RICOH

R1516x Series

AEC-Q100 Grade 2 Compliant

150 mA 36 V Input LDO Regulator for Automotive Application

NO.EC-258-141222

OUTLINE

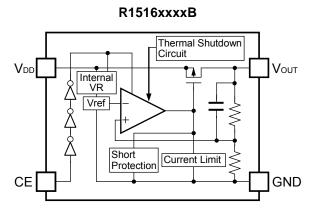
The R1516x Series are CMOS-based high-voltage resistant and low supply current voltage regulator ICs that provide the minimum 150mA of output voltage. Internally, the R1516x Series consists of a Foldback Protection Circuit, and a Thermal Shutdown Circuit in addition to the basic regulator circuits. The operating temperature range is between –40°C to 105°C, and the maximum input voltage is 36V. All these features allow this device to become an ideal power source for car accessories and ECUs.

The R1516x Series are available in fixed output voltage options between 1.8V and 6.2V in 0.1V steps. The output voltage accuracy is \pm 1%.

The R1516x Series are available in two types of packages: SOT-89-5 that is for high-density mounting and HSOP-6J that is for ultra high wattage.

FEATURES

- Input Voltage Range (Maximum Rating) ------ 4V to 36V (50V)
- Supply Current Typ. 29µA


- Line Regulation Typ. 0.1%/V
- Output Voltage Accuracy ······ ±1% (Vou⊤ ≥ 3.2V, Ta=25°C)
- Packages·····SOT-89-5, HSOP-6J
- Output Voltage Range 1.8V to 6.2V (0.1V steps)
- Built-in Foldback Protection Circuit 50mA (Current at short mode)
- Built-in Thermal Shutdown Circuit ······ Stops at 160°C

APPLICATIONS

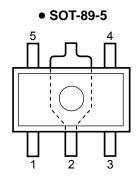
- Power source for accessories such as car audios, car navigation systems, and ETC systems
- Power source for ECUs such as EV inverter and battery charge control unit

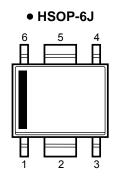
NO.EC-258-141222

BLOCK DIAGRAMS

SELECTION GUIDE

The output voltage and the package for the ICs can be selected at the user's request.


Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R1516HxxxB-T1-#E	SOT-89-5	1,000pcs	Yes	Yes
R1516SxxxB-E2-#E	HSOP-6J	1,000pcs	Yes	Yes


xxx : The output voltage can be designated in the range of 1.8V(018) to 6.2V(062) in 0.1V steps.

: Specify Automotive Class Code

	Operating Temperature Range	Guaranteed Specs Temperature Range	Screening
А	-40°C to 105°C	25°C	High Temperature
J	-40°C to 105°C	25°C	High and Low Temperature

PIN DESCRIPTIONS

• SOT-89-5

Pin No.	Symbol	Description
1	Vout	Output Pin
2	GND*	Ground Pin
3	CE	Chip Enable Pin ("H" Active)
4	GND*	Ground Pin
5	VDD	Input Pin

*) The GND pin must be wired together when it is mounted on board.

• HSOP-6J

Pin No.	Symbol	Description	
1	Vout	Output Pin	
2	GND*	Ground Pin	
3	CE	Chip Enable Pin ("H" Active)	
4	GND*	Ground Pin	
5	GND*	Ground Pin	
6	Vdd	Input Pin	

*) The GND pin must be wired together when it is mounted on board.

NO.EC-258-141222

ABSOLUTE MAXIMUM RATINGS

Symbol		Item				
VIN	Input Voltage			-0.3~50	V	
VIN	Peak Input Voltage*1			60	V	
VCE	Input Voltage (CE Pir	ו)		-0.3 ~ Vıℕ+0.3≦50	V	
Vout	Output Voltage			-0.3 ~ V⊪+0.3≦50	V	
Іоит	Output Current			250	mA	
	SOT 90	SOT-89-5	Standard Land Pattern	1120		
Po	Power Dissipation		High Wattage Land Pattern	1620	m\//	
PD	*2		Standard Land Pattern	2100	mW	
	HSOP-6J		Ultra High Wattage Land Pattern	3400		
Tj	Junction Temperature			–40 to 150	°C	
Tstg	Storage Temperature	Storage Temperature Range			°C	

*1) Duration time: 200ms

*2) Refer to PACKAGE INFORMATION for detailed information.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING RATINGS

Symbol	Item	Rating	Unit
VIN	Input Voltage	4 to 36	V
Та	Operating Temperature Range	-40 to 105	°C

RECOMMENDED OPERATING RATINGS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating ratings. The semiconductor devices cannot operate normally over the recommended operating ratings, even if when they are used over such ratings by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating ratings.

