RICOH

R1514x-Y Series

150 mA Voltage Regulator (Wide Input Voltage Range) for High Temperature Applications

NO. EA-346-140319

OUTLINE

The R1514x is a positive voltage regulator (VR) IC featuring 150 mA output current that is developed with CMOS process technology. The R1514xxxxB has features of high input voltage and ultra-low supply current. A peak current limit circuit, a short current limit circuit, and a thermal shutdown circuit are built in the R1514x. R1514x is very suitable for power source of industrial equipments such as FAs and smart meters since its operating temperature is -40°C to 105°C and the maximum input voltage is 36 V.

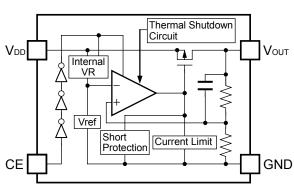
The output voltage is fixed in the R1514xxxxB and can be selected from the following: 2.5 V / 2.8 V / 3.0 V / 3.3 V / 3.4 V / 5.0 V / 6.0 V / 8.0 V / 8.5 V / 9.0 V / 12.0 V. The Output voltage accuracy is $\pm 2\%$.

The packages for this IC are the SOT-89-5 for space saving and the HSOP-6J for higher power applications.

FEATURES

Input Voltage Range (Maximum Rating)	.4 V to 36 V (50 V)
Operating Temperature	40°C to 105°C (※)
Supply Current (Iss)	Typ. 9 μA
Standby Current (Istandby)	Typ. 0.1 μA
• Temperature-Drift Coefficient of Output Voltage	Typ. ±100 ppm/°C
Output Current (Ιουτ)	Min. 150 mA ($V_{IN} = V_{OUT} + 3.0 \text{ V}$; R1514x050B)
Line Regulation	Typ. 0.05%/V
Output Voltage Accuracy	±2%
Output Voltage Range (V _{OUT}) · · · · · · · · · · · · · · · · · · ·	·2.5V / 2.8V / 3.0V / 3.3V / 3.4V / 5.0V / 6.0V / 8.0V /
	8.5V / 9.0V / 12.0V
	Contact Ricoh sales representatives for other voltages.
Packages	SOT-89-5, HSOP-6J
Built-in Short Current Limit Circuit	.Typ. 50 mA
Built-in Peak Current Limit Circuit	

* This product is usable for the high-temperature applications since have passed a test at the high temperature. In addition, this product has a high-reliability since having passed Ricoh's rigorous quality standards. To distinguish from the consumer products, "-Yx" is added at the end of the product name.

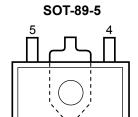

APPLICATIONS

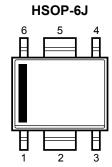
- Industrial equipments such as FAs and smart meters
- Equipments used under high-temperature conditions
- Equipments accompanied by self-heating

• Built-in Thermal Shutdown Circuit

BLOCK DIAGRAM

R1514xxxxB


SELECTION GUIDE


The output voltage, package for the ICs can be selected at the user's request.

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R1514HxxxB-T1-YE	SOT-89-5	1,000 pcs	Yes	Yes
R1514SxxxB-E2-YE	HSOP-6J	1,000 pcs	Yes	Yes

xxx: Specify the set output voltage (V_{SET}) 2.5 V (025) / 2.8 V (028) / 3.0 V (030) / 3.3 V (033) / 3.4 V (034) / 5.0 V (050) / 6.0 V (060) / 8.0 V (080) / 8.5 V (085) / 9.0 V (090) / 12.0 V (120)

PIN DESCRIPTIONS

SOT-89-5

Pin No.	Symbol	Description			
1	Vouт	Output Pin			
2	GND*1	Ground Pin			
3	CE	Chip Enable Pin, Active-high.			
4	GND*1	Ground Pin			
5	V _{DD}	Input Pin			

^{*1} The GND pin must be wired together when it is mounted on board.

HSOP-6J

Pin No.	Symbol	Description		
1	Vоит	Output Pin		
2	GND*2	Ground Pin		
3	CE	Chip Enable Pin, Active-high.		
4	GND*2	Ground Pin		
5	GND*2	Ground Pin		
6	V_{DD}	Input Pin		

^{*2} The GND pin must be wired together when it is mounted on board.

