## USB HIGH-SIDE POWER SWITCH

NO.EA-168-180516

## OUTLINE

The R5523N is a high-side MOSFET switch IC for Universal Serial Bus (USB) applications. Low ON Resistance (Typ. 130m $\Omega$ ) and low supply current (Typ. $20 \mu \mathrm{~A}$ at active mode) are realized in this IC. An over-current limit circuit, a thermal shutdown circuit, and an under voltage lockout (UVLO) circuit are built-in as protection circuits. Further, a delay circuit for flag signal after detecting over-current, is embedded to prevent miss-operation of error flag because of inrush current. The R5523N Series is ideal for applications of protection for USB power supply. Since the package is small SOT-23-5, high density mounting on board is possible.

## FEATURES

- Built-in P-channel MOSFET Switch
- • Supply Current ............................................................... $20 \mu \mathrm{~A}$ (at Active Mode)
- Switch ON Resistance ................................................ $130 \mathrm{~m} \Omega$


- Package.......................................................... SOT-23-5
- Over- Current Limit / Short Circuit Protection
- Built-in Under Voltage Lockout (UVLO) Function
- Built-in Thermal Shutdown Protection
- Built-in Soft-start Function


## APPLICATIONS

- USB Peripherals
- Notebook PCs


## SELECTION GUIDE

The logic of the enable pin for the ICs can be selected at the user's request.

| Product Name | Package | Quantity per Reel | Pb Free | Halogen Free |
| :---: | :---: | :---: | :---: | :---: |
| R5523N001*-TR-FE | SOT-23-5 | 3,000 pcs | Yes | Yes |

* : Designation of the logic of the enable pin.
(A) "L" active
(B) "H" active


## BLOCK DIAGRAM



## PIN DESCRIPTION



R5523N (SOT-23-5) Pin Configuration

| Pin No | Symbol | Pin Description |
| :---: | :---: | :--- |
| 1 | EN | Enable Pin |
| 2 | GND | Ground Pin |
| 3 | FLG | FLG pin (Open Drain Output) |
| 4 | VIN | Power Supply Pin |
| 5 | VOUT | Output Pin |

## ABSOLUTE MAXIMUM RATINGS

| Symbol | Item | Rating | Unit |
| :---: | :---: | :---: | :---: |
| VIN | Input Voltage | 6.5 | V |
| $V_{\text {en }}$ | Enable Pin Input Voltage | -0.3 to $\mathrm{V}_{1 \times}+0.3$ | V |
| Vflg | Flag Voltage | -0.3 to 6.5 | V |
| Ifıg | Flag Current | 14 | mA |
| Vout | Output Voltage | -0.3 to $\operatorname{Vin}+0.3$ | V |
| lout | Output Current | Internal Limited |  |
| PD | Power Dissipation ${ }^{(1)}$ (SOT-23-5, JEDEC STD.51-7) | 660 | mW |
| Tj | Junction Temperature Range | -40 to 125 | ${ }^{\circ} \mathrm{C}$ |
| Tstg | Storage Temperature | -55 to 125 | ${ }^{\circ} \mathrm{C}$ |

## ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the lifetime and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

## RECOMMENDED OPERATING CONDITIONS

| Symbol | Parameter | Rating | Unit |
| :---: | :--- | :---: | :---: |
| $\mathrm{V}_{\mathrm{IN}}$ | Operating Input Voltage | 2.2 to 5.5 | V |
| Ta | Operating Temperature Range | -40 to 85 | ${ }^{\circ} \mathrm{C}$ |

## RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

[^0]
## R5523N

NO.EA-168-180516

## ELECTRICAL CHARACTERISTICS

R5523N001A/B Electrical Characteristics
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

| Symbol | Item | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IDD1 | Supply Current 1 (Enabled) | Vout $=$ OPEN ${ }^{(1)}$ |  | 20 | 45 | $\mu \mathrm{A}$ |
| IDD2 | Supply Current 2 (Disabled) | $\mathrm{V}_{\text {OUt }}=$ OPEN ${ }^{(2)}$ |  | 0.1 | 1.0 | $\mu \mathrm{A}$ |
| Ron | Switch On Resistance | $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$, $\mathrm{lout}=500 \mathrm{~mA}$ |  | 130 | 180 | $\mathrm{m} \Omega$ |
| ton | Output Turn-on Delay | $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{RL}=60 \Omega$ |  | 1400 |  | $\mu \mathrm{s}$ |
| toff | Output Turn-off Delay | $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{RL}=60 \Omega$ |  | 5 |  | $\mu \mathrm{s}$ |
| Vuvio | UVLO Threshold | $\mathrm{V}_{\text {IN }}$ at increasing | 1.6 | 1.9 |  | V |
| $\mathrm{V}_{\text {HYS }}$ | UVLO Hysteresis Range | VIN at decreasing |  | 0.1 |  | V |
| $\mathrm{I}_{\text {TH }}$ | Current Limit Threshold |  |  | 1.0 | 1.5 | A |
| ILIM | Short Current Limit | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \\ & 5 \mathrm{~ms} \text { after } \mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}^{(3)} \end{aligned}$ | 0.5 | 0.75 | 1.3 | A |
| trd | Over Current Flag Delay | $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V},$ <br> From Over Current to FLG = "L" | 5 | 10 | 20 | ms |
| Tts | Thermal Shutdown Temperature Threshold | Tj at increasing |  | 135 |  | ${ }^{\circ} \mathrm{C}$ |
|  |  | Tj at decreasing |  | 120 |  | ${ }^{\circ} \mathrm{C}$ |
| IEN | Enable Pin Input Current |  |  | 0.01 | 1.0 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\text {EN1 }}$ | Enable Pin Input Voltage 1 | $\mathrm{V}_{\text {EN }}$ at increasing | 2.0 |  |  | V |
| $\mathrm{V}_{\mathrm{EN} 2}$ | Enable Pin Input Voltage 2 | $\mathrm{V}_{\mathrm{EN}}$ at decreasing |  |  | 0.8 | V |
| ILO | Output Leakage Current |  |  | 0.1 | 1.0 | $\mu \mathrm{A}$ |
| $V_{\text {LF }}$ | Flag "L" Output Voltage | $\mathrm{I}_{\mathrm{SINK}}=1 \mathrm{~mA}$ |  |  | 0.4 | V |
| IfoF | Flag Off Current | $\mathrm{V}_{\mathrm{FLG}}=5.5 \mathrm{~V}$ |  | 0.01 | 1.0 | $\mu \mathrm{A}$ |

[^1]
## THEORY OF OPERATION

This explanation is based on the typical application.

- There is a parasitic diode between source and drain of the switch transistor. (Refer to the block diagram.) Because of this, in both cases of enable and disable, if the voltage of Vout pin is higher than Vin pin, current flows from Vout to Vin.
- In case that Vout pin and GND is short, if over-current would continue, the temperature of the IC would increase drastically. If the temperature of the IC is beyond $135^{\circ} \mathrm{C}$, the switch transistor turns off and the FLG pin level becomes "L". Then, when the temperature of the IC decreases equal or lower than $120^{\circ} \mathrm{C}$, the switch transistor turns on and FLG becomes "H". Unless the abnormal situation of Vout pin is removed, the switch transistor repeats on and off. Refer to the 24) Thermal Shutdown operation in the typical characteristics.
- Over-current level is set internally in the IC. There are three types of response against over-current: Under the condition that Vout pin is short or large capacity is loaded, if the IC is enabled, the IC becomes constant current state. After the flag delay time passes, FLG becomes "L", that means over current state. Refer to the 23) current limit transient response of typical characteristics. While the switch transistor is on, if Vout pin is short or large capacity is loaded, until the current limit circuit responds, large transient current flows. After the transient current is beyond the over-current detector threshold and delay time of the flag passes, FLG becomes "L", that means over current state. Refer to the 25), 26) over-current limit transient response of typical characteristics. In the case that load current gradually increases, the IC is not into the constant current state until the current is beyond over current limit. Once the level is beyond the over current detector threshold, load current is limited into over current limit level. Note that load current continuously flows until the load current is beyond the over-current detector threshold.
- FLG pin is Nch Open drain output. If the over-current or over-temperature is detected, FLG becomes "L". If over-current is detected, FLG becomes "L" after the flag delay time tro passes. Therefore flag signal is not out with inrush current.
- UVLO circuit prevents that the switch transistor turns on until the input voltage is beyond 1.9 V . UVLO circuit can operate when the IC is enabled.