NO.EC-258-141222

ELECTRICAL CHARACTERISTICS

The specifications surrounded by ______ are guaranteed by Design Engineering at - $40^{\circ}C \le Ta \le 105^{\circ}C$. R1516xxxxB (Ta=25°C)

1516XXXX							(Ta	=25°C)
Symbol	ltem		Condit	ions	Min.	Тур.	Max.	Unit
VIN	Input Voltage			4		36	V	
lss	Supply Current	VIN=VOUT+	3.0V, I	out= 0mA		29	45	μA
Istandby	Standby Current	V _{IN} =36V, V	√ _{CE} =0\	/		0.1	1.0	μA
Vout	Output Voltage	V _{IN} =V _{OUT} + I _{OUT} =1mA		V _{OUT} ≥ 3.2V	x0.99 x0.98		x1.01 x1.02	V
V001	Output Voltage	V _{IN} =V _{OUT} + I _{OUT} =1mA		V _{OUT} < 3.2V	x0.985 x0.975		x1.015 x1.025	V
ILIM	Output Current Limit	Please	refer to	Output Current	Limit Spec	cification	Table.	mA
ΔVουτ /ΔΙ _{Ουτ}	Load Regulation	Pleas	Please refer to Load Regulation Specification Table.				mV	
ΔVout /ΔVin	Line Regulation	$I_{OUT}=1mA \begin{array}{c} V_{OUT}+1.5V \leq V_{IN} \leq 36V, \\ (V_{OUT} \geq 2.5V) \\ \hline 4V \leq V_{IN} \leq 36V, \\ (V_{OUT} < 2.5V) \end{array}$			0.1	0.7	%	
VDIF	Dropout Voltage	Pleas	se refe	r to Dropout Volta	age Secification Table.			V
ΔVουτ /ΔTa	Output Voltage Temperature Coefficient	V _{IN} =V _{OUT} +3.0V, I _{OUT} =1mA -40°C ≤ Ta ≤ 105°C			±100		ppm/⁰C	
lsc	Short Current Limit	Vout=0V				50		mA
VCEH	CE Input Voltage "H"				1.3		Vin	V
V _{CEL}	CE Input Voltage "L"			0		0.35	V	
T _{TSD}	Thermal Shutdown Temparature	Junction Temeprature		150	160		°C	
T _{TSR}	Thermal Shutdown Released Temparature	Junction Temperature			125		°C	

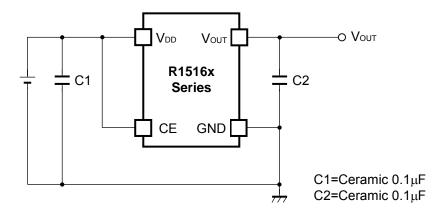
For the other specifications, all test items are done under the pulse load condition (Tj≈Ta=25°C)

Output Current Limit Specification Table (Ta=25°C)

Output Voltage	Output Current Limit ILIM (mA)		
V _{OUT} (V)	Conditions	Min.	
1.8 ≤ V _{OUT} < 3.0	VIN=VOUT+5.0V		
3.0 ≤ V _{OUT} < 5.0	$V_{IN}=V_{OUT}+4.0V$	150	
5.0 ≤ V _{OUT} ≤ 6.2	$V_{IN} = V_{OUT} + 3.0V$		

Load Regulation Specification Table (Ta=25°C)

Outout Voltage	Load Regulation (mV)				
V _{OUT} (V)	Conditions	Тур.	Max.		
1.8 ≤ V _{out} ≤ 3.0		30 (V _{OUT} =3.0V)	70		
3.0 < V _{out} ≤ 5.0	$V_{IN}=V_{OUT}+3.0V$ 1mA $\leq I_{OUT} \leq 40mA$	40 (V _{OUT} =5.0V)	105		
5.0 < V₀u⊤ ≤ 6.2	$1111A \le 1001 \le 4011A$	50 (V _{OUT} =6.2V)	125		


NO.EC-258-141222

The specifications surrounded by _____ are guaranteed by Design Engineering at - $40^{\circ}C \le Ta \le 105^{\circ}C$