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Item		
V _{IN}	Input Voltage		−0.3 to 50	V
VIN	Peak Input Voltage*3		60	V
V _{CE}	Input Voltage (CE Pin)		-0.3 to $V_{IN} + 0.3 \le 50$	V
Vout	Output Voltage	-0.3 to $V_{IN} + 0.3 \le 50$	V	
Іоит	Output Current	250	mA	
	Power Dissipation (SOT-89-5)*4	Standard Land Pattern	900	
	Power Dissipation (301-69-5)	High Wattage Land Pattern	1300	
P _D		Standard Land Pattern	1700	mW
	Power Dissipation (HSOP-6J)*4 Ultra High Wattage Land Pattern		2700	
Tj	Junction Temperature	-40 to 125	°C	
Tstg	Storage Temperature Range		−55 to 125	°C

^{*3} Duration time = 200 ms

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS

Symbol	Item	Rating	Unit
V _{IN}	Input Voltage	4 to 36	V
Та	Operating Temperature Range	−40 to 105	°C

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

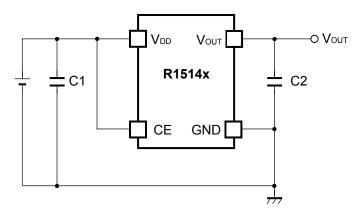
^{*4} Refer to PACKAGE INFORMATION for detailed information.

ELECTRICAL CHARACTERISTICS

 $V_{IN} = V_{SET} + 3.0 \text{ V}, C_{IN} = 0.1 \text{ }\mu\text{F}, C_{OUT} = 0.1 \text{ }\mu\text{F}, \text{ unless otherwise noted.}$ The specifications surrounded by _____ are guaranteed by design engineering at -40°C \le Ta \le 105°C.

 $R1514xxxxB (Ta = 25^{\circ}C)$

Symbol	Item	Conditions		Min.	Тур.	Max.	Unit
I _{SS}	Supply Current	$I_{OUT} = 0 \text{ mA}$			9	20	μΑ
Istandby	Standby Current	V _{IN} = 36 V, V _C	ce = 0 V		0.1	1.0	μΑ
V	Output Valtage	= 1 m Λ	Ta = 25°C	x 0.98		x 1.02	\/
V _{оит}	Output Voltage	I _{OUT} = 1 mA	-40°C ≤ Ta ≤ 105°C	x 0.97		x 1.03	V
Іоит	Output Current				roduct-spe aracterist		
ΔVουτ/ΔΙουτ	Load Regulation	1 mA ≤ l _{OUT} ≤			roduct-spe aracterist		
$\Delta V_{\text{OUT}}/\Delta V_{\text{IN}}$	Line Regulation	V _{OUT} + 1.5 V ≤ I _{OUT} = 1 mA	V_{OUT} + 1.5 V \leq V_{IN} \leq 36 V, I_{OUT} = 1 mA		0.05	0.20	%/V
V_{DIF}	Dropout Voltage	I _{OUT} = 20 mA	I _{OUT} = 20 mA			roduct-spe aracterist	
Isc	Short Current Limit	V _{OUT} = 0 V			50		mA
Vceh	CE Input Voltage "H"					VIN	V
V _{CEL}	CE Input Voltage "L"			0.0		0.3	V
T _{TSD}	Thermal Shutdown Temperature	Junction Temperature			160		°C
T _{TSR}	Thermal Shutdown Released Temperature	Junction Tem	Junction Temperature		130		°C


All test items listed under Electrical Characteristics are done under the pulse load condition (Tj ≈ Ta = 25°C).