## R5523N

NO.EA-168-180516

## Timing Chart

## R5523N001A

Output On time/ Output Off time


FLG Output Delay Time


## R5523N001B

Output On time/ Output Off time


FLG Output Delay Time


## Overcurrent Detection and Overcurrent Limit



R5523N001A / R5523N001B Overcurrent Detection and Overcurrent limit Timing Chart
(1) When the lout is $I_{\text {th }}$ or less, the current is not limited.
(2) Once the lout reaches to $I_{t н}$, the lout is limited by lıim.
(3) When the lout drops to lum or less within the trd time, the current limit is released. The current is not limited until the lout exceeds Itн again.
(4) When the lout reaches to $I_{\text {th }}$ and it is limited by lim for $^{\text {fFD }}$ or more, the switch transistor turns off and $V_{\text {FLg }}$ becomes "Low".

## R5523N

NO.EA-168-180516

## APPLICATION INFORMATION TECHNICAL NOTES

## Typical Application Circuit



R5523N001x Typical Application Circuit

## Precautions for Selecting External Components

## - Bypass capacitor

Put a capacitance range from $0.1 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$ bypass capacitor between VIN pin and GND pin of the IC. Without a bypass capacitor, in case of output short, because of the high side inductance of VIN pin, the ringing may be generated and it might be a cause of an unstable operation.

## - Pull-up resistance value range of flag pin

Recommended pull-up resistance value range of flag pin is from $10 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$.

## - Over-current limit Function

In case that VOUT pin and GND is short, if over-current would continue, the temperature of the IC would increase drastically. If the temperature of the IC is equal or more than $135^{\circ} \mathrm{C}$ (Typ.), the switch transistor turns off because of thermal shutdown protection. In other words, when the temperature of the IC becomes equal or more than $135^{\circ} \mathrm{C}$ ( Typ.), both the over-current limit circuit and thermal shutdown circuit work for the protection of the IC.

NO.EA-168-180516

## TYPICAL CHARACTERISTICS

Typical Characteristics are intended to be used as reference data, they are not guaranteed.

1) Output Voltage vs. Output Current

2) Supply Current vs. Temperature

3) On Resistance vs. Temperature

4) Supply Current vs. Input Voltage

5) On Resistance vs. Input Voltage


## R5523N

NO.EA-168-180516
6) Output On Time vs. Temperature

8) Output Off Time vs. Temperature

10) Overcurrent Threshold vs. Temperature

7) Output On Time vs. Input Voltage

9) Output Off Time vs. Input Voltage

11) Overcurrent Threshold vs. Input Voltage

12) Overcurrent Threshold vs. Temperature

14) Enable Input Voltage vs. Temperature

16) Flag Output Delay Time vs. Temperature

13) Overcurrent Threshold vs. Input Voltage

15) Enable Input Voltage vs. Vis Input Voltage

17) Flag Output Delay Time vs. Vis Input Voltage


## R5523N

NO.EA-168-180516
18) UVLO Threshold vs. Temperature

19) UVLO Characteristic at $V_{\mathbb{I N}}$ increasing

21) Turn Off Response

20) Turn on Response

$$
\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \quad \mathrm{C}_{\mathrm{L}}=47 \mu \mathrm{~F}, \quad \mathrm{R}_{\mathrm{L}}=35 \Omega
$$


22) Inrush Current

23) Current Limit Transient Response (Case: Enable to Short)

25) Current Limit Transient Response
(Case: Output short during enable)

24) Thermal Shutdown Operation

26) Zoomed in 25)