Output Voltage Vout	Dropout Vo	tage V _{DIF} (V)
(V)	Conditions	Max.
V _{OUT} =1.8		2.30
Vout=1.9		2.20
Vout =2.0		2.10
Vout=2.1		2.00
Vout=2.2		1.90
Vout=2.3		1.80
V _{OUT} =2.4		1.70
V _{OUT} =2.5		1.60
Vout =2 .6		1.50
Vout=2.7	1	1.40
V _{OUT} =2.8		1.30
V _{OUT} =2.9	1	1.20
Vout=3.0		1.10
V _{OUT} =3.1		1.06
Vout=3.2		1.02
V _{OUT} =3.3		0.98
V _{OUT} =3.4	louτ=20mA	0.94
Vout=3.5		0.90
V _{OUT} =3.6		0.86
V _{OUT} =3.7		0.82
V _{OUT} =3.8		0.78
V _{OUT} =3.9		0.74
V _{OUT} =4.0		0.70
V _{OUT} =4.1		0.69
V _{OUT} =4.2		0.68
V _{OUT} =4.3	1	0.67
V _{OUT} =4.4		0.66
Vout=4.5		0.65
V _{OUT} =4.6	1	0.64
V _{OUT} =4.7	1	0.63
V _{OUT} =4.8		0.62
V _{OUT} =4.9	1	0.61
5.0 ≤ V _{OUT} ≤ 6.2	1	0.60

Dropout Voltage Specification Table (Ta=25°C)

TYPICAL APPLICATION

TECHNICAL NOTES

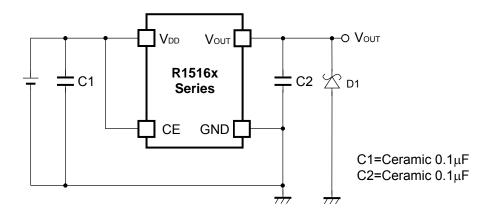
When using the R1516x Series, please consider the following points.

Phase Compensation

The R1516x Series provide the constant-voltage without using C1 and C2 capacitors. However, if the input line is too long, C1 should be connected. To minimize the input voltage fluctuation and the transient output voltage fluctuation that is caused by the load fluctuation, C2 size should be increased. Please refer to the Basic Test Circuit below when connecting a 0.1μ F to 20μ F C1 capacitor from V_{DD} to GND, and also connecting a 0.1μ F to 20μ F C2 capacitor from V_{OUT} to GND. The C1 and C2 capacitors, V_{DD}, GND and V_{OUT} should be connected as close as possible to each other.

GND Wiring on Boards

For SOT-89-5 package, please connect the No.2 pin and the No.4 pin to the ground plane on the board. For HSOP-6J package, please connect the No.2 pin, the No.4 pin and the No.5 pin to the ground plane on the board.


Thermal Shutdown

The thermal shutdown is included, which limits the junction temperature to a maximum 160°C (Typ.). Under extreme conditions when the junction temperature begins to rise above 160°C, the output is turned off, reducing the output current to zero. When the junction temperature drops below +125°C (Typ.), the output is turned on again and the output current is restored to its nominal value. The output repeats turning on and off to form a pulse shaped output unless the causes of the temperature rise are removed.

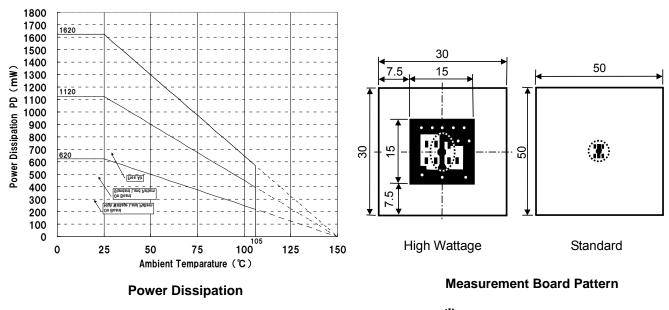
Chip Enable (CE) Circuit

The electrical potential level of chip enable (CE) pin should not be set in between V_{CEH} and V_{CEL} . Using the electrical potentials in between V_{CEH} and V_{CEL} may cause the increase of supply current and may result in unstable output.

TYPICAL APPLICATION FOR IC CHIP BREAKDOWN PREVENTION

When a sudden surge of electrical current travels along the V_{OUT} pin and GND due to a short-circuit, electrical resonance of a circuit involving an output capacitor (C2) and a short circuit inductor generates a negative voltage and may damage the device or the load devices. Connecting a schottky diode (D1) between the V_{OUT} pin and GND has the effect of preventing damage to them.