Product-specific Electrical Characteristics

 $(Ta = 25^{\circ}C)$

	V out (V)			Іоит ((mA)	Δ V ουτ/Δ Ι ουτ		V _{DIF} (V)				
Product Name	Т	a = 25°0	C	-40°0 ≤ 10	C ≤ Ta 95°C	Ta = 25°C	-40°C ≤ Ta ≤ 105°C		n V)	Ta =	25°C	-40°C ≤ Ta ≤ 105°C
	MIN.	TYP.	MAX.	MIN.	TYP.	MIN.	MIN.	TYP.	MAX.	TYP.	MAX.	MAX.
R1514x025B	2.450	2.500	2.550	2.425	2.575	100	00			/	1.5	1.5
R1514x028B	2.744	2.800	2.856	2.716	2.884	100	90				1.2	1.2
R1514x030B	2.940	3.000	3.060	2.910	3.090			10	25	/	1.0	1.0
R1514x033B	3.234	3.300	3.366	3.201	3.399	120	120			/	0.7	0.7
R1514x034B	3.332	3.400	3.468	3.298	3.502						0.6	0.7
R1514x050B	4.900	5.000	5.100	4.850	5.150							
R1514x060B	5.880	6.000	6.120	5.820	6.180							
R1514x080B	7.840	8.000	8.160	7.760	8.240	450	450	00	0.5	0.00	0.05	0.40
R1514x085B	8.330	8.500	8.670	8.245	8.755	150	150	20	35	0.20	0.35	0.40
R1514x090B	8.820	9.000	9.180	8.730	9.270							
R1514x120B	11.760	12.000	12.240	11.640	12.360							

TYPICAL APPLICATION

External Components:

C1 (C _{IN})	0.1 μF (Ceramic)
С2 (Соит)	0.1 μF (Ceramic)

TECHNICAL NOTES

PCB Layout

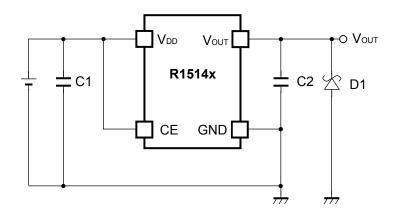
Ensure the V_{DD} and GND lines are sufficiently robust. If their impedance is too high, noise pickup or unstable operation may result. Connect a capacitor with a suitable value between the V_{DD} and GND, and as close as possible to the pins.

Phase Compensation

Phase Compensation of the R1514x has been made internally for stable operation even though the load current would vary. Therefore, without the capacitors, C1 and C2, the output voltage is regulated, however, for more stable operation, use capacitors as C1 and C2. Especially, if the input line is long and impedance is high, C1 is necessary. Moreover, if you use rather large C2, transient response will be improved. Recommended value is in the range from $0.1 \, \mu\text{F}$ to $10 \, \mu\text{F}$. Wiring should be made as short as possible.

Connect the capacitor, C1 between V_{DD} pin and GND and C2 between V_{OUT} and GND as close as possible.

Thermal Shutdown


Thermal shutdown function is included in the R1514x, if the junction temperature is more than or equal to 160°C (Typ.), the operation of regulator would stop. After that, when the junction temperature is less than or equal to 130°C (Typ.), the operation of regulator would restart. Unless the cause of rising temperature would remove, the regulator repeats on and off, and output waveform would be like consecutive pulses.

Chip Enable Circuit

Do not make voltage level of chip enable pin keep floating level, or in between V_{CEH} and V_{CEL} . Otherwise, the output voltage would be unstable or indefinite, or unexpected current would flow internally.

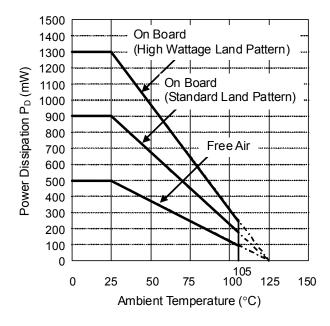
TYPICAL APPLICATION FOR IC CHIP BREAKDOWN PREVENTION

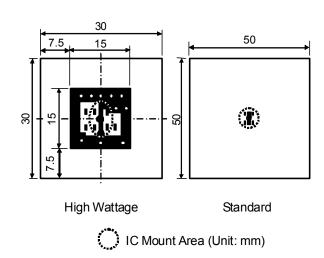
When a sudden surge of electrical current travels along the V_{OUT} pin and GND due to a short-circuit, electrical resonance of a circuit involving an output capacitor (C2) and a short circuit inductor generates a negative voltage and may damage the device or the load devices. Connecting a schottky diode (D1) between the V_{OUT} pin and GND has the effect of preventing damage to them.