The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

| Item | Measurement Conditions |
| :---: | :---: |
| Environment | Mounting on Board (Wind Velocity $=0 \mathrm{~m} / \mathrm{s}$ ) |
| Board Material | Glass Cloth Epoxy Plastic (Four-Layer Board) |
| Board Dimensions | $76.2 \mathrm{~mm} \times 114.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ |
| Copper Ratio | Outer Layer (First Layer): Less than 95\% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100\% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100\% of 50 mm Square |
| Through-holes | $\phi 0.3 \mathrm{~mm} \times 7 \mathrm{pcs}$ |

Measurement Result
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Tjmax}=125^{\circ} \mathrm{C}\right)$

| Item | Measurement Result |
| :--- | :---: |
| Power Dissipation | 660 mW |
| Thermal Resistance (日ja) | $\theta \mathrm{ja}=150^{\circ} \mathrm{C} / \mathrm{W}$ |
| Thermal Characterization Parameter ( $\psi \mathrm{jt}$ ) | $\psi j \mathrm{j}=51^{\circ} \mathrm{C} / \mathrm{W}$ |

өja: Junction-to-Ambient Thermal Resistance
$\psi j$ t: Junction-to-Top Thermal Characterization Parameter



SOT-23-5 Package Dimensions

1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
7. Anti-radiation design is not implemented in the products described in this document.
8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.
11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment.
Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012

## RICOH RICOH ELECTRONIC DEVICES CO., LTD.

## https://www.e-devices.ricoh.co.jp/en/

## Sales \& Support Offices

Ricoh Electronic Devices Co., Ltd.
Shin-Yokohama Office (International Sales)
2-3, Shin-Yokohama 3-chome, Kohoku-ku, Yokohama-shi, Kanagawa, 222-8530, Japan Phone: +81-50-3814-7687 Fax: +81-45-474-0074
Ricoh Americas Holdings, Inc.
675 Campbell Technology Parkway, Suite 200 Campbell, CA 95008, U.S.A.
Phone: $+1-408-610-3105$
Ricoh Europe (Netherlands) B.V.
Semiconductor Support Centre
Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands
Phone: +31-20-5474-309
Ricoh International B.V. - German Branch
Semiconductor Sales and Support Centre
Oberrather Strasse 6, 40472 Düsseldorf, Germany
Phone: +49-211-6546-0
Ricoh Electronic Devices Korea Co., Ltd. 3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea Phone: +82-2-2135-5700 Fax: +82-2-2051-5713
Ricoh Electronic Devices Shanghai Co., Ltd. Room 403, No. 2 Building, No. 690 Bibo Road, Pu Dong New District, Shanghai 201203 ,
People's Republic of China
Ricoh Electronic Devices Shanghai Co., Ltd.
Shenzhen Branch
1205, Block D(Jinlong Building), Kingkey 100, Hongbao Road, Luohu District,
Phone + 86 -755-
Ricoh Electronic Devices Co., Ltd.
Taipei office
Room 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan
Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623 $\square$

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Nisshinbo manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR NCV459MNWTBG FPF2260ATMX U6513A U6119S MIC2012YM-TR MAX14919ATP+ MC33882PEP TPS2021IDRQ1 TPS2104DBVR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2075-2YM MIC2095-2YMT-TR MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G TCK105G,LF(S AP2151DSG-13 MIC94094YC6-TR MIC94064YC6-TR MIC2505-1YM MIC94305YMT-TR MIC94081YFT-TR MIC94042YFL-TR MIC94041YFL-TR MIC2005-1.2YM6-TR TPS2032QDRQ1 SIP32510DT-T1GE3 NCP333FCT2G NCP331SNT1G TPS2092DR TPS2063DR TPS2042P MIC2008YML-TR MIC2040-1YMM


[^0]:    ${ }^{(2)}$ Refer to POWER DISSIPATION for detailed information.

[^1]:    ${ }^{(1)} \mathrm{EN}=$ "L"(R5523NxxxA), EN="H"(R5523NxxxB)
    ${ }^{(2)} \mathrm{EN}=$ "H"(R5523NxxxA), EN="L"(R5523NxxxB)
    ${ }^{(3)}$ Refer to "Overcurrent Detection and Overcurrent limit" in THEORY OF OPERATION for details.