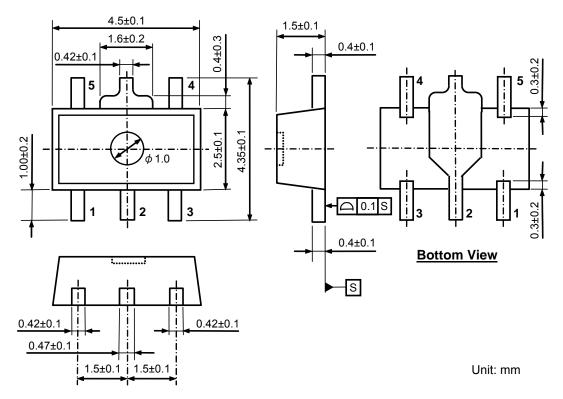
PACKAGE INFORMATION


POWER DISSIPATION (SOT-89-5)

Power Dissipation (P_{D}) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

	High Wattage Land Pattern	Standard Land Pattern
Environment	Mounting on Board (Wind velocity=0m/s)	Mounting on Board (Wind velocity=0m/s)
Board Material	Glass cloth epoxy plastic (Double sided)	Glass cloth epoxy plastic (Double sided)
Board Dimensions	30mm × 30mm × 1.6mm	50 mm \times 50 mm \times 1.6 mm
Copper Ratio	Top side : Approx. 20% , Back side : Approx. 100%	Top side : Approx. 10% , Back side : Approx. 100%
Through-hole	$\phi 0.85 mm imes 10 pcs$	-

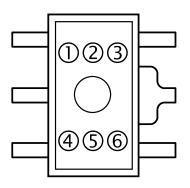
Measurement Conditions


Measurement Result(Ta=25°C, Tjmax=150°C)High Wattage Land PatternStandard Land PatternFree AirPower Dissipation1620mW1120mW620mWThermal Resistance77°C/W111°C/W200°C/W

IC Mount Area (Unit : mm)

NO.EC-258-141222

PACKAGE DIMENSIONS (SOT-89-5)



SOT-89-5 Package Dimensions

MARK SPECIFICATION (SOT-89-5)

1234: Product Code ... Refer to MARK SPECIFICATION TABLE (SOT-89-5)

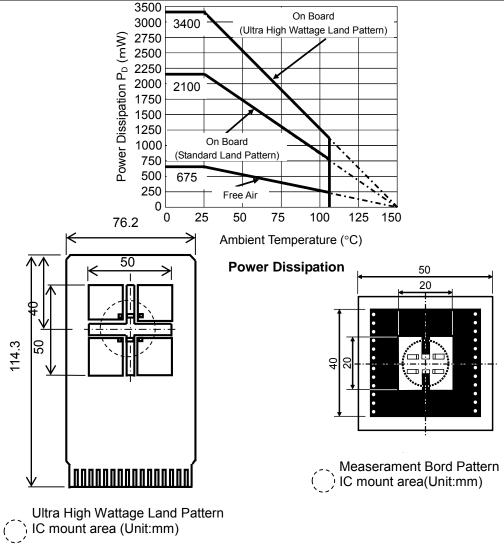
(5) (6): Lot Number ... Alphanumeric Serial Number

SOT-89-5 Mark Specification

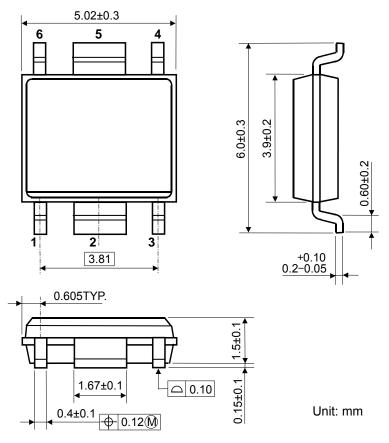
MARK SPECIFICATION TABLE (SOT-89-5)