PACKAGE INFORMATION

POWER DISSIPATION (SOT89-5)

Power Dissipation (P_D) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

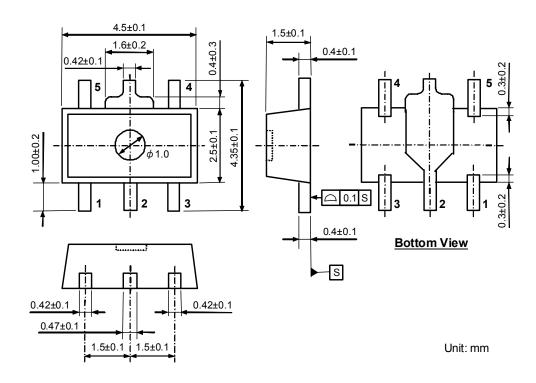

Measurement Conditions (SOT89-5)


	(33133)	
	High Wattage Land Pattern	Standard Land Pattern
Environment Mounting on board (Wind velocity = 0 m/s) Mounting on board (Wind velocity		
Board Material	Glass cloth epoxy plastic (Double sided)	Glass cloth epoxy plastic (Double sided)
Board Dimensions	30 mm x 30 mm x 1.6 mm	50 mm x 50 mm x 1.6 mm
Copper Ratio	Top side: Approx. 20%, Back side: Approx. 100%	Top side: Approx. 10%, Back side: Approx. 100%
Through-hole	φ0.85 mm x 10 pcs	-

Measurement Result (SOT89-5)

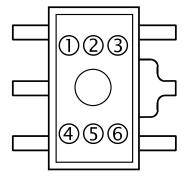
 $(Ta = 25^{\circ}C, Tjmax = 125^{\circ}C)$

mododiomont itoodit (ot	(1)	a 20 0, fjillax 120 0)	
	High Wattage Land Pattern	Standard Land Pattern	Free Air
Power Dissipation	1300 mW	900 mW	500 mW
Thermal Resistance	77°C/W	111°C/W	200°C/W



Power Dissipation vs. Ambience Temperature (SOT89-5)

Measurement Board Pattern (SOT89-5)


PACKAGE DIMENSIONS (SOT89-5)

MARK SPECIFICATION (SOT-89-5)

①②③④: Product Code ... Refer to R1514H MARK SPECIFICATION TABLE (SOT-89-5)

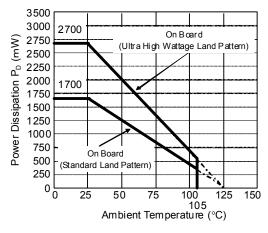
⑤⑥: Lot Number ... Alphanumeric Serial Number

R1514x-Y NO. EA-346-140319

R1514H MARK SPECIFICATION TABLE (SOT-89-5)

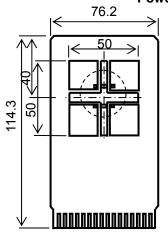
Product Name	0234	V _{SET}
R1514H025B	M 0 2 5	2.5 V
R1514H028B	M 0 2 8	2.8 V
R1514H030B	M 0 3 0	3.0 V
R1514H033B	M 0 3 3	3.3 V
R1514H034B	M 0 3 4	3.4 V
R1514H050B	M 0 5 0	5.0 V
R1514H060B	M 0 6 0	6.0 V
R1514H080B	M 0 8 0	8.0 V
R1514H085B	M 0 8 5	8.5 V
R1514H090B	M 0 9 0	9.0 V
R1514H120B	M 1 2 0	12.0 V

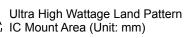
POWER DISSIPATION (HSOP-6J)

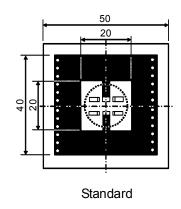

Power Dissipation (P_D) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

Measurement Conditions

	Ultra High Wattage Land Pattern	Standard Land Pattern	
Environment	Mounting on Board (Wind velocity = 0 m/s)	Mounting on Board (Wind velocity = 0 m/s)	
Board Material	Glass cloth epoxy plastic (4 Layers)	Glass cloth epoxy plastic (2 Layers)	
Board Dimensions	76.2 mm \times 114.3 mm \times 0.8 mm	50 mm × 50 mm × 1.6 mm	
Copper Ratio	96%	50%	
Through-hole	φ0.3 mm × 28 pcs	φ0.5 mm × 24 pcs	

