Mark Specification

(PKG: HSOP-6J)

Product Name	0234	Product Name
R1501S030B	H 0 3 0	R1501S080B
R1501S031B	H 0 3 1	R1501S081B
R1501S032B	H 0 3 2	R1501S082B
R1501S033B	H 0 3 3	R1501S083B
R1501S034B	H 0 3 4	R1501S084B
R1501S035B	H 0 3 5	R1501S085B
R1501S036B	H 0 3 6	R1501S086B
R1501S037B	H 0 3 7	R1501S087B
R1501S038B	H 0 3 8	R1501S088B
R1501S039B	H 0 3 9	R1501S089B
R1501S040B	H 0 4 0	R1501S090B
R1501S041B	H 0 4 1	R1501S091B
R1501S042B	H 0 4 2	R1501S092B
R1501S043B	H 0 4 3	R1501S093B
R1501S044B	H 0 4 4	R1501S094B
R1501S045B	H 0 4 5	R1501S095B
R1501S045B	H 0 4 6	R1501S096B
R1501S040B	H 0 4 7	R1501S090B
R1501S047B	H 0 4 8	R1501S097B
R1501S049B	H 0 4 9	R1501S090B
R1501S049B R1501S050B	H 0 5 0	R1501S199B
R1501S050B	H 0 5 1	R1501S100B
R1501S052B	H 0 5 2	R1501S102B
R1501S053B	H 0 5 3	R1501S103B
R1501S054B	H 0 5 4	R1501S104B
R1501S055B	H 0 5 5	R1501S105B
R1501S056B	H 0 5 6	R1501S106B
R1501S057B	H 0 5 7	R1501S107B
R1501S058B	H 0 5 8	R1501S108B
R1501S059B	H 0 5 9	R1501S109B
R1501S060B	H 0 6 0	R1501S110B
R1501S061B	H 0 6 1	R1501S111B
R1501S062B	H 0 6 2	R1501S112B
R1501S063B	H 0 6 3	R1501S113B
R1501S064B	H 0 6 4	R1501S114B
R1501S065B	H 0 6 5	R1501S115B
R1501S066B	H 0 6 6	R1501S116B
R1501S067B	H 0 6 7	R1501S117B
R1501S068B	H 0 6 8	R1501S118B
R1501S069B	H 0 6 9	R1501S119B
R1501S070B	H 0 7 0	R1501S120B
R1501S071B	H 0 7 1	R1501S125B
R1501S072B	H 0 7 2	R1501S130B
R1501S073B	H 0 7 3	R1501S135B
R1501S074B	H 0 7 4	R1501S140B
R1501S075B	H 0 7 5	R1501S145B
R1501S076B	H 0 7 6	R1501S150B
R1501S077B	H 0 7 7	R1501S155B
R1501S078B	H 0 7 8	R1501S160B
R1501S079B	H 0 7 9	R1501S165B
	• • • •	R1501S170B
		R1501S175B
		R1501S180B
	1	11100101000

H 1

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting
- 11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment.

Halogen Free

Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

https://www.e-devices.ricoh.co.jp/en/

Sales & Support Offices

Ricoh Electronic Devices Co., Ltd.

Shin-Yokohama Office (International Sales)
2-3, Shin-Yokohama 3-chome, Kohoku-ku, Yokohama-shi, Kanagawa, 222-8530, Japan
Phone: +81-50-3814-7687 Fax: +81-45-474-0074

Ricoh Americas Holdings, Inc way, Suite 200 Campbell, CA 95008, U.S.A.

675 Campbell Technology Part Phone: +1-408-610-3105

Ricoh Europe (Netherlands) B.V.

Semiconductor Support Centre
Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands

Phone: +31-20-5474-309

Ricoh International B.V. - German Branch

Semiconductor Sales and Support Centre Oberrather Strasse 6, 40472 Düsseldorf, Germany Phone: +49-211-6546-0

Ricoh Electronic Devices Korea Co., Ltd.

3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea Phone: +82-2-2135-5700 Fax: +82-2-2051-5713

Ricoh Electronic Devices Shanghai Co., Ltd.

Room 403, No.2 Building, No.690 Bibo Road, Pu Dong New District, Shanghai 201203, People's Republic of China

Phone: +86-21-5027-3200 Fax: +86-21-5027-3299

Ricoh Electronic Devices Shanghai Co., Ltd. Shenzhen Branch

1205, Block D(Jinlong Building), Kingkey 100, Hongbao Road, Luohu District,

Shenzhen, China Phone: +86-755-8348-7600 Ext 225

Ricoh Electronic Devices Co., Ltd.

Taipei officeRoom 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.)
Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LDO Voltage Regulators category:

Click to view products by Nisshinbo manufacturer:

Other Similar products are found below:

AP7363-SP-13 L79M05TL-E PT7M8202B12TA5EX TCR3DF185,LM(CT TCR3DF24,LM(CT TCR3DF285,LM(CT TCR3DF31,LM(CT TCR3DF31,LM(CT TCR3DF45,LM(CT MP2013GQ-33-Z 059985X NCP4687DH15T1G 701326R TCR2EN28,LF(S NCV8170AXV250T2G TCR3DF27,LM(CT TCR3DF19,LM(CT TCR3DF125,LM(CT TCR2EN18,LF(S AP2112R5A-3.3TRG1 AP7315-25W5-7 IFX30081LDVGRNXUMA1 NCV47411PAAJR2G AP2113KTR-G1 AP2111H-1.2TRG1 ZLDO1117QK50TC AZ1117IH-1.8TRG1 AZ1117ID-ADJTRG1 TCR3DG12,LF MIC5514-3.3YMT-T5 MIC5512-1.2YMT-T5 MIC5317-2.8YM5-T5 SCD7912BTG NCP154MX180270TAG SCD33269T-5.0G NCV8170BMX330TCG NCV8170AMX120TCG NCP706ABMX300TAG NCP153MX330180TCG NCP114BMX075TCG MC33269T-3.5G CAT6243-ADJCMT5T TCR3DG33,LF AP2127N-1.0TRG1 TCR4DG35,LF LT1117CST-3.3 TAR5S15U(TE85L,F) TAR5S18U(TE85L,F) TCR3UG19A,LF TCR4DG105,LF NCV8170AMX360TCG