R1516HxxxB

Product Name	0234	V _{SET}
R1516H018B	B 0 1 8	1.8 V
R1516H019B	B 0 1 9	1.9 V
R1516H020B	B 0 2 0	2.0 V
R1516H021B	B 0 2 1	2.1 V
R1516H022B	B 0 2 2	2.2 V
R1516H023B	B 0 2 3	2.3 V
R1516H024B	B 0 2 4	2.4 V
R1516H025B	B 0 2 5	2.5 V
R1516H026B	B 0 2 6	2.6 V
R1516H027B	B 0 2 7	2.7 V
R1516H028B	B 0 2 8	2.8 V
R1516H029B	B 0 2 9	2.9 V
R1516H030B	B 0 3 0	3.0 V
R1516H031B	B 0 3 1	3.1 V
R1516H032B	B 0 3 2	3.2 V
R1516H033B	B 0 3 3 B 0 3 4	3.3 V
R1516H034B R1516H035B	B 0 3 4 B 0 3 5	3.4 V 3.5 V
R1516H036B	В 0 3 5 В 0 3 6	3.5 V 3.6 V
R1516H037B	B 0 3 7	3.0 V 3.7 V
R1516H038B	B 0 3 8	3.8 V
R1516H039B	B 0 3 9	3.9 V
R1516H040B	B 0 4 0	4.0 V
R1516H041B	B 0 4 1	4.1 V
R1516H042B	B 0 4 2	4.2 V
R1516H043B	B 0 4 3	4.3 V
R1516H044B	B 0 4 4	4.4 V
R1516H045B	B 0 4 5	4.5 V
R1516H046B	B 0 4 6	4.6 V
R1516H047B	B 0 4 7	4.7 V
R1516H048B	B 0 4 8	4.8 V
R1516H049B	B 0 4 9	4.9 V
R1516H050B	B 0 5 0	5.0 V
R1516H051B	B 0 5 1	5.1 V
R1516H052B	B 0 5 2	5.2 V
R1516H053B	B 0 5 3	5.3 V
R1516H054B	B 0 5 4	5.4 V
R1516H055B	B 0 5 5	5.5 V
R1516H056B	B 0 5 6	5.6 V
R1516H057B	B 0 5 7	5.7 V
R1516H058B	B 0 5 8	5.8 V
R1516H059B R1516H060B	B 0 5 9 B 0 6 0	5.9 V 6.0 V
R1516H061B	в 0 6 0 В 0 6 1	6.0 V 6.1 V
R1516H061B	B 0 6 1 B 0 6 2	
R1310HU02B	BU02	6.2 V


NO.EC-258-141222

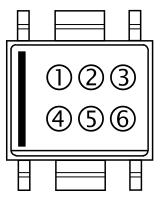
POWER DISSIPATION (HSOP-6J)


Power Dissipation (P_{o}) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

Measurement Conditions

	Ultra High Wattage Land Pattern		Standard Land Pattern	
Environment	Mounting on Board (Wind velocity=0m/s)		Mounting on Board (Wind velocity=0m/s)	
Board Material	Glass cloth epoxy plastic (4Layers)		Glass cloth epoxy plastic (Double Layers)	
Board Dimensions	76.2mm × 114.3mm × 0.8mm		50mm × 50mm × 1.6mm	
Copper Ratio	96%		50%	
Through-hole	φ0.3mm × 28pcs		ϕ 0.5mm × 24pcs	
Measurement Result				(Ta=25°C, Tjmax=150°C)
	Ultra High Wattage Land Pattern	Standa	ard Land Pattern	Free Air
Power Dissipation	3400mW	2100mW		675mW
Thermal Resistance	e 37°C/W		59°C/W	185°C/W

PACKAGE DIMENSIONS (HSOP-6J)

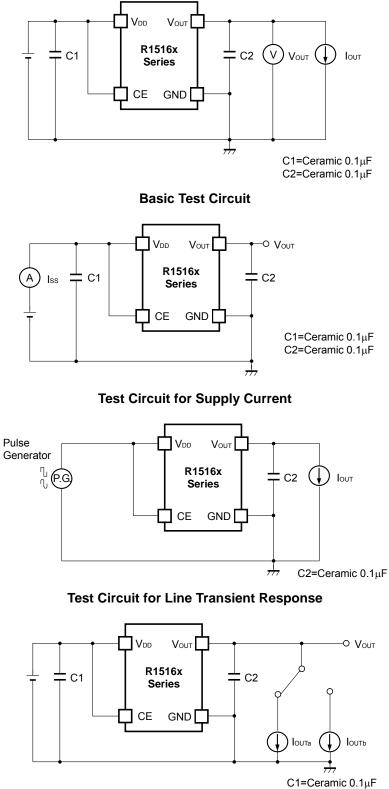


HSOP-6J Package Dimensions

MARK SPECIFICATION (HSOP-6J)

①②③④: Product Code ... Refer to MARK SPECIFICATION TABLE (HSOP-6J)

© 6: Lot Number ... Alphanumeric Serial Number

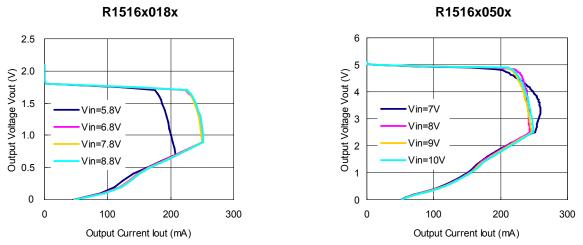

HSOP-6J Mark Specification

NO.EC-258-141222

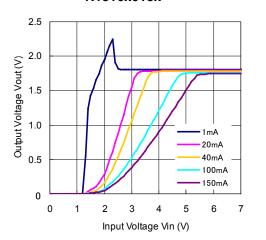
MARK SPECIFICATION TABLE (HSOP-6J)