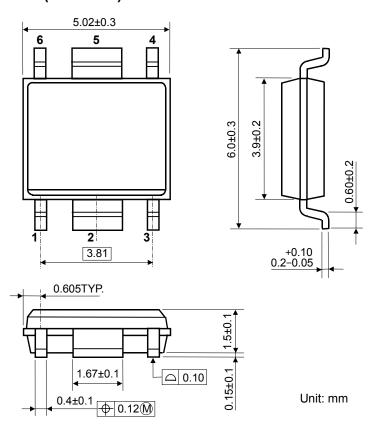

Measurement Result (Ta = 25°C, Tjmax = 125°C)


	Ultra High Wattage Land Pattern	Standard Land Pattern	Free Air
Power Dissipation	2700 mW	1700 mW	540 mW
Thermal Resistance	37°C/W	59°C/W	185°C/W



Power Dissipation

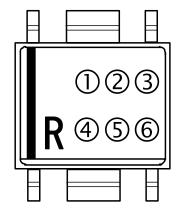
Power Dissipation vs. Ambience Temperature (HSOP-6J)



Measurement Board Pattern

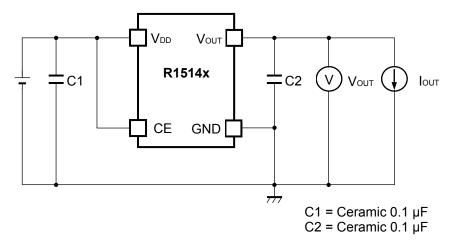
IC Mount Area (Unit: mm)

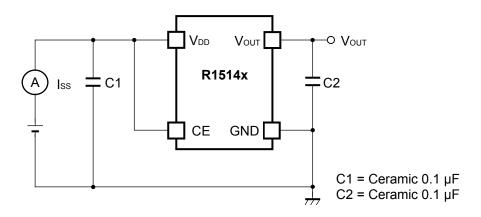
Measurement Board Pattern (HSOP-6J)


PACKAGE DIMENSIONS (HSOP-6J)

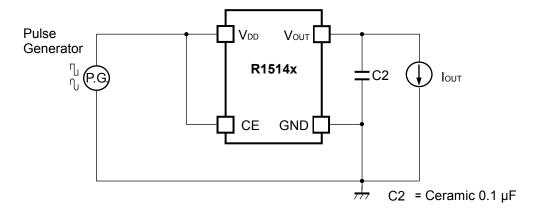
MARK SPECIFICATION (HSOP-6J)

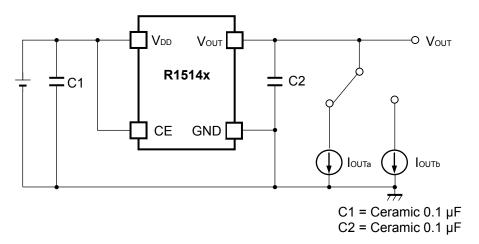
①②③④: Product Code ... Refer to R1514S MARK SPECIFICATION TABLE (HSOP-6J)


⑤⑥: Lot Number ... Alphanumeric Serial Number


R1514S MARK SPECIFICATION TABLE (HSOP-6J)

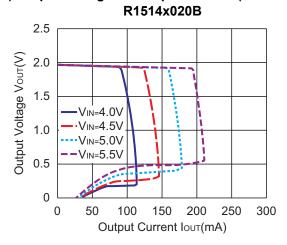
Product Name	0234	V _{SET}
R1514S025B	E 0 2 5	2.5 V
R1514S028B	E 0 2 8	2.8 V
R1514S030B	E 0 3 0	3.0 V
R1514S033B	E033	3.3 V
R1514S034B	E 0 3 4	3.4 V
R1514S050B	E 0 5 0	5.0 V
R1514S060B	E060	6.0 V
R1514S080B	E080	8.0 V
R1514S085B	E085	8.5 V
R1514S090B	E090	9.0 V
R1514S120B	E 1 2 0	12.0 V

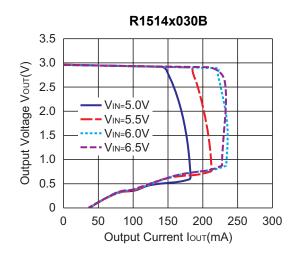

TEST CIRCUITS

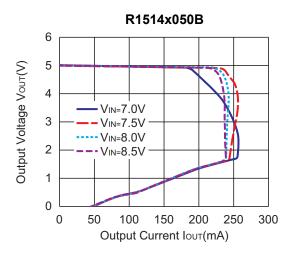

Basic Test Circuit

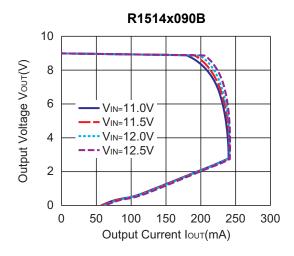
Test Circuit for Supply Current

Test Circuit for Line Transient Response

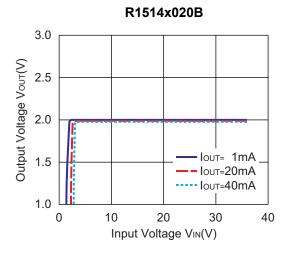


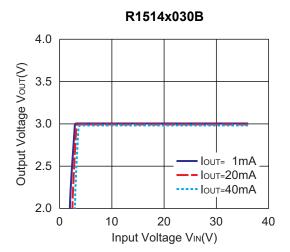

Test Circuit for Load Transient Response

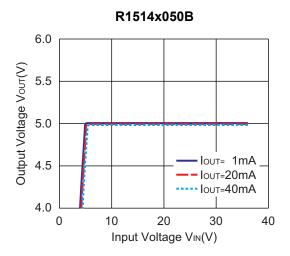

TYPICAL CHARACTERISTICS

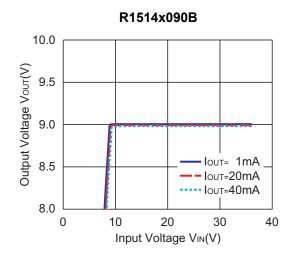

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

1) Output Voltage vs. Output Current (Ta = 25°C)

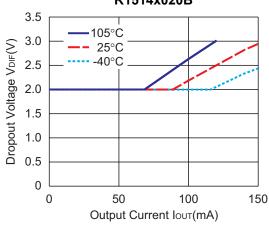


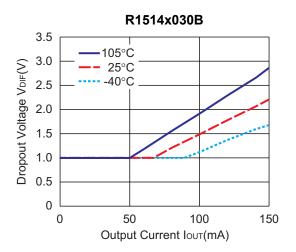


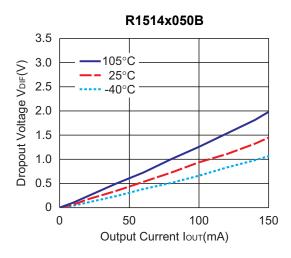


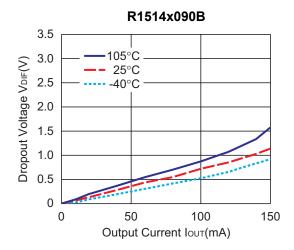


2) Output Voltage vs. Input Voltage (Ta = 25°C)

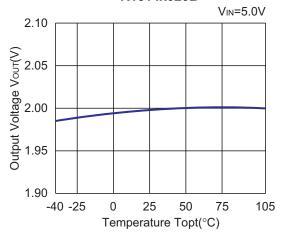


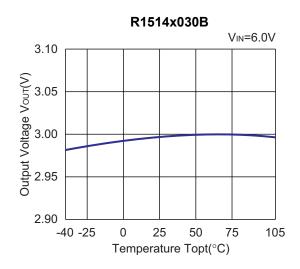


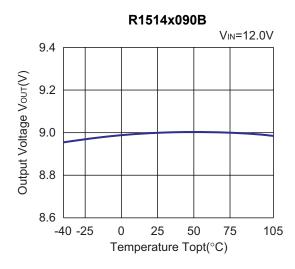




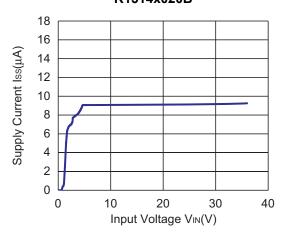
3) Dropout Voltage vs. Output Current R1514x020B