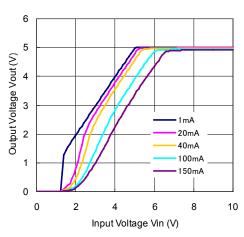
R1516SxxxB						
Product Name	0 2 3 4	V _{SET}				
R1516S018B	P 0 1 8	1.8 V				
R1516S019B	P019	1.9 V				
R1516S020B	P 0 2 0	2.0 V				
R1516S021B	P 0 2 1	2.1 V				
R1516S022B	P 0 2 2	2.2 V				
R1516S023B	P 0 2 3	2.3 V				
R1516S024B	P 0 2 4	2.4 V				
R1516S025B	P025	2.5 V				
R1516S026B	P 0 2 6	2.6 V				
R1516S027B	P 0 2 7	2.7 V				
R1516S028B	P028	2.8 V				
R1516S029B	P029	2.9 V				
R1516S030B	P030	3.0 V				
R1516S031B	P031	3.1 V				
R1516S032B	P032	3.2 V				
R1516S033B	P033	3.3 V				
R1516S034B	P034	3.4 V				
R1516S035B	P035	3.5 V				
R1516S036B	P036	3.6 V				
R1516S037B	P037	3.7 V				
R1516S038B	P038	3.8 V				
R1516S039B	P039	3.9 V				
R1516S040B	P 0 4 0	4.0 V				
R1516S041B	P 0 4 1	4.1 V				
R1516S042B	P 0 4 2	4.2 V				
R1516S043B	P 0 4 3	4.3 V				
R1516S044B	P 0 4 4	4.4 V				
R1516S045B	P 0 4 5	4.5 V				
R1516S046B	P 0 4 6	4.6 V				
R1516S047B	P 0 4 7	4.7 V				
R1516S048B	P 0 4 8	4.8 V				
R1516S049B	P 0 4 9	4.9 V				
R1516S050B	P 0 5 0	5.0 V				
R1516S051B	P 0 5 1	5.1 V				
R1516S052B	P 0 5 2	5.2 V				
R1516S053B	P 0 5 3	5.3 V				
R1516S054B	P 0 5 4	5.4 V				
R1516S055B	P 0 5 5 P 0 5 6	5.5 V				
R1516S056B		5.6 V				
R1516S057B		5.7 V				
R1516S058B R1516S059B		5.8 V 5.9 V				
R1516S059B R1516S060B						
		6.0 V				
R1516S061B		6.1 V				
R1516S062B	P 0 6 2	6.2 V				

TEST CIRCUITS

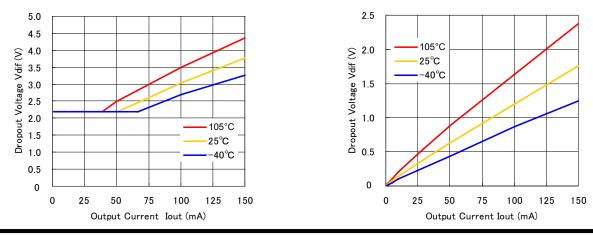

C2=Ceramic 0.1µF

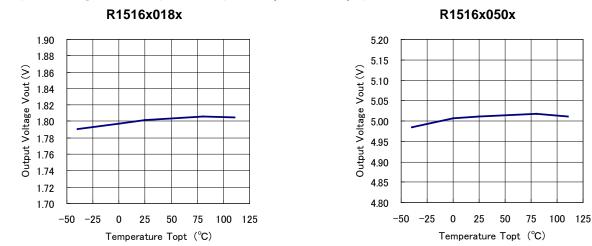
Test Circuit for Load Transient Response

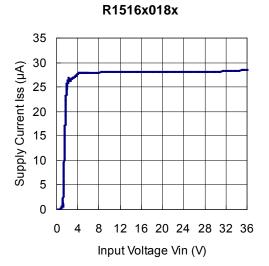

NO.EC-258-141222

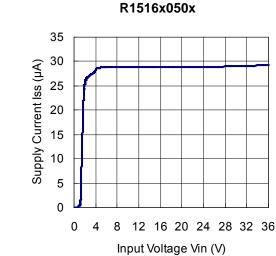

Typical Characteristics

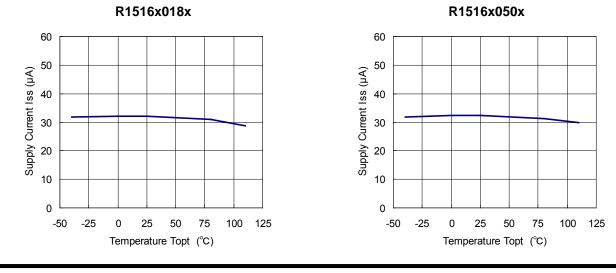
Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed. 1) Output Voltage vs. Output Current (C1= 0.1μ F, C2= 0.1μ F, Ta= 25° C)

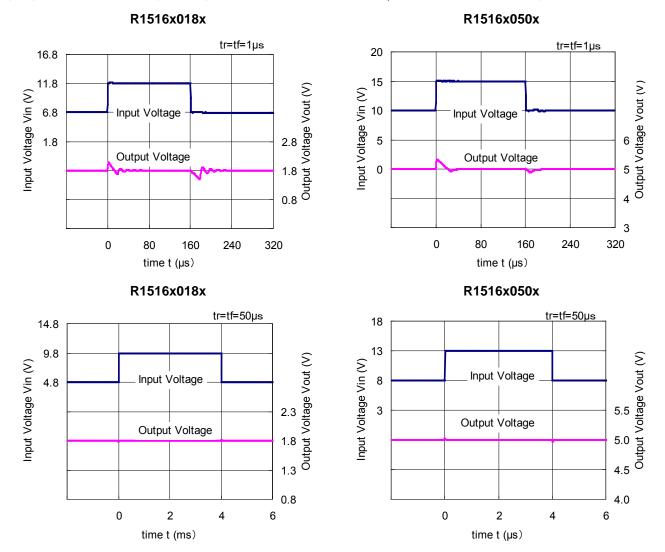

2) Output Voltage vs. Input Voltage (C1=0.1μF, C2=0.1μF, Ta=25°C) R1516x018x R1516x050x

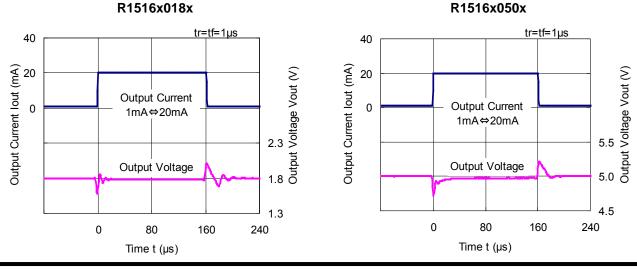






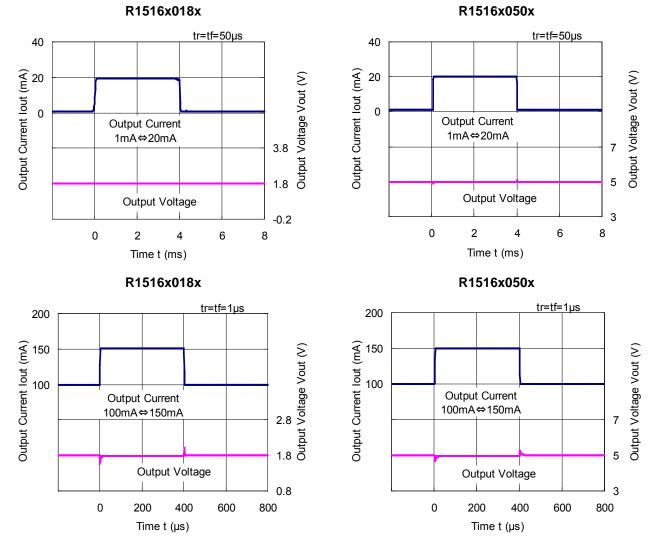

4) Output Voltage vs. Temperature (C1=0.1 μ F, C2=0.1 μ F)

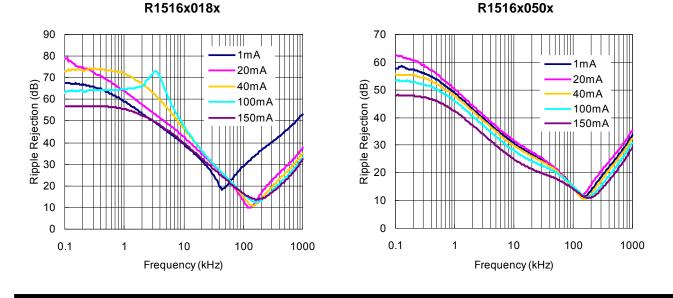


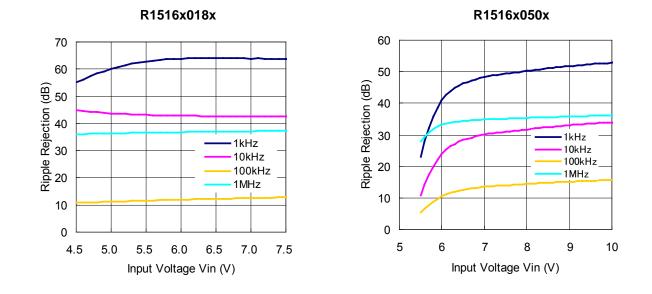

RICOH

NO.EC-258-141222

7) Input Transient Response (C1=none, C2=Ceramic 0.1µF, Iout=1mA, Ta=25°C)