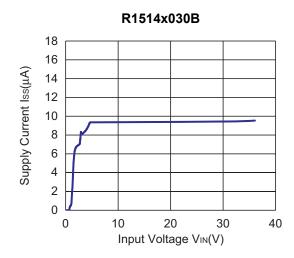


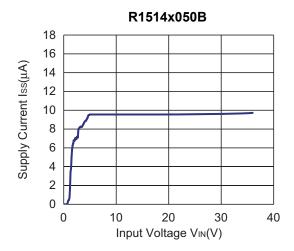


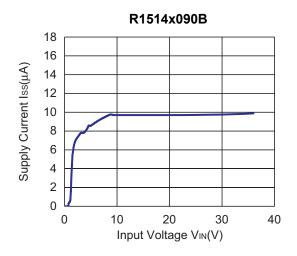


4) Output Voltage vs. Temperature R1514x020B

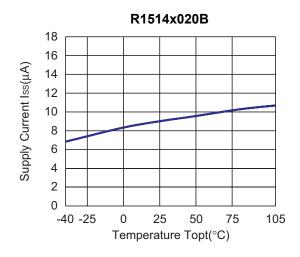


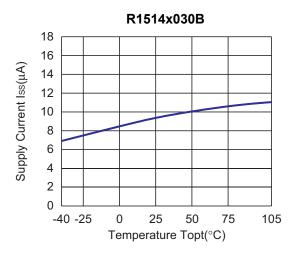


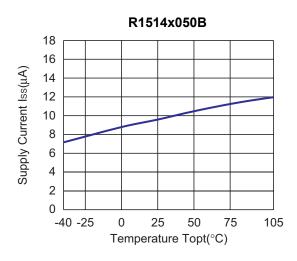

81514x050B V_{IN}=8.0V 5.2 5.1 5.1 4.9 4.8 -40 -25 0 25 50 75 105 Temperature Topt(°C)

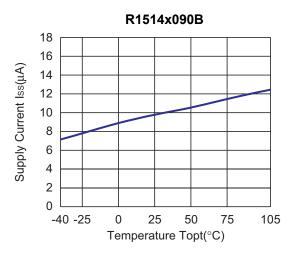


5) Supply Current vs. Input Voltage (Ta = 25°C) R1514x020B

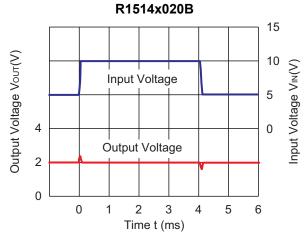


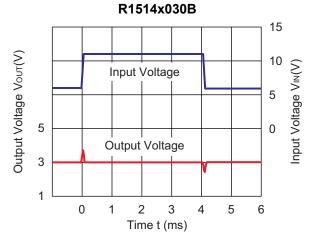


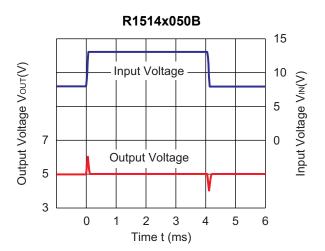


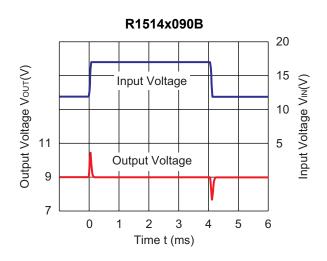


6) Supply Current vs. Temperature

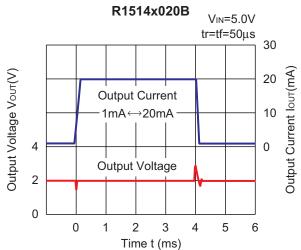


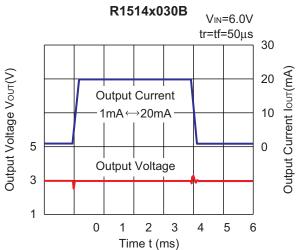


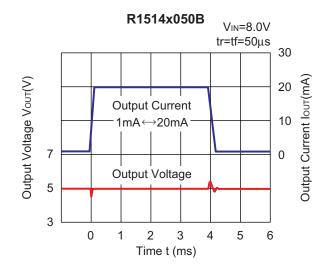


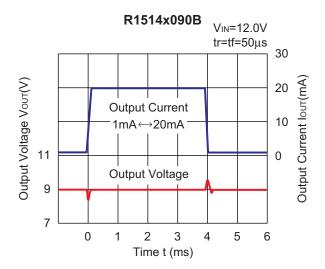


7) Input Transient Response ($I_{OUT} = 1 \text{ mA}$, tr = tf = 50 μ s, C2 = Ceramic 0.1 μ F, Ta = 25°C)






8) Load Transient Response (C2 = Ceramic 0.1 μ F, Ta = 25°C)



R1514x-Y

NO. EA-346-140319

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting
- 11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment.

Halogen Free

Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

https://www.e-devices.ricoh.co.jp/en/

Sales & Support Offices

Ricoh Electronic Devices Co., Ltd.

Shin-Yokohama Office (International Sales)
2-3, Shin-Yokohama 3-chome, Kohoku-ku, Yokohama-shi, Kanagawa, 222-8530, Japan
Phone: +81-50-3814-7687 Fax: +81-45-474-0074

Ricoh Americas Holdings, Inc.

675 Campbell Technology F Phone: +1-408-610-3105

Ricoh Europe (Netherlands) B.V.

Semiconductor Support Centre
Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands
Phone: +31-20-5474-309

Ricoh International B.V. - German Branch

Semiconductor Sales and Support Centre Oberrather Strasse 6, 40472 Düsseldorf, Germany

Phone: +49-211-6546-0

Ricoh Electronic Devices Korea Co., Ltd.

3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea Phone: +82-2-2135-5700 Fax: +82-2-2051-5713

Ricoh Electronic Devices Shanghai Co., Ltd.

Room 403, No.2 Building, No.690 Bibo Road, Pu Dong New District, Shanghai 201203, People's Republic of China

Phone: +86-21-5027-3200 Fax: +86-21-5027-3299

Ricoh Electronic Devices Shanghai Co., Ltd. Shenzhen Branch

1205, Block D(Jinlong Building), Kingkey 100, Hongbao Road, Luohu District,

Shenzhen, China Phone: +86-755-8348-7600 Ext 225

Ricoh Electronic Devices Co., Ltd.

Taipei officeRoom 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.)
Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LDO Voltage Regulators category:

Click to view products by Nisshinbo manufacturer:

Other Similar products are found below:

L79M05TL-E PT7M8202B12TA5EX TCR3DF185,LM(CT TCR3DF24,LM(CT TCR3DF285,LM(CT TCR3DF31,LM(CT TCR3DF31,LM(CT TCR3DF31,LM(CT TCR3DF31,LM(CT TCR3DF31,LM(CT TCR3DF31,LM(CT TCR3DF31,LM(CT TCR3DF31,LM(CT TCR3DF31,LM(CT TCR3DF19,LM(CT TCR3DF125,LM(CT TCR2EN18,LF(S AP2112R5A-3.3TRG1 AP7315-25W5-7 IFX30081LDVGRNXUMA1 NCV47411PAAJR2G AP2113KTR-G1 AP2111H-1.2TRG1 ZLDO1117QK50TC AZ1117IH-1.8TRG1 AZ1117ID-ADJTRG1 TCR3DG12,LF MIC5514-3.3YMT-T5 MIC5512-1.2YMT-T5 MIC5317-2.8YM5-T5 SCD7912BTG NCP154MX180270TAG SCD33269T-5.0G NCV8170BMX330TCG NCV8170AMX120TCG NCP706ABMX300TAG NCP153MX330180TCG NCP114BMX075TCG MC33269T-3.5G CAT6243-ADJCMT5T TCR3DG33,LF AP2127N-1.0TRG1 TCR4DG35,LF LT1117CST-3.3 TAR5S15U(TE85L,F) TAR5S18U(TE85L,F) TCR3UG19A,LF TCR4DG105,LF NCV8170AMX360TCG MIC94310-NYMT-T5