8) Load Transient Response (C1=Ceramic 0.1µF, C2=Ceramic 0.1µF, Ta=25°C)


R1516x050x


RICOH

NO.EC-258-141222

9) Ripple Rejection vs. Frequency (C1=none, C2=Ceramic 0.1µF, Ripple=0.5Vp-p, Ta=25°C)

10) Ripple Rejection vs. Input Voltage (C1=none, C2=Ceramic 0.1µF, lour=20mA, Ripple=0.5Vp-p, Ta=25°C)

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products in this document are designed for automotive applications. However, when using the products for automotive applications, please make sure to contact Ricoh sales representative in advance due to confirming the quality level.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.
- 11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment. Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

https://www.e-devices.ricoh.co.jp/en/

Sales & Support Offices

Ricoh Electronic Devices Co., Ltd. Shin-Yokohama Office (International Sales)
2-3, Shin-Yokohama 3-chome, Kohoku-ku, Yokohama-shi, Kanagawa, 222-8530, Japan Phone: +81-50-3814-7687 Fax: +81-45-474-0074

Ricoh Americas Holdings, Inc. av. Suite 200 Campbell, CA 95008, U.S.A. Phone: +1-408-610-3105

Ricoh Europe (Netherlands) B.V. Semiconductor Support Centre Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands Phone: +31-20-5474-309

Ricoh International B.V. - German Branch Semiconductor Sales and Support Centre Oberrather Strasse 6, 40472 Düsseldorf, Germany Phone: +49-211-6546-0

Ricoh Electronic Devices Korea Co., Ltd. 3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea Phone: +82-2-2135-5700 Fax: +82-2-2051-5713

Ricoh Electronic Devices Shanghai Co., Ltd. Room 403, No.2 Building, No.690 Bibo Road, Pu Dong People's Republic of China Phone: +86-21-5027-3200 Fax: +86-21-5027-3299 hanghai 201203,

Ricoh Electronic Devices Shanghai Co., Ltd.

Shenzhen Branch 1205, Block D(Jinlong Building), Kingkey 100, Hongbao Road, Luohu District, Shenzhen, China Phone: +86-755-8348-7600 Ext 225

Ricoh Electronic Devices Co., Ltd.

 Taipei office

 Room 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.)

 Phone: +886-2-2313-1621/1622

 Fax: +886-2-2313-1621/1622

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LDO Voltage Regulators category:

Click to view products by Nisshinbo manufacturer:

Other Similar products are found below :

AP7363-SP-13 L79M05TL-E PT7M8202B12TA5EX TCR3DF185,LM(CT TCR3DF24,LM(CT TCR3DF285,LM(CT TCR3DF31,LM(CT TCR3DF45,LM(CT MP2013GQ-33-Z 059985X NCP4687DH15T1G 701326R TCR2EN28,LF(S NCV8170AXV250T2G TCR3DF27,LM(CT TCR3DF19,LM(CT TCR3DF125,LM(CT TCR2EN18,LF(S AP2112R5A-3.3TRG1 AP7315-25W5-7 IFX30081LDVGRNXUMA1 NCV47411PAAJR2G AP2113KTR-G1 AP2111H-1.2TRG1 ZLDO1117QK50TC AZ1117IH-1.8TRG1 AZ1117ID-ADJTRG1 TCR3DG12,LF MIC5514-3.3YMT-T5 MIC5512-1.2YMT-T5 MIC5317-2.8YM5-T5 SCD7912BTG NCP154MX180270TAG SCD33269T-5.0G NCV8170BMX330TCG NCV8170AMX120TCG NCP706ABMX300TAG NCP153MX330180TCG NCP114BMX075TCG MC33269T-3.5G CAT6243-ADJCMT5T TCR3DG33,LF AP2127N-1.0TRG1 TCR4DG35,LF LT1117CST-3.3 TAR5S15U(TE85L,F) TAR5S18U(TE85L,F) TCR3UG19A,LF TCR4DG105,LF NCV8170AMX360TCG